Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic
Abstract
:1. Introduction
2. Computational Approach
2.1. The Cohesive Law
2.2. The Microscopic Stochastic Fracture Model
3. The Hybrid Finite-Discrete Element Method
3.1. Modeling Mode I Failure Considering Distributed Flaws
3.2. The Effect of Flaw Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swab, J.J.; Lasalvia, J.C.; Gilde, G.A.; Patel, P.J.; Motyka, M.J. Transparent armor ceramics: Alon and spinel. In Proceedings of the 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings; Wiley Online Library: Hoboken, NJ, USA, 1999; pp. 79–84. [Google Scholar]
- Willmann, G. Ceramic femoral head retrieval data. Clin. Orthop. AndRelated Res. 2000, 379, 22–28. [Google Scholar] [CrossRef]
- Subhash, G.; Maiti, S.; Geubelle, P.H.; Ghosh, D. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J. Am. Ceram. Soc. 2008, 91, 2777–2791. [Google Scholar] [CrossRef]
- Medvedovski, E. Ballistic performance of armour ceramics: Influence of design and structure. part 2. Ceram. Int. 2010, 36, 2117–2127. [Google Scholar] [CrossRef]
- Medvedovski, E. Ballistic performance of armour ceramics: Influence of design and structure. part 1. Ceram. Int. 2010, 36, 2103–2115. [Google Scholar] [CrossRef]
- Anglada, M. Assessment of Mechanical Properties of Ceramic Materials. In Advances in Ceramic Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–109. [Google Scholar]
- Suh, M.-S.; Chae, Y.-H.; Kim, S.-S. Friction and wear behavior of structural ceramics sliding against zirconia. Wear 2008, 264, 800–806. [Google Scholar] [CrossRef]
- Woodward, R.; Gooch Jr, W.; O’donnell, R.; Perciballi, W.; Baxter, B.; Pattie, S. A study of fragmentation in the ballistic impact of ceramics. Int. Impact Eng. 1994, 15, 605–618. [Google Scholar] [CrossRef]
- Kaufmann, C.; Cronin, D.; Worswick, M.; Pageau, G.; Beth, A. Influence of material properties on the ballistic performance of ceramics for personal body armour. Shock Vib. 2003, 10, 51–58. [Google Scholar] [CrossRef]
- Toussaint, G.; Martinez-Rubi, Y.; Noormohammed, S.; Li, C. Novel alternative multi-hit ballistic testing method developed to evaluate bonding technologies performance. Tech. rep., DRDC-RDDC-2020-R045.
- Arrowood, R.; Lankford, J. Compressive fracture processes in an alumina-glass composite. J. Mater. Sci. 1987, 22, 3737–3744. [Google Scholar] [CrossRef]
- Swab, J.J.; Wereszczak, A.A.; Strong, K.T., Jr.; Danna, D.; LaSalvia, J.C.; Ragan, M.E.; Ritt, P.J. Knoop hardness–apparent yield stress relationship in ceramics. Int. J. Appl. Ceram. Technol. 2012, 9, 650–655. [Google Scholar] [CrossRef]
- Hogan, J.D.; Farbaniec, L.; Sano, T.; Shaeffer, M.; Ramesh, K. The effects of defects on the uniaxial compressive strength and failure of an advanced ceramic. Acta Mater. 2016, 102, 263–272. [Google Scholar] [CrossRef]
- Lo, C.; Sano, T.; Hogan, J.D. Microstructural and mechanical characterization of variability in porous advanced ceramics using x-ray computed tomography and digital image correlation. Mater. Charact. 2019, 158, 109929. [Google Scholar] [CrossRef]
- DeVries, M.; Subhash, G. Influence of carbon nanotubes as secondary phase addition on the mechanical properties and amorphization of boron carbide. J. Eur. Ceram. Soc. 2019, 39, 1974–1983. [Google Scholar] [CrossRef]
