Off-Design Analysis Method for Compressor Fouling Fault Diagnosis of Helicopter Turboshaft Engine
Abstract
:1. Introduction
2. Problem Definition
3. Methodology
3.1. Engine Cycle—Power (Step 1)
3.2. Engine Cycle—Combustion Temperature (Step 2)
3.3. Engine Cycle—Compressor (Step 3)
3.4. Fouling Effect—Compressor (Step 4)
3.5. Fouling Effect—Power (Step 5)
3.6. Fouling Effect—SFC and Efficiency (Step 6)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | ||||
specific heat at const. pressure [J/(kg.°K)] | FPT | free power turbine | ||
e | polytropic efficiency | IGV | inlet guide vane | |
fuel-to-air mass flow ratio | ICAO | international civil aviation organization | ||
gravity constant [m/s2] | GGT | gas generator turbine | ||
h | flight altitude [m] | NGV | nozzle guide vane | |
specific heat value [J/kg] | SFC | specific fuel consumption, [kg/J] | ||
mass flow rate, [kg/s] | SSD | subsystem data | ||
M | Mach number | TGT | turbine gas temperature | |
n | number | RPM | revolutions per minute | |
N | No. of revolutions per minute [1/min] | MB | model-based | |
pressure [Pa] | MFR | mass flow rate | ||
power, [watt] | MTO | maintenance, and overhaul | ||
Torque [N.m] | PDG | protection design guidelines | ||
specific gas constant [J/(mol.°K)] | URANS | Unsteady Reynolds averaged Navier-Stokes | ||
T | temperature [°K] | |||
flight velocity [m/s] | Subscripts | |||
bleed air mass flow ratio | 0…7 | station number | ||
temperature ratio | amb | ambient | ||
π | pressure ratio | accs | accessories | |
ρ | density [kg/m3] | c | compressor | |
angle [degree] | cc | combustion chamber | ||
π | pressure ratio | d | diffuser | |
efficiency | e | engine | ||
heat capacity ratio [J/°K] | f | fuel | ||
F | fouling | |||
Acronyms | gt | gear transmission | ||
CFD | computational fluid dynamics | i | inlet | |
CPR | compressor pressure ratio | IGV | inlet guide vane | |
DD | data-driven | m | mechanical | |
ECU | engine control unit | mr | main rotor | |
EGT | exhaust gas temperature | operator | operator/pilot | |
EHM | engine health monitoring | R | reference | |
ERG | engine reduction gearbox | t | turbine | |
ECO | forward flight with minimum power | tr | tail rotor | |
FVM | finite volume method | bleed air mass flow ratio | ||
FDI | fault diagnosis and isolation | cooling air mass flow ratio |
Appendix A. Proofs
Appendix A.1. Proof of the Equation (5)
Appendix A.2. Proof of the Equation (6)
Appendix A.3. Proof of the Equation (9)
References
- Suman, A.; Vulpio, A.; Casari, N.; Pinelli, M.; Kurz, R.; Brun, K. Deposition Pattern Analysis on a Fouled Multistage Test Compressor. J. Eng. Gas Turbines Power 2021, 143, 081006. [Google Scholar] [CrossRef]
- Kong, C. Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods. Int. J. Aeronaut. Space Sci. 2014, 15, 123–137. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Wen, X.; Li, S. A Review on Gas Turbine Anomaly Detection for Implementing Health Management. In Proceedings of the ASME Turbo Expo 2016, Seoul, Republic of Korea, 13–17 June 2016. [Google Scholar]
