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Abstract: This paper deals with the development of a novel mesoscopic model of polycrystalline
diamond compact (PDC) drill bits that can be implemented in complex drill string models for
simulations to analyse the influence of rock inhomogeneities or the impact of anti-whirl bits on
drill string dynamics. In contrast to existing modelling approaches, the model is developed at a
mesoscopic level, where the basic bit–rock interaction is taken from the macroscopic bit model and the
cutting characteristics are summarised at a microscopic cutting level into a simplified configuration
via cutting blades. This model can therefore effectively describe asymmetries and thus interactions
between the torsional and lateral dynamics of the drill bit, and is particularly suitable for investigating
the effects of drilling into rock inhomogeneities and fault zones on drilling dynamics. By integration
into a complex drill string model, simulation studies of drilling through a sandwich formation were
carried out. The simulation results allow detailed stability statements and show the influence of
formation properties and bit design on torsional and lateral drill string dynamics.

Keywords: drilling dynamics; drill string vibrations; drill string modelling; drill string simulation;
drill bit modelling; rock inhomogeneities

1. Introduction

Boreholes for the exploration and exploitation of fossil and geothermal reservoirs are
several kilometres deep. These deep wells are usually drilled in sections using the rotary
drilling method. The drill string, consisting of drill pipes, the bottom hole assembly (BHA)
and the drill bit, is mounted on a hook on the surface rig and rotated by a top drive. At the
bottom of the drill string, the drill bit uses the torque on the bit and the weight on the bit to
drill into the rock. The cuttings are transported to the surface by the drilling fluid. During
the deep drilling process, mechanical vibrations in the drill string are almost unavoidable
and generally undesired as they can lead to reduced drilling efficiency, damage, reduced
lifetime, and thus loss of time and money.

The rock cutting process at the drill bit is one of the main sources of excitation for drill
string vibration. The drill bit is selected to suit the type of rock to be drilled. There are
three main types of bits, tri-cone, polycrystalline diamond compact (PDC) and impregnated
bits, of which the PDC bit has by far the largest market share [1] and is the focus of this
research work. For a realistic simulation of drill string dynamics, the quality of the drill
bit model is essential in addition to a suitable drill string model. For analysis purposes,
the resulting vibrations are often classified into their operating direction, torsional, lateral
and axial vibration [2]. Due to non-linearities, there are mutual influences between the
vibrations. Inhomogeneities and fault zones in the rock to be drilled cause or intensify
critical vibrations.

The dynamic behaviour of drill strings is significantly influenced by several inherent
characteristics of the system. For example, the elastic behaviour is characterised by its large
length to diameter ratio of approximately 20,000:1–50,000:1. In addition, the movement of
the drill string is constrained by the borehole, which requires the modelling of frictional
and impact contacts between the drill string and the borehole. Therefore, the dominant
degrees of freedom (DOF) of the drill string are rotation around its longitudinal axis and
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lateral displacements. In addition, the drilling fluid must also be considered at least as
a co-moving mass and as a damping factor as well as a buoyancy force. During the
complex deep drilling process, many dynamic phenomena occur due to various excitation
sources [3], which can negatively affect the drilling process or even damage the drill
string. Torsional vibrations are often self-excited and are induced by the rock destruction
process at the drill bit or by tangential wall contact forces. Stick–slip is the best-known
torsional phenomenon in which the first torsional natural frequency of the drill string is
excited at frequencies below 1 Hz [4]. This self-excitation mechanism can be described by
velocity-dependent, falling resistance curves of the torque on the bit as they have also been
observed in measurements in the laboratory [5]. Furthermore, due to improved downhole
measurement technology, torsional oscillations in the frequency range from 50 Hz to about
400 Hz, so-called high-frequency torsional oscillations (HFTOs), have been observed in the
field for several years [6]. As these can severely affect the drilling process and can lead
to massive damage to the drill string, especially in the BHA section, HFTOs have become
the focus of current research [7–9]. Lateral vibrations are excited in the frequency range
of the top drive and downhole motor rotational speed and often cause whirl phenomena.
A distinction is made between forward whirl and backward whirl. The drill string speed
or an additional drilling motor determines the rotational frequency of the unbalanced
forces that induce energy in the lateral modes. In addition, modes can also be coupled
by the interaction between the drilling fluid and drill string [10]. The “forward whirl”
effect describes an excited circumferential lateral mode with sliding of a contact point
of the drill string against the borehole wall influenced by the unbalance and the friction
characteristics. However, this dynamic state is unstable and even a small disturbance can
result in a transition to, for example, backward whirl. The “backward whirl” effect causes
high lateral and tangential accelerations with high frequencies. In the case of wall contact
and high friction at the contact point, a backward rolling motion of the drill string occurs in
the borehole. The centre of the drill string rotates in the opposite direction to the direction
of rotation of the drill string. The smaller the annulus clearance between the drill string
and the borehole is, the higher the rolling frequency of the backward whirl at frequencies
much higher than the drill string rotational drive frequency.

Different approaches are used in the modelling of drill strings. There are a number
of models based on multibody systems [5,11–14]. They are particularly suitable for time-
domain considerations as they require less computational effort than complex models. For
example, Jansen [15] developed a reduced lateral model of the BHA to simulate whirl
vibration, and [11] focused on torsional stick–slip vibration and developed a bit–rock
interaction model coupled with a simple 1DOF mass–spring model to reproduce the
dynamics obtained from measurements. Christoforou [13] developed a coupled torsional,
lateral model using a lumped mass model in order to simulate coupled torsional and lateral
vibration at the BHA. Furthermore, various reduction methods have been investigated to
generate problem-adapted simple models for selected dynamic phenomena from complex
models [10,16–19]. Thus, both complex models and minimal models derived from them
are currently being used for HFTO studies [7–9]. Complex drill string models describe
the entire drill string from rig to bit in a great detail, providing many degrees of freedom
in multiple spatial directions that may be strongly coupled. These models can simulate
the non-linear, state-dependent, dynamic behaviour of drill strings in arbitrarily curved
boreholes, depending on the purpose of the model. In addition to the drill string assembly,
the effects of the cutting process and the mud, as well as changing wall contacts, must be
adequately modelled. The quality of the solution in terms of detail and accuracy is achieved
by high computational requirements and computation times. Modelling approaches have
been developed and published by many authors [11,19–21]. In this work, the Ostermeyer
model OSPLAC [20] is used to investigate the novel mesoscopic drill bit model for deep
drilling applications and its influence on the drilling dynamics.