- MUNRO, M. Evaluated material properties for a sintered alpha-alumina. J. Am. Ceram. Soc. 1997, 80, 1919–1928. [Google Scholar] [CrossRef]
- Nohut, S. Influence of sample size on strength distribution of advanced ceramics. Ceram. Int. 2014, 40, 4285–4295. [Google Scholar] [CrossRef]
- Hogan, J.D.; Farbaniec, L.; Shaeffer, M.; Ramesh, K. The effects of microstructure and confinement on the compressive fragmentation of an advanced ceramic. J. Am. Ceram. Soc. 2015, 98, 902–912. [Google Scholar] [CrossRef]
- Hogan, J.D.; Farbaniec, L.; Daphalapurkar, N.; Ramesh, K. On compressive brittle fragmentation. J. Am. Ceram. Soc. 2016, 99, 2159–2169. [Google Scholar] [CrossRef]
- Hogan, J.D.; Farbaniec, L.; Mallick, D.; Domnich, V.; Kuwelkar, K.; Sano, T.; McCauley, J.W.; Ramesh, K.T. Fragmentation of an advanced ceramic under ballistic impact: Mechanisms and microstructure. Int. J. Impactengineering 2017, 102, 47–54. [Google Scholar] [CrossRef]
- Langford, J.; Perras, M.A. Obtaining reliable estimates of intact tensile strength. In Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, MA, USA, 1–4 June 2014. [Google Scholar]
- Swab, J.J.; Tice, J.; Wereszczak, A.A.; Kraft, R.H. Fracture toughness of advanced structural ceramics: Applying astm c1421. J. Am. Soc. 2015, 98, 607–615. [Google Scholar] [CrossRef]
- Dai, Y.; Li, Y.; Xu, X.; Zhu, Q.; Yan, W.; Jin, S.; Harmuth, H. Fracture behaviour of magnesia refractory materials in tension with the brazilian test. J. Eur. Ceram. Soc. 2019, 39, 5433–5441. [Google Scholar] [CrossRef]
- Lo, C.; Li, H.; Toussaint, G.; Hogan, J.D. On the evaluation of mechanical properties and ballistic performance of two variants of boron carbide. Int. J. Impact Eng. 2021, 152, 103846. [Google Scholar] [CrossRef]
- Swab, J.; Chen, W.; Hogan, J.; Liao, H.; Lo, C.; Mates, S.; Meredith, C.; Pittari, J.; Rhorer, R.; Quinn, G. Dynamic compression strength of ceramics: What was learned from an interlaboratory round robin exercise? J. Dyn. Behav. Mater. 2021, 7, 34–47. [Google Scholar] [CrossRef]
- Subhash, G.; Awasthi, A.; Ghosh, D. Dynamic Response of Advanced Ceramics; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Zhang, L.; Townsend, D.; Petrinic, N.; Pellegrino, A. Loading mode and lateral confinement dependent dynamic fracture of a glass ceramic macor. J. Dynamic Behav. Mater. 2022, 8, 255–272. [Google Scholar] [CrossRef]
- Bavdekar, S.; Subhash, G. Failure mechanisms of ceramics under quasi-static and dynamic loads: Overview. In Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures; Springer: Berlin/Heidelberg, Germany, 2022; pp. 579–607. [Google Scholar]
- Zheng, J.; Li, H.; Hogan, J.D. Strain-rate-dependent tensile response of an alumina ceramic: Experiments and modelling. Int. J. Impact Eng. 2022, 173, 104487. [Google Scholar] [CrossRef]
- Brace, W.; Bombolakis, E. A note on brittle crack growth in compression. J. Geophys. Res. 1963, 68, 3709–3713. [Google Scholar] [CrossRef]
- Bradley, W.; Kobayashi, A. An investigation of propagating cracks by dynamic photoelasticity. Exp. Mech. 1970, 10, 106–113. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Horii, H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J. Geophys. Solid Earth 1982, 87, 6805–6821. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Horii, H. Rock failure in compression. Int. J. Eng. Sci. 1984, 22, 999–1011. [Google Scholar] [CrossRef] [Green Version]
