Molecular Dynamics Simulations Correlating Mechanical Property Changes of Alumina with Atomic Voids under Triaxial Tension Loading
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of Stress State
3.2. Effects of Strain Rate on Crack Properties under Triaxial Loading Conditions
3.3. Effects of Porosity on Mechanical Properties and Fracture Surface
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shamala, K.; Murthy, L.; Radhakrishna, M.; Rao, K.N. Characterization of Al2O3 thin films prepared by spray pyrolysis method for humidity sensor. Sens. Actuators A Phys. 2007, 135, 552–557. [Google Scholar] [CrossRef]
- Koch, B.M.; Jannotti, P.; Mallick, D.; Schuster, B.; Sano, T.; Hogan, J.D. Influence of microstructure on the impact failure of alumina. Mater. Sci. Eng. A 2020, 770, 138549. [Google Scholar] [CrossRef]
- Krishnan, S.V.; Ambalam, M.M.; Venkatesan, R.; Mayandi, J.; Venkatachalapathy, V. Technical review: Improvement of mechanical properties and suitability towards armor applications–Alumina composites. Ceram. Int. 2021, 47, 23693–23701. [Google Scholar] [CrossRef]
- Ferré, F.G.; Bertarelli, E.; Chiodoni, A.; Carnelli, D.; Gastaldi, D.; Vena, P.; Beghi, M.G.; Di Fonzo, F. The mechanical properties of a nanocrystalline Al2O3/a-Al2O3 composite coating measured by nanoindentation and Brillouin spectroscopy. Acta Mater. 2013, 61, 2662–2670. [Google Scholar] [CrossRef]
- Abdolrahim, N.; Zbib, H.M.; Bahr, D.F. Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 2014, 52, 33–50. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P. Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina. Ceram. Int. 2017, 43, 6967–6975. [Google Scholar] [CrossRef]
- Nakamura, M.; Takeo, K.; Osada, T.; Ozaki, S. Finite element analysis of self-healing and damage processes in Alumina/SiC composite ceramics. Technologies 2017, 5, 40. [Google Scholar] [CrossRef]
- Arkusz, K.; Klekiel, T.; Sławiński, G.; Będziński, R. Influence of energy absorbers on Malgaigne fracture mechanism in lumbar-pelvic system under vertical impact load. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 313–323. [Google Scholar] [CrossRef]
- Farahmandjou, M.; Golabiyan, N. New pore structure of nano-alumina (Al2O3) prepared by sol gel method. J. Ceram. Process. Res. 2015, 16, 1–4. [Google Scholar]
- Venkatesan, K.R.; Koo, B.; Khafagy, K.H.; Chattopadhyay, A. Multiscale modeling of carbon nanotube-reinforced polymer with coarse-grain molecular dynamics informed morphology. Compos. Sci. Technol. 2022, 223, 109412. [Google Scholar] [CrossRef]
- Iacobellis, V.; Radhi, A.; Behdinan, K. A bridging cell multiscale modeling of carbon nanotube-reinforced aluminum nanocomposites. Compos. Struct. 2018, 202, 406–412. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, J. Nano-graphene toughened Al2O3 ceramic materials: 3D simulation of the fracture behaviour. Ceram. Int. 2020, 46, 28569–28577. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Chen, Y.; Chen, J. Strengthening Modulus and Softening Strength of Nanoporous Gold in Multiaxial Tension: Insights from Molecular Dynamics. Nanomaterials 2022, 12, 4381. [Google Scholar] [CrossRef]
- Li, J.; Xian, Y.; Zhou, H.; Wu, R.; Hu, G.; Xia, R. Mechanical properties of nanocrystalline nanoporous gold complicated by variation of grain and ligament: A molecular dynamics simulation. Sci. China Technol. Sci. 2018, 61, 1353–1363. [Google Scholar] [CrossRef]