The drill bit is one of the main sources of vibration. In the torsional direction,
Kyllinstad [22] showed that the contact between the drill bit and the borehole, known
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as the bit–rock interaction, is the main cause of stick–slip instability. In the lateral direction,
anything that puts lateral pressure on the bit increases its tendency to whirl, e.g., mass
imbalance, aggressive face/side cutting. The models that have been developed to describe
the friction and cutting processes between the bit and the borehole bottom vary in the
degree of complexity and detail. At the macroscopic level, the drill bit is considered as
a rigid body described in FEM as an element. Brett [23] presented one of the first results
showing a weakening of the bit torque with increasing rotary speed, which led to the
identification of a bit specific coefficient of torque µ [24]. This falling torque behaviour
can be identified experimentally and is considered in the calculation of bit–rock induced
forces and torques. This approach is only able to generate torques and therefore torsional
vibrations. Asymmetries in the bit cutter configuration or drilling through inhomogeneous
rock cannot be considered. A more complex model considers forces and torques at a
microscopic level at each individual cutter of the drill bit. This model was first developed
for an isolated cutter moving at an imposed constant speed and depth of cut [25,26]. The
results from the individual cutter are then used to construct the bit–rock interaction law.
Tergeist [27] developed a model to simulate the cutting process using data obtained from
single cutter experiments, considering rock formations as particles. This approach is well
suited to describe the different bit–cutter configurations. Fu et al. [28,29] extended and
modified this modelling approach to investigate the velocity-dependent cutting process
using DEM simulations. The parameter studies that have been carried out show possibili-
ties of mitigating self-excited drill string vibrations by changing operating states or cutter
design. This model approach also provides forces and torques on each individual cutter,
resulting in not only torsional but also axial vibrations. However, with DEM methods,
the simulation of a few seconds of drilling is very time consuming. The development of a
mesoscopic drill bit model was also motivated by these long computation times.

However, in order to carry out necessary simulation studies in the time domain,
effective models are required. This work starts with the development of a novel mesoscopic
bit model. For investigations of the overall drill string dynamics, the mesoscopic bit model
is integrated into a complex drill string model, which is presented in the following, and
which is already optimised to deal with issues of deep drilling technology.

2. Drill String Model

For the investigation of the dynamic behaviour of drill strings, the in-house simulation
tool OSPLAC is used in this work [20]. OSPLAC describes the drill string in arbitrarily
curved boreholes as a non-linear FE model with beam elements, in which sub-models of
different complexity levels for the drill bit and for dissipation mechanisms, e.g., impact-like
contacts between drill string and borehole, are integrated and can be extended modularly.
A variable definition of the number of degrees of freedom is supported up to six per
node depending on the problems being investigated. The original version developed by
Ostermeyer was used to describe directional drilling and included the lateral degrees of
freedom per node [20]. Currently, a model with five degrees of freedom per node is typically
used for studies of drill string dynamics, which also describes the rotational degree of
freedom in addition to the lateral degrees of freedom [8,10].

2.1. Borehole Geometry

An inertial coordinate system
→
I = (

→
I 1,
→
I 2,
→
I 3)

T
is used to describe the borehole,

which is located on the borehole centreline at the Earth’s surface, see Figure 1. The drilling
trajectory is described by its centreline

→
r L(s), where s is the arc length along the borehole

centreline. The borehole cross-section is typically assumed to be ideally circular in sections.
In addition, a description of arbitrary cross-sections, as used in [21], can be implemented.

Drilling trajectories are typically specified by discrete points along the borehole. In
addition to the measured depth, the discrete points contain information about the inclina-
tion angle α from the vertical and the azimuth angle β, which indicates the deviation from
the north direction. The minimum curvature method generates a continuous spatial curve
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that is continuous between two points and ensures a continuously differentiable curve
of the coordinates over the arc length along the borehole centreline (s). Ostermeyer [20]

also introduced local coordinates
→
v i = (

→
v i,1,

→
v i,2,

→
v i,3)

T
along the borehole path

→
r L(s)

to describe the motional behaviour of the string in the borehole. With the abbreviation
(.)′ = ∂(.)/∂s for the partial derivative according to the arc length s, the tangent base
vector becomes

→
v i,3(s) =

→
r L
′
(s). (1)

The base vector
→
v i,2 points towards the centre of curvature and

→
v i,1 completes the

orthonormal base

→
v i,2(s) =

→
r L
′′
(s)∣∣∣→r L
′′
(s)
∣∣∣ ,→v i,1(s) =

→
v i,2(s)×

→
v i,3(s). (2)

The transformation from the inertial base to the fixed-borehole base can be described
in terms of elementary rotations with the azimuth βi, the inclination αi and about the
vertical axis zi as

→
v i = RIv(zi, αi, βi)

→
I (3)

where RIv is the total rotation matrix.
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2.2. Equations of Motion of the Drill String

First, the main modelling approaches to describe the drill string kinematics and the
strain variables are presented. The position of the deformed drill string in the borehole

→
r i
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over the time t is described by Ostermeyer [20], starting from a displacement relative to the
borehole centreline with

→
r i(s, t) =

→
r i,L(s) +

→
u i(s, t) (4)

where
→
r i,L(s) is the vector to the borehole centreline of the ith borehole section and

→
u i(s, t)

are the local displacements. The strain of the drill string element modelled as a beam is
given by

εi :=
∥∥∥∥ ∂

∂s
→
r i

∥∥∥∥− 1 =
∥∥∥→r ′i∥∥∥− 1 (5)

where only terms up to order 2 are considered in the calculation [10,20]. By deriving the
displacement

→
r i by the arc length, Ostermeyer [20] obtained an expression for the strain εi.