- Horii, H.; Nemat-Nasser, S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. J. Geophys. Res. Earth 1985, 90, 3105–3125. [Google Scholar] [CrossRef]
- Appleby-Thomas, G.J.; Jaansalu, K.; Hameed, A.; Painter, J.; Shackel, J.; Rowley, J. A comparison of the ballistic behaviour of conventionally sintered and additively manufactured alumina. Def. Technol. 2020, 16, 275–282. [Google Scholar] [CrossRef]
- Nieto, A.; Huang, L.; Han, Y.-H.; Schoenung, J.M. Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement. Ceram. Int. 2015, 41, 5926–5936. [Google Scholar] [CrossRef]
- Schwentenwein, M.; Homa, J. Additive manufacturing of dense alumina ceramics. Int. J. Appl. Ceram. Technol. 2015, 12, 1–7. [Google Scholar] [CrossRef]
- Biesuz, M.; Sglavo, V.M. Flash sintering of alumina: Effect of different operating conditions on densification. J. Eur. Ceram. 2016, 36, 2535–2542. [Google Scholar] [CrossRef]
- Andreev, G. A review of the brazilian test for rock tensile strength determination. part i: Calculation formula. Min. Sci. Technol. 1991, 13, 445–456. [Google Scholar] [CrossRef]
- Graham-Brady, L. Statistical characterization of meso-scale uniaxial compressive strength in brittle materials with randomly occurring flaws. Int. J. Solids Struct. 2010, 47, 2398–2413. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Liu, J.; Graham-Brady, L.; Ramesh, K. A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading. J. Mech. Phys. Solids 2015, 78, 269–297. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Molladavoodi, H. A micromechanical sliding-damage model under dynamic compressive loading. Period. Polytech. Civ. Eng. 2019, 63, 168–183. [Google Scholar] [CrossRef]
- Moës, N.; Gravouil, A.; Belytschko, T. Non-planar 3d crack growth by the extended finite element and level sets—Part i: Mechanical model. Int. J. Numer. Methods Eng. 2002, 53, 2549–2568. [Google Scholar] [CrossRef]
- Sun, L.; Ma, D.; Wang, L.; Shi, X.; Wang, J.; Chen, W. Determining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique. Eng. Fract. Mech. 2018, 197, 151–159. [Google Scholar] [CrossRef]
- Wang, H.; Dong, H.; Cai, Z.; Li, Y.; Wang, W.; Liu, Y. Peridynamic-based investigation of the cracking behavior of multilayer thermal barrier coatings. Ceram. Int. 2022, 48, 23543–23553. [Google Scholar] [CrossRef]
- Cao, P.; Tang, C.; Liu, Z.; Shi, F.; Wang, Z.; Wang, X.; Zhou, C. Study on fracture behaviour of basalt fibre reinforced asphalt concrete with plastic coupled cohesive model and enhanced virtual crack closure technique model. Int. J. Pavement Eng. 2022, 384, 135585. [Google Scholar] [CrossRef]
- Falk, M.L.; Needleman, A.; Rice, J.R. A critical evaluation of cohesive zone models of dynamic fractur. Le J. Phys. IV 2001, 11, Pr5-43–Pr5-50. [Google Scholar] [CrossRef]
- Munjiza, A.A. The Combined Finite-Discrete Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Williams, C.; Love, B. Dynamic Failure of Materials: A Review. Tech. rep., Army Research Lab Aberdeen Proving Ground Md Weapons and Materials Research 2010-ADA528764. Available online: https://apps.dtic.mil/sti/pdfs/ADA528764.pdf (accessed on 1 February 2023).