- Fast, M.; Assadi, M.; De, S. Development and multi-utility of an ANN model for an industrial gas turbine. Appl. Energy 2009, 86, 9–17. [Google Scholar] [CrossRef]
- Zedda, M.; Singh, R. Gas Turbine Engine and Sensor Fault Diagnosis Using Optimization Techniques. J. Propuls. Power 2002, 18, 1019–1025. [Google Scholar] [CrossRef]
- Aker, G.F.; Saravanamuttoo, H.I.H. Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques. J. Eng. Gas Turbines Power 1989, 111, 343–350. [Google Scholar] [CrossRef]
- Dash, S.; Venkatasubramanian, V. Challenges in the industrial applications of fault diagnostic systems. Comput. Chem. Eng. 2000, 24, 785–791. [Google Scholar] [CrossRef]
- Yang, H.; Xu, H. The New Performance Calculation Method of Fouled Axial Flow Compressor. Sci. World J. 2014, 2014, 906151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, D.; Zhou, D.; Tan, C.; Jiang, B. Research on Model-Based Fault Diagnosis for a Gas Turbine Based on Transient Performance. Appl. Sci. 2018, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Tahan, M.; Tsoutsanis, E.; Muhammad, M.; Karim, Z.A. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Appl. Energy 2017, 198, 122–144. [Google Scholar] [CrossRef] [Green Version]
- Maiwada, B.; Muaz, N.I.; Ibrahim, S.; Musa, S.M. Impacts of Compressor Fouling On the Performance of Gas Turbine. Int. J. Eng. Sci. Comput. 2016, 6, 2118–2125. [Google Scholar] [CrossRef]
- Casari, N.; Pinelli, M.; Spina, P.R.; Suman, A.; Vulpio, A. Experimental Assessment of Fouling Effects in a Multistage Axial Compressor. E3S Web Conf. 2020, 197, 11007. [Google Scholar] [CrossRef]
- Jaw, L.C. Recent Advancements in Aircraft Engine Health Management (EHM) Technologies and Recommendations for the Next Step. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005; pp. 683–695. [Google Scholar] [CrossRef]
- Zaccaria, V.; Stenfelt, M.; Sjunnesson, A.; Hansson, A.; Kyprianidis, K.G. A Model-Based Solution for Gas Turbine Diagnostics: Simulations and Experimental Verification. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, AZ, USA, 17–21 June 2019. Volume 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy; American Society of Mechanical Engineers. [Google Scholar] [CrossRef]
- Vulpio, A.; Suman, A.; Casari, N.; Pinelli, M. Dust Ingestion in a Rotorcraft Engine Compressor: Experimental and Numerical Study of the Fouling Rate. Aerospace 2021, 8, 81. [Google Scholar] [CrossRef]
- Bazmi, F.; Rahimi, A. Helicopter Turboshaft Engine Database as a Conceptual Design Tool. SAE Int. J. Engines 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.G.; Steenken, W.G.; Yuhas, A.J.; Aeronautics, N. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows; Technical Report for NASA Dryden Flight Research Center: Edwards, CA, USA, 2017. [Google Scholar]
- Khorasgani, H.; Jung, D.E.; Biswas, G.; Frisk, E.; Krysander, M. Robust Residual Selection for Fault Detection. In Proceedings of the 53rd IEEE Conference on Decision and Control, IEEE, Los Angeles, CA, USA, 15–17 December 2014; pp. 5764–5769. [Google Scholar]