- Wei, B.; Wu, W.; Xie, D.; Nastasi, M.; Wang, J. Strength, plasticity, thermal stability and strain rate sensitivity of nanograined nickel with amorphous ceramic grain boundaries. Acta Mater. 2021, 212, 116918. [Google Scholar] [CrossRef]
- Qiu, T.; Xiong, Y.; Xiao, S.; Li, X.; Hu, W.; Deng, H. Non-equilibrium molecular dynamics simulations of the spallation in Ni: Effect of vacancies. Comput. Mater. Sci. 2017, 137, 273–281. [Google Scholar] [CrossRef]
- Zhou, T.T.; He, A.M.; Wang, P.; Shao, J.L. Spall damage in single crystal Al with helium bubbles under decaying shock loading via molecular dynamics study. Comput. Mater. Sci. 2019, 162, 255–267. [Google Scholar] [CrossRef]
- Sarkar, P.K.; Mitra, N. Gypsum under tensile loading: A molecular dynamics study. Constr. Build. Mater. 2019, 201, 1–10. [Google Scholar] [CrossRef]
- Tadmor, E.B.; Miller, R.E. Modeling Materials: Continuum, Atomistic and Multiscale Techniques; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Dewapriya, M.; Miller, R. Molecular dynamics study of the penetration resistance of multilayer polymer/ceramic nanocomposites under supersonic projectile impacts. Extrem. Mech. Lett. 2021, 44, 101238. [Google Scholar] [CrossRef]
- Ganesh, K.V.; Patra, P.K.; Travis, K.P. Multiscale modeling of impact through molecular dynamics and smooth particle hydrodynamics. Phys. A Stat. Mech. Its Appl. 2022, 593, 126903. [Google Scholar] [CrossRef]
- Lim, L.; Meguid, S. Examination of the effect of YSZ/α-Al2O3 interphase upon the thermo-mechanical behaviour of thermal barrier coating using hybrid MD-FE simulations. Ceram. Int. 2022, 48, 22917–22927. [Google Scholar] [CrossRef]
- Doner, S.; Lyngdoh, G.A.; Nayak, S.; Das, S. Fracture response of wollastonite fiber-reinforced cementitious composites: Evaluation using micro-indentation and finite element simulation. Ceram. Int. 2022, 48, 15493–15503. [Google Scholar] [CrossRef]
- Zheng, J.; Ji, M.; Zaiemyekeh, Z.; Li, H.; Hogan, J.D. Strain-rate-dependent compressive and compression-shear response of an alumina ceramic. J. Eur. Ceram. Soc. 2022, 42, 7516–7527. [Google Scholar] [CrossRef]
- Si-Wei, Y.; Yan-Hui, F.; Xin, W.; Xin-Xin, Z. Molecular dynamics simulation of thermal conductivity of mesoporous alpha-Al2O3. Acta Phys. Sin. 2014, 63, 014402. [Google Scholar] [CrossRef]
- Vashishta, P.; Kalia, R.K.; Nakano, A.; Rino, J.P. Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J. Appl. Phys. 2008, 103, 083504. [Google Scholar] [CrossRef]
- Yao, H.; Ouyang, L.; Ching, W.Y. Ab initio calculation of elastic constants of ceramic crystals. J. Am. Ceram. Soc. 2007, 90, 3194–3204. [Google Scholar] [CrossRef]
- Felix, L.C.; Tromer, R.M.; Woellner, C.F.; Tiwary, C.S.; Galvao, D.S. Mechanical response of pentadiamond: A DFT and molecular dynamics study. Phys. B Condens. Matter 2022, 629, 413576. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Yuan, Z.; Xu, X.; Song, Z.; Zhang, Y.R. Mechanical properties of siderite and hematite from DFT calculation. Miner. Eng. 2020, 146, 106107. [Google Scholar] [CrossRef]
- He, Y.; Sun, S.; Li, H. Ab initio molecular dynamics investigation of the elastic properties of superionic Li2O under high temperature and pressure. Phys. Rev. B 2021, 103, 174105. [Google Scholar] [CrossRef]
- Atamturktur, S.; Hemez, F.; Laman, J. Uncertainty quantification in model verification and validation as applied to large scale historic masonry monuments. Eng. Struct. 2012, 43, 221–234. [Google Scholar] [CrossRef]