- Rena, C.Y.; Ruiz, G.; Pandolfi, A. Numerical investigation on the dynamic behavior of advanced ceramics. Eng. Fract. Mech. 2004, 71, 897–911. [Google Scholar]
- Zhou, F.; Molinari, J.-F.; Ramesh, K. A cohesive model based fragmentation analysis: Effects of strain rate and initial defects distribution. Int. J. Solids Struct. 2005, 42, 5181–5207. [Google Scholar] [CrossRef]
- Arias, I.; Knap, J.; Chalivendra, V.B.; Hong, S.; Ortiz, M.; Rosakis, A.J. Numerical modelling and experimental validation of dynamic fracture events along weak planes. Comput. Methods Appl. Mech. Eng. 2007, 196, 3833–3840. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, H.D.; Zavattieri, P.D.; Dwivedi, S.K. A finite deformation continuum∖discrete model for the description of fragmentation and damage in brittle materials. J. Mech. Phys. Solids 1998, 46, 1909–1942. [Google Scholar] [CrossRef]
- Zhou, W.; Yuan, W.; Chang, X. Combined finite-discrete element method modeling of rock failure problems. In International Conference on Discrete Element Methods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 301–309. [Google Scholar]
- An, H.; Shi, J.; Zheng, X.; Wang, X. Hybrid finite-discrete element method modelling of brazilian disc tests. In Proceedings of the 2016 International Conference on Civil, Transportation and Environment, Guangzhou, China, 30–31 January 2016; Atlantis Press: Paris, France, 2016; pp. 371–377. [Google Scholar]
- Jaini, Z.M.; Feng, Y.T.; Mokhatar, S.N.; Seman, M.A. Numerical homogenization of protective ceramic composite layers using the hybrid finite-discrete element methods. Int. J. Integr. Eng. 2013, 5, 15–22. [Google Scholar]
- Mahabadi, O.; Lisjak, A.; Munjiza, A.; Grasselli, G. Y-geo: New combined finite-discrete element numerical code for geomechanical applications. Int. J. Geomech. 2012, 12, 676–688. [Google Scholar] [CrossRef]
- Liu, H.; Kang, Y.; Lin, P. Hybrid finite–discrete element modeling of geomaterials fracture and fragment muck-piling. Int. J. Geotech. Eng. 2015, 9, 115–131. [Google Scholar] [CrossRef]
- Miglietta, P.C. Application of the Hybrid Finite/Discrete Element Method to the Numerical Simulation of Masonry Structures. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2017. [Google Scholar]
- Mahabadi, O.; Kaifosh, P.; Marschall, P.; Vietor, T. Three-dimensional fdem numerical simulation of failure processes observed in opalinus clay laboratory samples. J. Rock Mech. Geotech. Eng. 2014, 6, 591–606. [Google Scholar] [CrossRef] [Green Version]
- Camacho, G.T.; Ortiz, M. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 1996, 33, 2899–2938. [Google Scholar] [CrossRef]
- Warner, D.; Molinari, J. Micromechanical finite element modeling of compressive fracture in confined alumina ceramic. Acta Mater. 2006, 54, 5135–5145. [Google Scholar] [CrossRef]
- Lisjak, A.; Figi, D.; Grasselli, G. Fracture development around deep underground excavations: Insights from fdem modelling. J. Rock Mech. And Geotech. Eng. 2014, 6, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Lisjak, A.; Liu, Q.; Zhao, Q.; Mahabadi, O.; Grasselli, G. Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis. Geophys. J. Int. 2013, 195, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.; Owen, D.; Ravichandran, G. Static and dynamic tension testing of ceramics and ceramic composites. Asme Appl. Mech.-Publ. 1994, 197, 13. [Google Scholar]
- Wang, Z.; Li, P. Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina. Ceram. Int. 2017, 43, 6967–6975. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Molinari, J.-F. Stochastic fracture of ceramics under dynamic tensile loading. Int. J. Solids Struct. 2004, 41, 6573–6596. [Google Scholar] [CrossRef]
- Daphalapurkar, N.P.; Ramesh, K.; Graham-Brady, L.; Molinari, J.-F. Predicting variability in the dynamic failure strength of brittle materials considering pre-existing flaws. J. Mech. Phys. Solids 2011, 59, 297–319. [Google Scholar] [CrossRef]
- Zou, Z.; Reid, S.; Li, S. A continuum damage model for delaminations in laminated composites. J. Mech. Phys. Solids 2003, 51, 333–356. [Google Scholar] [CrossRef]
- Tikare, V.; Choi, S.R. Combined mode i and mode ii fracture of monolithic ceramics. J. Am. Ceram. Soc. 1993, 76, 2265–2272. [Google Scholar] [CrossRef]
- Shetty, D.; Rosenfield, A.; Duckworth, W. Mixed-mode fracture of ceramics in diametral compression. J. Am. Ceram. Soc. 1986, 69, 437–443. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Planas, J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials; CRC Press: Boca Raton, FL, USA, 1997; Volume 16. [Google Scholar]
- KMW, K. Ceramic Materials for Light-Weight Ceramic Polymer Armor Systems. Available online: https://www.ceramtec.com/files/et_armor_systems.pdf (accessed on 1 February 2023).