- Fentaye, A.D.; Baheta, A.T.; Gilani, S.I.; Kyprianidis, K.G. A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities. Aerospace 2019, 6, 83. [Google Scholar] [CrossRef] [Green Version]
- Bazmi, F.; Rahimi, A. Calculation of Air Velocity on the Helicopter Turboshaft Engines Inlet. SAE Int. J. Engines 2021, 15, 581–597. [Google Scholar] [CrossRef]
- Mattingly, J.D. Elements of Propulsion: Gas Turbines and Rockets; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006; Volume 53, ISBN 978-1-56347-779-9. [Google Scholar]
- Mattingly, J.D. Elements of Gas Turbine Propulsion; illustrate; McGraw-Hill: New York, NY, USA, 1996; ISBN 0-07-912196-9. [Google Scholar]
- Goodstein, D.L. States of Matter; Annotated; Dover Publications: Mineola, NY, USA, 2014; ISBN 978-0486649276. [Google Scholar]
- Organ, A.J. Counter-Flow Spiral Heat Exchanger – Spirex. In The Air Engine; Woodhead Publishing: Abington, UK, 2007; pp. 29–38. [Google Scholar]
- Duffy, R.J.; Shattuck, B.F. Integral Engine Inlet Particle Separator; Technical Report for General Electric Company: Cincinnati, OH, USA, 1975; Volume 2, p. 68. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- El-Sayed, A.F. Aircraft Propulsion and Gas Turbine Engines, 2nd ed.; CRC Press: New York, NY, USA, 2017; ISBN 9781466595170. [Google Scholar]
Author | Ref. | Year | Classification |
---|---|---|---|
Saravanamuttoo, et al. | [6] | 1989 | Computer Simulation Techniques |
Dash, et al. | [7] | 2000 | MB and Data-driven |
Yang, H., et al. | [8] | 2014 | MB, and local optimization |
Zhao, et al. | [3] | 2016 | MB, DD, and Knowledge-based |
Zeng, et al. | [9] | 2018 | MB, and direct problem |
Vulpio, A., et al. | [10] | 2021 | MB, and Hybrid |
Suman, et al. | [1] | 2021 | MB, and particle impact influence |
Level of Technology | ||||
---|---|---|---|---|
Factor | 1 | 2 | 3 | 4 |
0.80 | 0.84 | 0.88 | 0.90 |
Parameters | Value | Unit | |
---|---|---|---|
Number of engines | ) | 2 | - |
Diffuser temp. ratio | ) | 0.399 | - |
Compressor inlet area | ) | 0.02543 | [m2] |
Air mass flow rate at the design point | ) | 4.6122 | [kg/s] |
Compressor pressure ratio at the design point | ) | 17.5 | - |
Compressor polytropic efficiency | ) | 0.821 | - |
Compressor speed at the design point | 44,700 | [rpm] | |
Combustion chamber temperature at the design point | ) | 1124 | [°K] |
Combustion chamber efficiency | ) | 0.985 | - |
Fuel mass flow rate at the design point | ) | 0.1004 | [kg/s] |
Fuel upper heat of combustion | ) | 43,100 | [kJ/kg] |
Specific fuel consumption at the design point | ) | 7.8569 × 10−8 | [kg/J] |
Free power turbine rotational speed at the design point | 20,900 | [rpm] | |
Free power turbine power at the design point | ) | 1329.9 | [kW] |
Mechanical efficiency | ) | 0.99 | - |
Gear transmission efficiency | ) | 0.95 | - |
Status | Engine Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFC | |||||||||||||
Hovering maneuver | |||||||||||||
On-Design [16] | 0.119 | 2.746 | 112 | 89,424 | 14.72 | 1015 | 0.0524 | 47,947 | 23,023 | 289 | 667 | 7.8569 | 0.29 |
Off-Design (1%) | 2.719 | 112 | 89,454 | 14.52 | 1008 | 0.0421 | 47,768 | 22,849 | 284 | 649 | 6.4942 | 0.36 | |