The normalised vector
→
e i,n3 =

→
r
′
i/
∣∣∣→r ′i∣∣∣ is tangent to the beam and is used to construct a

base
→
e i attached to the drill string. The transformation from

→
v i to

→
e i gives

→
e i = Rve(ϕi,1, ϕi,2, ϕi,3)

→
v i, (6)

where the total rotation matrix Rve describes the three successive rotations according to the

Cardan angles ϕi,1, ϕi,2 and ϕi,3. Deriving
→
e i by the arc length s yields

→
e
′
i = RDar

→
e i. (7)

The Darboux matrix RDar contains terms for the bending κi,1, κi,2 and torsion τi, and
has the form

RDar =

 0 τi −κi.2
−τi 0 κi,1
κi,2 −κi,1 0

. (8)

The total bending of the beam element is given by κi =
√

κi,1
2 + κi,1

2.
To derive the equation of motion of the drill string, Ostermeyer [20] used Hamilton’s

principle of least action. The integral form of the equation of motion is

δF =

t2∫
t1

(δT − δΠ + δW)dt = 0 (9)

where T is the kinetic energy, Π is the energy of deformation and W is the work of the
external forces. The kinetic energy of a rigid body is given by

T =
1
2

L∫
0

(
ρA
( .

u2
1 +

.
u2

2 +
.
u2

3

)
+ ρ
(

I1ω2
1 + I2ω2

2 + I3ω2
3

))
ds. (10)

where
.
u1,

.
u2,

.
u3 are the velocities relative to the displacement u and ω1, ω2, ω3 are the

angular velocities. ρ is the material density, A is the circular area of the drill string and
I1, I2, I3 are its rotational inertias. Since the rotation around the longitudinal axis of the drill
string dominates the dynamic behaviour of the drill string, it is assumed that the moments
of inertia I1.I2 and the angles ϕ1, ϕ2 are very small, and therefore negligible [20]. For the
same reason ω3 is set equal to the time derivative of the cardan angle

.
ϕ3. It is also assumed

that
.
u3 � 1, so that the kinetic energy in the 3-direction can also be neglected [8]. This

leads to a simplified equation for the kinetic energy

T =
1
2

L∫
0

(
ρA
( .

u2
1 +

.
u2

2

)
+ ρI3

.
ϕ

2
3

)
ds. (11)
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The deformation energy is

Π =
1
2

L∫
0

(
EIκ2 + EAε2 + GIpτ

2
)

ds (12)

where EI, EA and GIp are drill string stiffness terms. A detailed discussion of the strain
variables can be found in [10,20]. It is usually assumed that the strain ε is zero. This
eliminates one degree of freedom. However, it should be noted that the axial displacement
is not equal to zero and can be determined from the lateral degrees of freedom. The same
applies to the static axial force. The work of external forces can be divided into volume
forces acting on the whole drill string and local point forces acting on the nodes of a drill
string element. For point-symmetric and constant string cross-sections, the work of the
volume forces is given by

Wv =

L∫
0

→
Fl ·
→
u ds. (13)

where
→
Fl is the distributed force per length. This includes forces such as weight and fluid

damping for instance. The work of local point forces is given by

Wp =
→
F
→
u
∣∣∣∣L
0

. (14)

By calculating T, Π and W the variations δT, δΠ and δW can be obtained. This gives
the equation of motion (9). However, this can only be solved analytically for certain
boundary conditions, see [30]. To obtain solutions for arbitrary boundary conditions, the
entire drill string is discretised with N discrete beam elements according to the finite
element method (FEM).

According to Figure 2, nodes 1 and 2 each have six degrees of freedom. Three of
these are for translation (x, y, z) and three for rotation (ϕx, ϕy, ϕz). The focus of this work
is on the study of lateral and torsional vibrations and, with the assumptions made above,
the translation in the z-direction is neglected and five DOF per node are obtained. The
generalised variables of a FEM node i are summarised in the column matrix u

ui =
[
xi ϕi,x yi ϕi,y ϕi,z

]T . (15)

where in xi and yi are the lateral displacements perpendicular to the borehole centerline.
The tilt angles about the axes xi and yi are described by ϕi,x and ϕi,y, respectively. The
rotation around the z-axis, which is also used to drive the drill string on the surface, is
described by the angle ϕi,z. Following the standard approaches for FE beam elements,
third-order experimental functions are selected for the bending about xi and yi, while the
torsion ϕi,z about the longitudinal axis is described with a linear experimental function. In
addition, the appropriate modelling of the external forces plays a crucial role for a realistic
description of the drill string dynamics. In addition to the volumetric forces, which describe
the self-weight and lift of the drill string, time-varying and event-driven forces are also
essential. These include forces from the contact between the drill string and the borehole
wall, from the cutting process at the drill bit and from lateral imbalance forces.

The equations of motion for the entire drill string can be written as

M
..
u + C

.
u + K(u)u = F(t, u) (16)

where M is inertia matrix, C is the damping matrix, K(u) is the stiffness matrix and F(t, u)
is a column matrix summarising all external forces. The stiffness matrix also includes
non-linear components from the elastic restoring forces, also with respect to the arbitrarily
curved borehole path. Material damping can be described by Rayleigh damping, as often
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used in FEM. Based on practical experience, the damping due to the drilling fluid can
also be approximated in a rough first approximation by selecting appropriate parameters
when creating the damping matrix C. Dissipation due to friction and impact of the drill
string against the borehole wall is also considered by unilateral constraints, where the
constraining force is the contact normal force. The associated tangential contact force can
be described by a friction law. As this contact formulation in OSPLAC is also elementary
for modelling at the drill bit, it is described in more detail below.
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2.3. Contact between Drill String and Borehole

The contacts between the drill string and the borehole are modelled by unilateral
constraints, which ensure that the drill string always remains within the borehole, see
Figure 3. This macroscopic contact model assumes that the borehole is elastic and the
drill string is a rigid body, resulting in normal forces, wall friction forces and torques at
the element nodes of the drill string. The borehole parameters such as contact stiffness
k, the contact damping c and the friction factor µ are important for the modelling and
characterising of the contact dynamics. In addition, these contacts are event-driven and
can be highly dynamic, especially during impacts. The modelling used in OSPLAC [20] is
explained in more detail here, as it is also used to model the drill bit in this paper.