- Zheng, J.; Ji, M.; Zaiemyekeh, Z.; Li, H.; Hogan, J.D. Strain-rate-dependent compressive and compression-shear response of an alumina ceramic. J. Eur. Ceram. Soc. 2022, 42, 7516–7527. [Google Scholar] [CrossRef]
- Ji, M.; Li, H.; Zheng, J.; Yang, S.; Zaiemyekeh, Z.; Hogan, J.D. An experimental study on the strain-rate-dependent compressive and tensile response of an alumina ceramic. Ceram. Int. 2022, 48, 28121–28134. [Google Scholar] [CrossRef]
- Molinari, J.-F.; Gazonas, G.; Raghupathy, R.; Rusinek, A.; Zhou, F. The cohesive element approach to dynamic fragmentation: The question of energy convergence. Int. J. Numer. Methods Eng. 2007, 69, 484–503. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Molinari, J.-F. Dynamic crack propagation with cohesive elements: A methodology to address mesh dependency. Int. J. Numer. Eng. 2004, 59, 1–24. [Google Scholar] [CrossRef]
- Heizler, S.I.; Kessler, D.A.; Levine, H. Propagating mode-i fracture in amorphous materials using the continuous random network model. Phys. Rev. E 2011, 84, 026102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Li, J. Dynamic fracture in irregularly structured systems. Phys. Rev. E 2012, 85, 055102. [Google Scholar] [CrossRef] [PubMed]
- Freiman, S.W.; Mecholsky, J.J., Jr. The Fracture of Brittle Materials: Testing and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Weibull, W. A Statistical Theory of Strength of Materials; Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1939. [Google Scholar]
- Savchenko, N.; Sevostyanova, I.; Sablina, T.; Gömze, L.; Kulkov, S. The influence of porosity on the elasticity and strength of alumina and zirconia ceramics. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2014; Volume 1623, pp. 547–550. [Google Scholar]
- Sapozhnikov, S.; Kudryavtsev, O.; Dolganina, N.Y. Experimental and numerical estimation of strength and fragmentation of different porosity alumina ceramics. Mater. Des. 2015, 88, 1042–1048. [Google Scholar] [CrossRef]
- Hristopulos, D.T.; Demertzi, M. A semi-analytical equation for the young’s modulus of isotropic ceramic materials. J. Eur. Ceram. 2008, 28, 1111–1120. [Google Scholar] [CrossRef]
- Paliwal, B.; Ramesh, K. An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids 2008, 56, 896–923. [Google Scholar] [CrossRef]
The Mechanical Properties of the CeramTec 98% Alumina | |
---|---|
Porosity | <2% |
Hardness | 13.5 (GPa) |
Density | 3.8 (g/cm) |
Young’s modulus | 335 (GPa) |
Poisson’s ratio | 0.23 |
The Properties for the Microscopic Stochastic Fracture Model | |
Weibull modulus of the strength distribution | 11 |
Weibull modulus for the effective area modification | −11 |
Weibull characteristic strength | 440 (MPa) |
Characteristic area | 0.013 (mm) |
Mode I fracture energy | 0.04 (N/mm) |
Validation Models | Average Mesh Size (mm) | Average Facet Area (mm) |
---|---|---|
Case 1 | 0.25 | 0.038 |
Case 2 | 0.15 | 0.01268 |
Case 3 | 0.1 | 0.00611 |
Case 4 | 0.075 | 0.00336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Li, H.; Hogan, J.D. Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic. Modelling 2023, 4, 87-101. https://doi.org/10.3390/modelling4010007
Zheng J, Li H, Hogan JD. Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic. Modelling. 2023; 4(1):87-101. https://doi.org/10.3390/modelling4010007
Chicago/Turabian StyleZheng, Jie, Haoyang Li, and James D. Hogan. 2023. "Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic" Modelling 4, no. 1: 87-101. https://doi.org/10.3390/modelling4010007
APA StyleZheng, J., Li, H., & Hogan, J. D. (2023). Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic. Modelling, 4(1), 87-101. https://doi.org/10.3390/modelling4010007