Off-Design (2%) | 2.691 | 112 | 89,469 | 1.019 | 5.070 | 0.0155 | 3342 | FW * | 000.00 | 000 | - | 0.00 | |
Off-Design (3%) | 2.664 | 112 | 89,501 | 1.019 | 5.177 | 0.0153 | 3342 | FW * | 000.00 | 000 | - | 0.00 | |
Forward flight (minimum power) | |||||||||||||
On-Design [16] | 0.192 | 2.280 | 112 | 90,850 | 8.17 | 755 | 0.0264 | 36,223 | 15,176 | 221 | 336 | 7.8569 | 0.29 |
Off-Design (1%) | 2.257 | 112 | 90,850 | 8.05 | 748 | 0.0302 | 36,070 | 15,013 | 219 | 329 | 9.1747 | 0.25 | |
Off-Design (2%) | 2.234 | 112 | 90,921 | 1.048 | 12.96 | 0.0121 | 4713 | FW * | 000.00 | 000 | - | 0.01 | |
Off-Design (3%) | 2.212 | 112 | 90,906 | 1.049 | 13.24 | 0.0120 | 4761 | FW * | 000.00 | 000 | - | 0.00 | |
Forward flight (maximum velocity) | |||||||||||||
On-Design [16] | 0.563 | 5.2041 | 119 | 109,800 | 14.15 | 1118 | 0.1170 | 43,472 | 20,795 | 715 | 1489 | 7.8569 | 0.29 |
Off-Design (1%) | 5.152 | 119 | 109,785 | 13.96 | 1110 | 0.0941 | 43,315 | 20,659 | 700 | 1449 | 6.4903 | 0.36 | |
Off-Design (2%) | 5.100 | 119 | 109,774 | 1.021 | 6.058 | 0.0350 | 3217 | FW * | 000.00 | 000 | - | 0.01 | |
Off-Design (3%) | 5.048 | 119 | 109,779 | 13.58 | 1094 | 0.0915 | 43,003 | 20,350 | 681 | 1387 | 6.5911 | 0.35 | |
Climbing flight (maximum velocity) | |||||||||||||
On-Design [16] | 0.242 | 3.352 | 113 | 92,227 | 15.61 | 1064 | 0.0382 | 43,485 | 19,349 | 479.36 | 929 | 7.8569 | 0.29 |
Off-Design (1%) | 3.318 | 113 | 92,291 | 15.39 | 1057 | 0.0532 | 43,337 | 19,237 | 467.87 | 902 | 5.9050 | 0.39 | |
Off-Design (2%) | 3.285 | 113 | 92,226 | 15.19 | 1049 | 0.0524 | 43,192 | 19,080 | 461.31 | 882 | 5.9485 | 0.39 | |
Off-Design (3%) | 3.251 | 113 | 92,249 | 1.018 | 4.813 | 0.0192 | 2908 | FW * | 000.00 | 000 | - | 0.00 | |
Combination of forward and climbing flights | |||||||||||||
On-Design [16] | 0.242 | 2.447 | 113 | 92,227 | 15.61 | 1064 | 0.0382 | 43,485 | 19,349 | 250.78 | 486 | 7.8569 | 0.290 |
Off-Design (1%) | 2.422 | 113 | 92,241 | 15.39 | 1056 | 0.0388 | 43,337 | 19,166 | 247.72 | 475 | 8.1572 | 0.284 | |
Off-Design (2%) | 2.398 | 113 | 92,222 | 15.19 | 1049 | 0.0383 | 43,192 | 19,021 | 244.41 | 466 | 8.2213 | 0.282 | |
Off-Design (3%) | 2.374 | 113 | 92,059 | 1.02 | 4.809 | 0.0140 | 3064 | FW * | 000.00 | 000 | - | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazmi, F.; Rahimi, A. Off-Design Analysis Method for Compressor Fouling Fault Diagnosis of Helicopter Turboshaft Engine. Modelling 2023, 4, 56-69. https://doi.org/10.3390/modelling4010005
Bazmi F, Rahimi A. Off-Design Analysis Method for Compressor Fouling Fault Diagnosis of Helicopter Turboshaft Engine. Modelling. 2023; 4(1):56-69. https://doi.org/10.3390/modelling4010005
Chicago/Turabian StyleBazmi, Farshid, and Afshin Rahimi. 2023. "Off-Design Analysis Method for Compressor Fouling Fault Diagnosis of Helicopter Turboshaft Engine" Modelling 4, no. 1: 56-69. https://doi.org/10.3390/modelling4010005
APA StyleBazmi, F., & Rahimi, A. (2023). Off-Design Analysis Method for Compressor Fouling Fault Diagnosis of Helicopter Turboshaft Engine. Modelling, 4(1), 56-69. https://doi.org/10.3390/modelling4010005