On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis
Abstract
:1. Introduction
2. Mathematical Models
2.1. Continuity Equation
2.2. Momentum Equations
2.3. Method of Characteristics (MOC)
2.4. Numerical Scheme
2.5. Micro-Genetic Algorithm
3. Analysis of Results
4. Procedure for the Characterization of the Viscoelastic Parameters
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Güney, M. Contribution à l’Étude du Phénomène de Coup de Bélier en Conduite Viscoélastique. Ph.D. Thesis, Université Claude Bernard—Lyon I, Villeurbanne, France, 1977. (In French). [Google Scholar]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley and Sons: Chichester, UK, 1980. [Google Scholar]
- Gally, M.; Güney, M.; Rieutord, E. An investigation of pressure transients in viscoelastic pipes. J. Fluids Eng. 1979, 101, 495–499. [Google Scholar] [CrossRef]
- Rieutord, E.; Blanchard, A. Écoulement non permanent en conduite viscoelastique—Coup de bélier. J. Hydraul. Res. 1979, 17, 217–229. (In French) [Google Scholar] [CrossRef]
- Franke, P.G.; Seyler, F. Computation of unsteady pipe flow with respect to visco-elastic material properties. J. Hydraul. Res. 1983, 21, 345–353. [Google Scholar] [CrossRef]
- Covas, D.; Stoianov, I.; Mano, J.F.; Ramos, H.; Graham, N.; Maksimovic, C. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I: Experimental analysis and creep haracterization. J. Hydraul. Res. 2004, 42, 516–530. [Google Scholar] [CrossRef]
- Covas, D.; Stoianov, I.; Mano, J.F.; Ramos, H.; Graham, N.; Maksimovic, C. The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification. J. Hydraul. Res. 2005, 43, 56–70. [Google Scholar] [CrossRef]
- Meniconi, S.; Brunone, B.; Ferrante, M.; Massari, C. Transient hydrodynamics of in-line valves in viscoelastic pressurised pipes. Long period analysis. Exp. Fluids 2012, 53, 265–275. [Google Scholar] [CrossRef]
- Meniconi, S.; Brunone, B.; Ferrante, M. Water hammer pressure waves at cross-section changes in series in viscoelastic pipes. J. Fluids Struct. 2012, 33, 44–58. [Google Scholar] [CrossRef]
- Pezzinga, G.; Brunone, B.; Meniconi, S. Relevance of pipe period on Kelvin-Voigt viscoelastic parameters: 1D and 2D inverse transient analysis. J. Hydraul. Eng. 2016, 142, 04016063. [Google Scholar] [CrossRef]
- Ghilardi, P.; Paoletti, A. Additional viscoelastic pipes as pressure surges suppressors. In Proceedings of the 5th International Conference on Pressure Surges, Hannover, Germany, 22–24 September 1986; BHRA: Cranfield, UK, 1986; pp. 113–121. [Google Scholar]
- Pezzinga, G.; Scandura, P. Unsteady Flow in Installation with Polymeric Additional Pipe. J. Hydraul. Eng. 1995, 121, 802–811. [Google Scholar] [CrossRef]
- Pezzinga, G. Unsteady Flow in Hydraulic Networks with Polymeric Additional Pipe. J. Hydraul. Eng. 2002, 128, 238–244. [Google Scholar] [CrossRef]
- Pezzinga, G. Evaluation of time evolution of mechanical parameters of polymeric pipes by unsteady flow runs. J. Hydraul. Eng. 2014, 140, 04014057. [Google Scholar] [CrossRef]
- Triki, A. Water-hammer control in pressurized-pipe flow using a branched polymeric penstock. J. Pipeline Syst. Eng. Pract. 2017, 8, 04017024. [Google Scholar] [CrossRef]
- Duan, H.F.; Ghidaoui, M.; Lee, P.J.; Tung, Y.K. Unsteady friction and visco-elasticity in pipe fluid transients. J. Hydraul. Res. 2010, 48, 354–362. [Google Scholar] [CrossRef]
- Duan, H.F.; Ghidaoui, M.; Lee, P.J.; Tung, Y.K. Energy analysis of viscoelasticity effects in pipe fluid transients. J. Appl. Mech. 2010, 77, 044503. [Google Scholar] [CrossRef]
- Ferrante, M.; Capponi, C. Viscoelastic models for the simulation of transients in polymeric pipes. J. Hydraul. Res. 2017, 55, 599–612. [Google Scholar] [CrossRef]
- Soares, A.K.; Covas, D.I.; Reis, L.F. Analysis of PVC pipe-wall viscoelasticity during water hammer. J. Hydraul. Eng. 2008, 134, 1389–1394. [Google Scholar] [CrossRef]