The drill string at node i is assumed to be enclosed in a cylindrical borehole with
a clearance

∆ri = RBL − Ri (17)

which is the difference between the borehole radius RBL and the drill string outer radius Ri.
When the drill string penetrates the borehole wall as shown in Figure 3, a normal force

consisting of stiffness and damping forces occurs

FN,i = k fi + c
.
f i (18)

where the depth of penetration fi is

fi =

(√
xi

2 + yi
2 − ∆ri

)
+
∣∣∣√xi

2 + yi
2 − ∆ri

∣∣∣
2

. (19)

and the speed of the penetration
.
fi is

.
f i =


xi

.
xi+yi

.
yi(√

xi
2+yi

2−∆ri

) , i f fi > 0

0, i f fi ≤ 0
(20)
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where (xi, yi) are the lateral displacements and (
.
xi,

.
yi) are the associated velocities of

the drill string-node i with respect to the base vectors (
→
v i,1,

→
v i,2) of the borehole fixed

coordinate system
→
v i. The angle ψi in Figure 3

ψi = tan−1 yi
xi

(21)

describes the angle of the rotating drill string around the tangent base vector
→
v i,3 and is

also used as a measure to identify whirl vibrations. Thus, the normal force vector at node
i is

FN,i =
(
−FN,icosψi 0 −FN,isinψi 0 0

)T . (22)
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When the rotating drill string node i is pushed against the borehole by the normal
force FN,i, a friction force FR,i and torque Mz,i are generated

FR,i = −sign(vr,i)µ(vr,i)|FN,i|
MR,i = RiFR,i

(23)

where µ(vr,i) is a velocity-dependent coefficient of friction, and vr,i is the relative velocity
depending on the torsional rotational speed

.
ϕz,i of the drill string node i around its own

axis
→
e

i
3 and the whirling velocity

.
ψi. The relative velocity is given by

vr,i =

(√
xi

2 + yi
2 + Ri

)
.
ψi + Ri

.
ϕz,i (24)

with the whirling velocity

.
ψi =

{
xi

.
yi−

.
xiyi

xi
2+yi

2 , i f xi
2 + yi

2 > 0
0 , i f xi

2 + yi
2 = 0

. (25)

Consequently, the frictional force vector at node i is given by

FR,i =
(
−FR,isinψi 0 FR,icosψi 0 RiFR,i

)T . (26)
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3. Mesoscopic Drill Bit Model

During the deep drilling process, the drill bit interacts with the drill string and the
rock. The drill string exerts forces (e.g., normal force) and torques (e.g., torque on bit) on
the bit to drill the rock. On the other hand, the rock exerts resistance forces and torques.
This bit–rock interaction is the main source of excitation of drill string vibration. In the
introduction, we briefly described different approaches to bit modelling that approximate
these interactions at different levels of detail.

The new modelling approach focuses on the description of PDC bits, which are
currently the most used types. PDC bits mainly cause lateral and torsional vibrations
in the drill string. Figure 4(left) shows a PDC bit consisting of six cutting blades with
cutting elements on the face, the bit shoulder and the gauge. As shown schematically in
Figure 4(right), the bit is modelled as a rigid body and the cutting forces on the drill bit
are not described for each individual blade but distributed over the blades. The modelling
approach is therefore independent of the number and positions of the cutting blades.
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In contrast to established macroscopic drill bit models, which determine the torque on
the bit only from the aggressiveness of the bit and the weight on the bit, the mesoscopic
drill bit model provides the system-inherent lateral forces in addition to the torque on the
bit in the case of asymmetries at the drill bit or rock inhomogeneities. To derive the model,
the kinematics of the cutting blades are first determined. Then an approach is developed to
determine the cutting forces on the blades, considering the distributed normal and contact
forces and the bit aggressiveness. By coupling with the drill string model in OSPLAC,
complex time domain simulations can be performed to describe the complex drill string
dynamics. In this way, the effect of rock inhomogeneities on the dynamics of the entire
drill string can be investigated with respect to the bit cutting geometry. The mesoscopic
approach also has significant computational time advantages over complex drill bit models,
allowing parameter and sensitivity studies to be performed in pre-well analyses.

3.1. Mesoscopic Drill Bit Kinematics
3.1.1. Coordinate Systems and Geometrical Variables

Analogous to the procedure in OSPLAC and for the implementation, a borehole-
fixed-coordinate system vb is introduced at the centre of the bottom of the borehole, see
Figure 5. The vector

→
v b,3 points in the direction of the borehole trajectory. The orientation

of this coordinate system is determined by the two rotations around the azimuth β and

inclination α with respect to the initial coordinate system
→
I as described in Equation (3).

We also introduce a drill-bit-fixed-coordinate system
→
e b at point P, see Figure 5, to

describe the bit translation and orientation. During drilling, only a minimum radial
clearance remains between the drill bit and the rock. In this work, a realistic value of 1/16
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inch has been chosen [31,32]. It is therefore assumed that the deflection of the bit axis
→
e b,3

against the borehole axis
→
v b,3 is negligible, so that

→
e b,3
∼=
→
v b,3. (27)

Modelling 2023, 4, FOR PEER REVIEW 10 
 

 

3.1. Mesoscopic Drill Bit Kinematics 
3.1.1. Coordinate Systems and Geometrical Variables 

Analogous to the procedure in OSPLAC and for the implementation, a borehole- 
fixed-coordinate system 𝑣  is introduced at the centre of the bottom of the borehole, see 
Figure 5. The vector �⃗�,ଷ points in the direction of the borehole trajectory. The orientation 
of this coordinate system is determined by the two rotations around the azimuth 𝛽 and 
inclination 𝛼 with respect to the initial coordinate system 𝐼 as described in Equation (3). 

 
Figure 5. Coordinate systems at the drill bit and borehole. 

We also introduce a drill-bit-fixed-coordinate system 𝑒 at point P, see Figure 5, to 
describe the bit translation and orientation. During drilling, only a minimum radial clear-
ance remains between the drill bit and the rock. In this work, a realistic value of 1/16 inch 
has been chosen [31,32]. It is therefore assumed that the deflection of the bit axis 𝑒,ଷ 
against the borehole axis �⃗�,ଷ is negligible, so that 𝑒,ଷ ≅ �⃗�,ଷ. (27) 

As the drill bit rotates around the axis 𝑒,ଷ with the angle 𝜑௭, the drill-bit-fixed-coor-
dinate system 𝑒 rotates around the same axis with the angle 𝜑௭ 𝑒 = 𝑅ଷ(𝜑௭)�⃗�. (28) 