- Dhaliwal, G.; Nair, P.B.; Singh, C.V. Uncertainty analysis and estimation of robust AIREBO parameters for graphene. Carbon 2019, 142, 300–310. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Mishra, A.; Grabar, N.; Baradwaj, N.; Kalia, R.K.; Nakano, A.; Vashishta, P. Evolutionary multi-objective optimization and Pareto-frontal uncertainty quantification of interatomic forcefields for thermal conductivity simulations. Comput. Phys. Commun. 2020, 254, 107337. [Google Scholar] [CrossRef]
- Wan, S.; Sinclair, R.C.; Coveney, P.V. Uncertainty quantification in classical molecular dynamics. Philos. Trans. R. Soc. A 2021, 379, 20200082. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Foiles, S.M. Uncertainty quantification and reduction of molecular dynamics models. In Uncertainty Quantification and Model Calibration; InTech: Rang-Du-Fliers, France, 2017; Volume 89. [Google Scholar]
- Deng, B.; Luo, J.; Harris, J.T.; Smith, C.M.; McKenzie, M.E. Molecular dynamics simulations on fracture toughness of Al2O3-SiO2 glass-ceramics. Scr. Mater. 2019, 162, 277–280. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Liu, P.; Chen, T.; Hou, G.; Xu, L.; Wang, X.; Hu, Z.; Liu, J.; Zhang, L. Quantitatively predicting the mechanical behavior of elastomers via fully atomistic molecular dynamics simulation. Polymer 2021, 223, 123704. [Google Scholar] [CrossRef]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Wu, D.; Lu, F.; Liu, G.; Ma, G.; Jia, Z. Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping. Ceram. Int. 2018, 44, 14303–14310. [Google Scholar] [CrossRef]
- Tillmann, W.; Khalil, O.; Abdulgader, M. Porosity characterization and its effect on thermal properties of APS-sprayed alumina coatings. Coatings 2019, 9, 601. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, S.; Pal, K. Investigation of microstructural and mechanical properties of Al alloy 7075-T6/B4C nanocomposite concocted via friction stir process. Ceram. Int. 2022, 48, 35708–35718. [Google Scholar] [CrossRef]
- Choudhary, K.; Liang, T.; Chernatynskiy, A.; Phillpot, S.R.; Sinnott, S.B. Charge optimized many-body (COMB) potential for Al2O3 materials, interfaces, and nanostructures. J. Phys. Condens. Matter 2015, 27, 305004. [Google Scholar] [CrossRef]
- Mir, B.; Reddy, S. Mechanical behaviour of nano-material (Al2O3) stabilized soft soil. Int. J. Eng. 2021, 34, 636–643. [Google Scholar]
- Hezil, N.; Fellah, M. Synthesis and structural and mechanical properties of nanobioceramic (α-Al2O3). J. Aust. Ceram. Soc. 2019, 55, 1167–1175. [Google Scholar] [CrossRef]
- Han, X.; Hu, Y.; Yu, S. Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method. Appl. Phys. A 2009, 95, 899–905. [Google Scholar] [CrossRef]
- Fu, J.; Bernard, F.; Kamali-Bernard, S. Assessment of the elastic properties of amorphous calcium silicates hydrates (I) and (II) structures by molecular dynamics simulation. Mol. Simul. 2018, 44, 285–299. [Google Scholar] [CrossRef]
- Paul, S.; Mitra, S.; Roy, D. Molecular dynamics simulation study of neck growth in micro-selective laser sintering of copper nanoparticles. In Simulations for Design and Manufacturing: Select Papers from AIMTDR 2016; Springer: Berlin/Heidelberg, Germany, 2018; pp. 259–292. [Google Scholar]
- Chaurasia, A.; Singh, S.K.; Parashar, A. Reinforcing Potential of 2D Nanofiller in Polyethylene: A Molecular Dynamics Approach. In Forcefields for Atomistic-Scale Simulations: Materials and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 217–235. [Google Scholar]