- Keramat, A.; Haghighi, A. Straightforward transient-based approach for the creep function determination in viscoelastic pipes. J. Hydraul. Eng. 2014, 140, 04014058. [Google Scholar] [CrossRef]
- Weinerowska-Bords, K. Alternative approach to convolution term of viscoelasticity in equations of unsteady pipe flow. J. Fluids Eng. 2015, 137, 054501. [Google Scholar] [CrossRef]
- Yao, E.; Kember, G.; Hansen, D. Water hammer analysis and parameter estimation in polymer pipes with weak strain-rate feedback. J. Eng. Mech. 2016, 142, 04016052. [Google Scholar] [CrossRef]
- Bertaglia, G.; Ioriatti, M.; Valiani, A.; Dumbser, M.; Caleffi, V. Numerical methods for hydraulic transients in visco-elastic pipes. J. Fluids Struct. 2018, 81, 230–254. [Google Scholar] [CrossRef] [Green Version]
- Weinerowska-Bords, K. Viscoelastic Model of Waterhammer in Single Pipeline—Problems and Questions. Arch. Hydro-Eng. Environ. Mech. 2006, 53, 331–351. [Google Scholar]
- Krishnakumar, K. Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization. Proc. SPIE Intell. Control. Adapt. Syst. 1990, 1196, 289–296. [Google Scholar]
- Carroll, D.L. Genetic algorithms and optimizing chemical oxygen-iodine lasers. Dev. Theor. Appl. Mech. 1996, 18, 411–424. [Google Scholar]
- Sun, Q.; Zhang, Z.; Wu, Y.; Xu, Y.; Liang, H. Numerical analysis of transient pressure damping in viscoelastic pipes at different water temperatures. Materials 2022, 15, 4904. [Google Scholar] [CrossRef]
- Hadj-Taïeb, L.; Hadj-Taïeb, E. Numerical simulation of transient flows in viscoelastic pipes with vapour cavitation. Int. J. Modell. Simul. 2009, 29, 206–213. [Google Scholar] [CrossRef]
- Urbanowicz, K.; Firkowski, M. Extended Bubble Cavitation Model to predict water hammer in viscoelastic pipelines. J. Phys. Conf. Ser. 2018, 1101, 012046. [Google Scholar] [CrossRef] [Green Version]
- Mousavifard, M. Turbulence parameters during transient cavitation flow in viscoelastic pipe. J. Hydraul. Eng. 2022, 148, 04022004. [Google Scholar] [CrossRef]
- Pezzinga, G.; Santoro, V.C. Shock-Capturing Characteristics Models for Transient Cavitating Pipe Flow. J. Hydraul. Eng. 2020, 146, 04020075. [Google Scholar] [CrossRef]
- Pezzinga, G.; Santoro, V.C. MOC-Z Models for Transient Gaseous Cavitation in Pipe Flow. J. Hydraul. Eng. 2020, 146, 04020076. [Google Scholar] [CrossRef]
- Pezzinga, G. Quasi-2D Model for Unsteady Flow in Pipe Networks. J. Hydraul. Eng. 1999, 125, 676–685. [Google Scholar] [CrossRef]
- Santoro, V.C.; Crimì, A.; Pezzinga, G. Developments and Limits of Discrete Vapor Cavity Models of Transient Cavitating Pipe Flow: 1D and 2D Flow Numerical Analysis. J. Hydraul. Eng. 2018, 144, 04018047. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H. A review of water hammer theory and practice. Appl. Mech. Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef] [Green Version]
Test | (°C) | (m/s) | (m) |
---|---|---|---|
1 | 13.8 | 0.49 | 0.47 |
3 | 25.0 | 0.55 | 0.54 |
5 | 31.0 | 0.57 | 0.55 |
7 | 35.0 | 0.55 | 0.53 |
9 | 38.5 | 0.56 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzinga, G. On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis. Modelling 2023, 4, 283-295. https://doi.org/10.3390/modelling4020016
Pezzinga G. On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis. Modelling. 2023; 4(2):283-295. https://doi.org/10.3390/modelling4020016
Chicago/Turabian StylePezzinga, Giuseppe. 2023. "On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis" Modelling 4, no. 2: 283-295. https://doi.org/10.3390/modelling4020016
APA StylePezzinga, G. (2023). On the Characterization of Viscoelastic Parameters of Polymeric Pipes for Transient Flow Analysis. Modelling, 4(2), 283-295. https://doi.org/10.3390/modelling4020016