First, the geometric position of the cutting blade 𝑖 on the face, shoulder and gauge 
of the drill bit is described. For this purpose, characteristic points, see Figure 6, are defined 
by position vectors in the drill-bit-fixed-coordinate system 𝐴(𝜑) = ൫𝑟, cos(𝜑) , 𝑟, sin(𝜑) , 0൯ ∙ 𝑒  𝐵ሬ⃗ (𝜑) = ൫𝑟, cos(𝜑) , 𝑟, sin(𝜑) , 0൯ ∙ 𝑒  𝐶(𝜑) = ൫𝑟, cos(𝜑) , 𝑟, sin(𝜑) , −൫𝑟, − 𝑟,൯ cos(𝛼௦)൯ ∙ 𝑒  𝐷ሬሬ⃗ (𝜑) = ൫𝑟, 𝑐𝑜𝑠(𝜑) , 𝑟, 𝑠𝑖𝑛(𝜑) , −൫𝑟,− 𝑟,൯ 𝑐𝑜𝑠(𝛼௦) − 𝑙,൯ ∙ 𝑒  

(29)

where 𝜑 is the angle between blade 𝑖 and axis 𝑒,ଵ , depending on the number of blades 
n. 𝑟,, 𝑟, and 𝑟, are the distances between the points 𝐴, 𝐵 and 𝐶, respectively, and 
the centre axis of the drill bit. 𝛼௦ is the shoulder angle. According to Figure 6, the lengths 
of the cutting blades 

Figure 5. Coordinate systems at the drill bit and borehole.

As the drill bit rotates around the axis
→
e b,3 with the angle ϕz, the drill-bit-fixed-

coordinate system eb rotates around the same axis with the angle ϕz

→
e b = R3(ϕz)

→
v b. (28)

First, the geometric position of the cutting blade i on the face, shoulder and gauge of
the drill bit is described. For this purpose, characteristic points, see Figure 6, are defined by
position vectors in the drill-bit-fixed-coordinate system

→
A

e

i (ϕi) = (rA,i cos(ϕi), rA,i sin(ϕi), 0)·→e b
→
B

e

i (ϕi) = (rB,i cos(ϕi), rB,i sin(ϕi), 0)·→e b
→
C

e

i (ϕi) = (rC,i cos(ϕi), rC,i sin(ϕi),−(rC,i − rB,i) cos(αsh))·
→
e b

→
D

e

i (ϕi) =
(
rC,icos(ϕi), rC,isin(ϕi),−(rC,i − rB,i)cos(αsh)− lg,i

)
·→e b

(29)

where ϕi is the angle between blade i and axis
→
e b,1, depending on the number of blades n.

rA,i, rB,i and rC,i are the distances between the points Ai, Bi and Ci, respectively, and the
centre axis of the drill bit. αsh is the shoulder angle. According to Figure 6, the lengths of
the cutting blades

AiBI = l f ,i, BiCI = lsh,i, CiDI = lg,i, l f ront,i = l f ,i + lsh,i, L f ront =
n

∑
i=1

l f ,i + lsh,i (30)

are given by the distances between the points defined by Equation (29).
The gauge length is not included here, as we will assume that the axial force is

distributed only at the front side. The gauge length lg,i is relevant for considering the lateral
normal forces on the drill bit leading to frictional contact with the wall.

For the drill bit dynamics, corresponding lever arm lengths are also required to
describe the torque on the bit at

→
e b,3. Based on [32], we assume that the weight on the bit is

distributed as a constant line load on all blades. The cutting forces of each cutting element
are then determined by the aggressiveness of the cutting element. Since the cutting force
on an element is almost independent of the cutting speed [31], it is also assumed that the
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resulting force acts in the centre of the cutting blade. For the lever arm at the bit shoulder
blade i, this gives

ash,i = rb − lsh,i
sin(αsh)

2
. (31)
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On the face side, the cutting forces can lead to torsional torques with lever arms

a f ,i = rb − lsh,i
sin(αsh)

2
−

l f ,i

2
. (32)

Consequently, the resulting lever arm for the torsional torque on the front side (face
and shoulder side) is

ai =
lsh,iash,i + l f ,ia f ,i

lsh,i + l f ,i
. (33)

The lever arm related to the total torque on the bit can now be expressed for n-blades as

abit =
n

∑
i=1

(
lsh,iash,i + l f ,ia f ,i

)
L f ront

. (34)

The position vectors from Equation (29) can be transformed using Equation (28) from
drill bit to drill hole fixed coordinates:

→
A

v

i (t) =
→
u b + (rA,i cos(ϕi + ϕz), rA,i sin(ϕi + ϕz), 0)·→v b

→
B

v

i (t) =
→
u b + (rB,i cos(ϕi + ϕz), rB,i sin(ϕi + ϕz), 0)·→v b

→
C

v

i (t) =
→
u b + (rC,i cos(ϕi + ϕz), rC,i sin(ϕi + ϕz),−(rC,i − rB,i) cos(αsh))·

→
v b

→
D

v

i (t) =
→
u b +

(
rC,i cos(ϕi + ϕz), rC,i sin(ϕi + ϕz),−(rC,i − rB,i) cos(αsh)− lg,i

)
·→v b

(35)

The kinematic variables are available as a function of time, where
→
u b describes

the lateral displacement of the drill bit and ϕz(t) the angle of rotation due to the drill
string rotation.

3.1.2. Consideration of Different Rocks in the Cutting Zone

A main objective of this paper is to describe both the drill bit and drill string dynamics
when drilling through different types of rock simultaneously.

Due to the positioning of the cutting blades on the drill bit, the individual contact of
each blade with the type of rock is different. It is therefore essential to determine the parts
of the blades that are in instantaneous contact with rock 1 and those that are in contact with
rock 2 (see Figure 7). In principle, the number of rocks in the model approach is not limited.
Here, we first assume that no more than two rocks occur in the cutting zone. To determine
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the lengths, we need to identify the position of the intersection between rock 1 and rock 2
on the drill bit. There are four cases for a blade i:
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Case 1: Blade i is completely inside rock 1 with the lengthslsh,i,1(t)
l f ,i,1(t)
lg,i,1(t)

 =

lsh,i
l f ,i
lg,i

,

lsh,i,2(t)
l f ,i,2(t)
lg,i,2(t)

 =

0
0
0


and the corresponding lever arms(

ash,i,1(t)
a f ,i,1(t)

)
=

(
ash,i(t)
a f ,i(t)

)
,
(

ash,i,2(t)
a f ,i,2(t)

)
=

(
0
0

)
.