- Verma, A.; Parashar, A.; Singh, S.K.; Jain, N.; Sanjay, S.M.; Siengchin, S. Modeling and simulation in polymer coatings. In Polymer Coatings; CRC Press: Boca Raton, FL, USA, 2020; pp. 309–324. [Google Scholar]
- Deng, B.; Harris, J.T.; Luo, J. Atomic picture of crack propagation in Li2O-2SiO2 glass-ceramics revealed by molecular dynamics simulations. J. Am. Ceram. Soc. 2020, 103, 4304–4312. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Chai, W.; Zhang, Y.; Chen, X. Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds. Ceram. Int. 2017, 43, 13702–13709. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Yuan, S.; Jin, Z.; Tang, W.C. Insight on the structural changes of Glass-Ceramics during nanoindentation derived from Reactive Force-Field-Based molecular dynamic simulations. Appl. Surf. Sci. 2022, 571, 151375. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, X.; Roy, A.K. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Phys. Rev. B 2012, 85, 205311. [Google Scholar] [CrossRef]
- Miceli, G.; de Gironcoli, S.; Pasquarello, A. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions. J. Chem. Phys. 2015, 142, 034501. [Google Scholar] [CrossRef] [PubMed]
- Munro, M. Evaluated material properties for a sintered alpha-alumina. J. Am. Ceram. Soc. 1997, 80, 1919–1928. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, L.; Ching, W. Molecular dynamics simulation of Y-doped Σ37 grain boundary in alumina. Acta Mater. 2005, 53, 4111–4120. [Google Scholar] [CrossRef]
- Yang, A.; Romanyk, D.; Hogan, J.D. High-velocity impact study of an advanced ceramic using finite element model coupling with a machine learning approach. Ceram. Int. 2023, 49, 10481–10498. [Google Scholar] [CrossRef]
Name | Unit Cell of Model | Theoretical Model [25] |
---|---|---|
a | 4.750 Å | 4.759 Å |
b | 4.780 Å | 4.759 Å |
c | 12.99 Å | 12.99 Å |
90° | 90° | |
90° | 90° | |
120° | 120° |
Name | MD | DFT | Experimental Data [26] | DFT [27] |
---|---|---|---|---|
Shear modulus | 126 ± 5.6 GPa | 119 ± 6.4 GPa | 152 GPa | 158 GPa |
Bulk modulus | 242 ± 8.6 GPa | 253 ± 10.3 GPa | 228 GPa | 247 GPa |
Poisson’s ratio | 0.23 ± 0.02 | 0.27 ± 0.02 | 0.22 | 0.24 |
Name | Atom Number | Strain Rate | Loading Orientation | Graphical Void Radius |
---|---|---|---|---|
Nonporous | 114,338 | –/s | Uniaxial, biaxial, triaxial | 0 Å |
Nanoporous | 113,395 | 12.5Å | ||
111,042 | 19.0 Å | |||
106,841 | –/s | triaxial | 25.0 Å | |
98,615 | 32.0 Å | |||
83,638 | 38.0 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; Chen, Z.; Hogan, J.D. Molecular Dynamics Simulations Correlating Mechanical Property Changes of Alumina with Atomic Voids under Triaxial Tension Loading. Modelling 2023, 4, 211-223. https://doi.org/10.3390/modelling4020012
Chang J, Chen Z, Hogan JD. Molecular Dynamics Simulations Correlating Mechanical Property Changes of Alumina with Atomic Voids under Triaxial Tension Loading. Modelling. 2023; 4(2):211-223. https://doi.org/10.3390/modelling4020012
Chicago/Turabian StyleChang, Junhao, Zengtao Chen, and James D. Hogan. 2023. "Molecular Dynamics Simulations Correlating Mechanical Property Changes of Alumina with Atomic Voids under Triaxial Tension Loading" Modelling 4, no. 2: 211-223. https://doi.org/10.3390/modelling4020012
APA StyleChang, J., Chen, Z., & Hogan, J. D. (2023). Molecular Dynamics Simulations Correlating Mechanical Property Changes of Alumina with Atomic Voids under Triaxial Tension Loading. Modelling, 4(2), 211-223. https://doi.org/10.3390/modelling4020012