Case 2: Blade i is completely inside rock 2 with the lengthslsh,i,1(t)
l f ,i,1(t)
lg,i,1(t)

 =

0
0
0

,

lsh,i,2(t)
l f ,i,2(t)
lg,i,2(t)

 =

lsh,i
l f ,i
lg,i


and the corresponding lever arms(

ash,i,1(t)
a f ,i,1(t)

)
=

(
0
0

)
,
(

ash,i,2(t)
a f ,i,2(t)

)
=

(
ash,i(t)
a f ,i(t)

)
.

Case 3: The point of intersection Ii is between Bi and Ci, and the parts of the blade i in
contact with the rocks 1 and 2, respectively, are defined aslsh,i,1(t)

l f ,i,1(t)
lg,i,1(t)

 =

IiCi
0

lg,i

,

lsh,i,2(t)
l f ,i,2(t)
lg,i,2(t)

 =

BIi
l f ,i
0

.

To calculate the lever arms, we need to find the midpoint Mi between Ii and Ci as well
as the midpoint Ni between Bi and Ii, which are given by

→
Mi =

1
2

(→
I i +

→
C i

)
,
→
Ni =

1
2

(→
B i +

→
I i

)
.
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This yields to the following lever arms(
ash,i,1(t)
a f ,i,1(t)

)
=

(
rb − Ci Mi

sin(αsh)
2

0

)
,
(

ash,i,2(t)
a f ,i,2(t)

)
=

(
rb − Ci Ni

sin(αsh)
2

a f ,i

)
.

Case 4: the point of intersection point Ii lies between Ai and Bi and the parts of the
blade i in contact with the rocks 1 and 2, respectively, are defined aslsh,i,1(t)

l f ,i,1(t)
lg,i,1(t)

 =

lsh,i
IBi
lg,i

,

lsh,i,2(t)
l f ,i,2(t)
lg,i,2(t)

 =

 0
AIi
0

.

The midpoint Mi between Ii and Bi as well as the midpoint Ni between Ai and Ii are

→
Mi =

1
2

(→
I i +

→
B i

)
,
→
Ni =

1
2

(→
Ai +

→
I i

)
and the lever arms yields to(

ash,i,1(t)
a f ,i,1(t)

)
=

(
ash,i,1

rb − lsh,i sin(αsh)− Bi Mi

)
,
(

ash,i,2(t)
a f ,i,2(t)

)
=

(
0

rb − lsh,i sin(αsh)− Bi Ni

)
.

3.1.3. Lateral Contact between Bit and Borehole

For the later calculation of the gauge cutting forces, the penetration fg,i and the

penetration velocity
.
f g,i of each gauge blade i must be calculated. The procedure is the

same as the calculation of the wall contact forces in Section 2.3. Similar to Equations (19)
and (20), the penetration distance and velocity at the point Di are given by

fg,i =

(√
xv,Di

2+yv,Di
2−RBL

)
+

∣∣∣∣√xv,Di
2+yv,Di

2−RBL

∣∣∣∣
2

.
f g,i =


xv,Di

.
xv,Di

+yv,Di
.
yv,Di(√

xv,Di
2+yv,Di

2−RBL

) , i f fg,i > 0

0 , i f fg,i i ≤ 0

(36)

where
(

xv,Di , yv,Di

)
are the displacements and

( .
xv,Di ,

.
yv,Di

)
are the velocities of the cutting

blade i at point Di with respect to
(→

v b,1,
→
v b,2

)
of the fixed borehole system

→
v b. The angle

ψbit describes the angle of the rotating bit around the borehole rotation axis
→
v b,3 and is also

used as a measure to identify whirl vibrations. The relative contact speed at the drill bit

vr,bit =
√

xv,Di
2 + yv,Di

2
.
ψbit + Rbit

.
ϕz,bit (37)

depends on the rotation speed
.
ϕz,bit of the drill bit around its own axis

→
e b,3. and the

whirling speed ψbit.

3.2. Mesoscopic Drill Bit Dynamics

Using the derived geometric and kinematic equations, we can now determine the
cutting forces on the cutting blades as a function of the drilling process parameters on the
bit using bit-specific and rock-specific resistance curves. The resulting forces and torques
on the drill bit are directly derived from the dynamic calculation, which excite the entire
drill string to various vibration phenomena.
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3.2.1. Resistance Coefficient of Cutting Blades

In the early 1990s, initial laboratory results indicated a decrease in mean bit torque
with increasing rotational speed, which was interpreted as a major cause of self-excited
torsional drill string vibration [1]. The torque on the bit can be determined experimentally
in field tests or laboratory tests specifically for a drill bit and a rock type as a function of
drilling parameters. The bit-specific resistance coefficient µ

( .
ϕbit
)
, which normalises the bit

torque Mbit,z with respect to the weight on bit Fbit,z, is referred to in Figure 8 as the falling
resistance characteristic. µ

( .
ϕbit
)

can then be derived from the falling resistance torque at
the drill bit via

Mbit,z
( .

ϕbit
)
= abitµ

( .
ϕbit
)

Fbit,z (38)

where abit is the lever arm of the bit, considering the cutting blades on the frontal side.
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Figure 8. Falling resistance characteristic with respect to the rotational speed at the bit.

In this work, the characteristic curve of [33] will be used, which is given by

µ
( .

ϕbit
)
= sign

( .
ϕbit
)(

µmin + (µmax − µmax)e
−|

.
ϕbit
st1
|
+ st2

∣∣ .
ϕbit
∣∣). (39)

The parameters st1 and st2 are used to describe the shape of the characteristic.

3.2.2. Cutting Force and Torque Analysis on the Frontal Side (Face and Shoulder Cutters)

When drilling, the bit is subjected to an axial normal force Fbit,z, which is distributed
on the cutting blades of the bit face, see Figure 9a.
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The normal force per length is assumed to be

Fbit,z
m

=
Fbit,z

L f ront
(40)
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and the cutting force per length

F c
m
= µ·Fbit,z

m
= µ

Fbit,z

L f ront
. (41)

is then defined as the product of the normal force Fbit,z
m

and the resistance coefficient µ
( .

ϕbit
)

from Section 3.2.1.
Based on Equation (31), the normal force

FN,i = li
Fbit,z

L f ront
(42)

is the part of the axial force Fbit,z that presses on each cutting blade i, assuming that the face
is in permanent contact with the bottom of the borehole. By multiplying the resulting face
cutting force on each blade i

Fi = µFN,i = µli
Fbit,z

L f ront
(43)

with the lever arm ai of the front blade, we obtain the resistance torque

Mi,z = aiFi = aiµli
Fbit,z

L f ront
(44)

of each cutting blade. The sum of all the torques gives the torque on the bit

Mbit,z =
n

∑
i=1

Mi,z =
n

∑
i=1

aiµli
Fbit,z

L f ront
. (45)

Mbit,z should be equal to the torque on bit TOB obtained from the falling torque curve in
Section 3.2.1. For further analysis of the lateral stability, the components of the cutter force
Fi in the

(→
v b,1,

→
v b,2

)
plane

(
Fi,x
Fi,y

)
= Fi

(
sin(ϕi + ϕz)
− cos(ϕi + ϕz)

)
= µli

Fbit,z

L f ront

(
sin(ϕi + ϕz)
− cos(ϕi + ϕz)

)
(46)

are considered. However, when drilling through formation splits, the cutting forces dis-
tributed on a blade i are unequal due to the different resistance coefficients µj=1,2, see
Figure 10. Here we distinguish between the cutting forces on the face and shoulder sides
and between those in contact with rock 1 and rock 2, which yields to

Fsh,i,1
Fsh,i,2
Ff ,i,1
Ff ,i,2

 =


µ1lsh,i,1
µ2lsh,i,2
µ1l f ,i,1
µ2l f ,i,2

 Fbit,z

L f ront
(47)

using the lengths lsh,i,1, lsh,i,2, l f ,i,1 and l f ,i,2 introduced in Section 3.1.2. The resulting
cutting force Fi is the sum of these distributed forces on blade i

Fi =
(
µ1lsh,i,1 + µ2lsh,i,2 + µ1l f ,i,1 + µ2l f ,i,2

) Fbit,z

L f ront
(48)

and the force components in the
(→

v b,1,
→
v b,2

)
plane can then be formulated as

(
Fi,x
Fi,y

)
=

 (
µ1lsh,i,1 + µ2lsh,i,2 + µ1l f ,i,1 + µ2l f ,i,2

)
sin(ϕi + ϕz)

−
(

µ1lsh,i,1 + µ2lsh,i,2 + µ1l f ,i,1 + µ2l f ,i,2

)
cos(ϕi + ϕz)

 Fbit,z

L f ront
. (49)
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The cutting torques 
Msh,i,1,z
Msh,i,2,z
M f ,i,1,z
M f ,i,2,z

 =


µ1ash,i,1lsh,i,1
µ2ash,i,2lsh,i,2
µ1a f ,i,1l f ,i,1
µ2a f ,i,2l f ,i,2

 Fbit,z

L f ront
. (50)

are the result of the multiplication of the cutting forces from Equation (47) by the lever arms
ash,i,1, ash,i,2, a f ,i,1 and a f ,i,2 of each blade part from Section 3.1.2. The sum of these torques
yields the resultant torque

Mi,z =
(
µ1ash,i,1lsh,i,1 + µ2ash,i,2lsh,i,2 + µ1a f ,i,1l f ,i,1 + µ2a f ,i,2l f ,i,2

) Fbit,z

L f ront
(51)

on each cutting blade. The components of the resulting cutting force on the front side

(
Ff r,x
Ff r,y

)
=

Fbit,z

L f ront


n
∑

i=1

(
µ1lsh,i,1 + µ2lsh,i,2 + µ1l f ,i,1 + µ2l f ,i,2

)
sin(ϕi + ϕz)

−
n
∑

i=1

(
µ1lsh,i,1 + µ2lsh,i,2 + µ1l f ,i,1 + µ2l f ,i,2

)
cos(ϕi + ϕz)

. (52)

are defined as the sum of all force components of the cutting blades and the cutting torsional
torque on the front side of the bit

M f r,z =
Fbit,z

L f ront
∑n

i=1

(
µ1ash,i,1lsh,i,1 + µ2ash,i,2lsh,i,2 + µ1a f ,i,1l f ,i,1 + µ2a f ,i,2l f ,i,2

)
. (53)

as the result of the multiplication of these forces by the lever arms ash,i,1, ash,i,2, a f ,i,1 and
a f ,i,2. Consequently, the external force and torque vector of the front side of the bit is

F f r =
(

Ff r,x 0 Ff r,y 0 M f r,z
)
. (54)
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3.2.3. Cutting Force and Torque Analysis on the Gauge Side

The cutting forces and torques on the gauge side are determined in a similar way to
the frictional forces between the drill string elements and the borehole in Section 2.3. In
fact, when a cutting blade penetrates in the borehole wall, normal forces

FN,g,i,1 =
lg,i,1k1

lg,i,1+lg,i,2
fg,i +

lg,i,1c1
lg,i,1+lg,i,2

.
f g,i

FN,g,i,2 =
lg,i,2k2

lg,i,1+lg,i,2
fg,i +

lg,i,2c2
lg,i,1+lg,i,2

.
f g,i

(55)

consisting of stiffness and damping forces depending on the rock act in contact with the
gauge. The resulting normal force vector can then be expressed as

FN,g,i =
(
−
(

FN,g,i,1 + FN,g,i,2
)
cos(ϕi + ϕz) 0 −

(
FN,g,i,1 + FN,g,i,2

)
sin(ϕi + ϕz) 0 0

)
. (56)

When the rotating gauge blade i is pressed with normal forces FN,g,i against the hole
with a resistance factor of µj=1,2 the resulting cutting force and cutting torque are

FR,g,i = −sign(vr, bit)
(
µ1(vr,bit)

∣∣FN,g,i,1
∣∣+ µ2(vr,bit)

∣∣FN,g,i,2
∣∣) MR,g,i = RbFR,g,i (57)

where vr, bit is the relative velocity on the gauge side of the bit, see Equation (24).
Consequently, the force and torque vector at the gauge of blade i can be expressed by

FR,g,i =
(
−FR,g,isin(ϕi + ϕz) 0 FR,g,icos(ϕi + ϕz) 0 RbFR,g,i

)T . (58)

Therefore, the resulting normal force vector acting on all sides of the gauge is

FN,g =

( n
∑

i=0
−FN,g,icos(ϕi + ϕz) 0

n
∑

i=0
−FN,g,isin(ϕi + ϕz) 0 0

)
(59)

and the resulting resistance force and torque vector is defined as

FR,g =

( n
∑

i=0
−FR,g,isin(ϕi + ϕz) 0

n
∑

i=0
FR,g,icos(ϕi + ϕz) 0 Rb

n
∑

i=0
FR,g,i

)
. (60)

3.2.4. Forces and Torques on the Drill Bit

The resulting forces coming from the cutting process on all sides of the bit (face,
shoulder and gauge) are summarised in the vector

Fbit = F f r + FN,g + FR,g. (61)

The lateral excitation on the bit is generated by the force components (Fix, Fiy) of the
torsional resistance forces Fi on the cutting blades and yields to

Fbit,x =
n

∑
i=1

Fix, Fbit,y =
n

∑
i=1

Fiy. (62)

4. Case Studies with the New Mesoscopic Drill Bit Model

In the following section, an explanatory drill string simulation using the mesoscopic
drill bit model is analysed to determine the influence of the rock inhomogeneity on the
torsional and lateral dynamics of the drill string. The focus of this study is on the excitation
source of the bit (blades)–rock interaction due to the modelled resistance forces and torques
and the corresponding lateral forces. Therefore, other forces and phenomena such as mass
imbalance or fluid forces are neglected. For the estimation of the cutting forces, two falling
resistance characteristics with respect to the angular velocity at the drill bit were assumed
for two different rocks: (1) a hard rock leading to a stick–slip tendency, (2) a soft rock
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leading to steady-state behaviour and (3) a very soft rock (see Figure 11). The simulations in
the case studies are carried out using a drill string with the following parameters (Table 1).
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Table 1. Drill string parameters.

Parameter Designation Value Unit

Dbit PDC bit diameter 8 3
4 In

L Drill string length 1000 m

LBHA BHA length 35 m

nblades Number of face and gauge cutter blades 6 -

d Clearance 0.005 m

Table 2 gives an overview of the case studies: the drill string drills through a sandwich
formation consisting of rock 1 and a thin layer of rock 2. Rock 1 is characterised by a higher
Young’s modulus resulting in a higher stiffness and a high resistance at lower rpm resulting
in a greater tendency to cause stick–slip (see Figure 11). Rock 2, on the other hand, is a soft
rock with a lower stiffness and a lower tendency to stick–slip.

Table 2. Case studies.

Case Vibration
Direction Drill Bit Design Formation Normal Force Rotational Speed

1 Torsional Symmetric Hard—soft—hard with
inclination of 45◦ 0–200 kN 0–250 rpm

2 Lateral and
torsional Symmetric Hard—soft—hard with

inclination of 45◦

75 kN 50 rpm3 Lateral and
torsional Symmetric Hard—very soft—hard with

inclination of 45◦

4 Lateral and
torsional Asymmetric Hard—soft—hard with

inclination of 45◦

In Figure 12, six positions of the drill bit are selected to be analysed in the following
case studies:

P1, P6: the bit is in contact with rock 1 only.
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P2: 25% of the bit surface is in contact with rock 2 and 75% with rock 1.
P3: 25% of the bit surface is in contact with rock 1 and 75% with rock 2.
P4: the bit is in contact with rock 2 only.
P5: 50% of the bit surface is in contact with both rock 1 and 2.
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Figure 12. Drilling through a sandwich formation with an inclination of 45◦, P1–P6: selected
observation points of the dynamics.

4.1. Case Study 1: Torsional Stability Map

In case study 1 we only focus on the torsional vibrations at the bit. The occurrence of
stick–slip depends on the normal force on the bit and the rotational speed of the drill string
(Fbit,z and RPM). So two simulations are run with a constant normal force Fbit,z = 100 kN
and two rotational speeds RPM = 50, see Figure 13, and RPM = 100, see Figure 14.
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Figure 13. Torsional oscillation of the bit at Fbit,z = 100 kN, RPM = 50 when drilling through
formations.

At the start of each simulation (first 10 s) the top drive speed is linearly increased to the
target speed. For the next 10 s, the target speed is maintained but the target normal force
is not set to avoid any outward oscillation that could increase the tendency to stick–slip.
After 20 s of simulation time, the drilling operation is started by setting the normal force to
the target value.

At RPM = 50 the bit starts to drill into hard rock 1, causing stick–slip. As the contact
with rock 2 increases due to the formation change (see positions 3 and 4), the bit tends
towards a steady state. When the formation changes back to rock 1, the drill string becomes
unstable again. At RPM = 100, the drill bit oscillates towards a steady state from the
beginning to the end of the formation change.
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Figure 14. Torsional oscillation of the bit at Fbit,z = 100 kN, RPM = 100 when drilling through
formations of Figure 13.

In the classical rigid-cylinder bit models, torsional stability depends, among other
things, on only two operational parameters: normal force and bit rotational speed. As a
result, corresponding stability maps are two-dimensional and transition phases during
formation changes cannot be represented. In addition to normal forces and bit speed,
the results of this case study show that we need a third dimension covering another
operational parameter, namely the contact area between the bit and the rock, when drilling
in inhomogeneities.

One of the advantages of the mesoscopic drill bit presented in this paper is that it
allows the determination of torsional stability maps in inhomogeneous rock formations. To
generate these maps, Fbit,z and RPM are varied from 0 to 200 kN and from 0 to 250 rpm,
respectively, with a fixed step (5 kN/rpm) and it is assumed that the drill bit is drilling in a
fixed position from P1 to P6, see Figure 12.

At each step, a simulation is run for a defined normal force and rotational speed for
a long time to allow the system to reach its steady state. As soon as stick–slip occurs, an
identification algorithm fills the stability map matrix with one for stick–slip and zero for
no stick–slip. In the beginning of this analysis, a method based on scanning all possible
(RPM, Fbit,z) combinations was used. However, this was very time consuming. Therefore,
an optimised stability map generation algorithm was developed to minimise the number
of simulations. This algorithm aims to identify the boundary curve between the stick–slip
and no stick–slip zones. Two basic rules were used to do this:

If an Fbit,z value is identified at a certain speed at which stick–slip occurs, then all
higher Fbit,z values will also cause stick–slip. In this case, Fbit,z and RPM increase linearly in
the next step.

If Fbit,z does not cause stick–slip at a certain speed, only Fbit,z will increase in the
next step.

Two zones (stick–slip and no stick–slip zones) are shown graphically in Figure 15:
Stick–slip is generally characterised by a high normal force at the bit Fbit,z and low rotational
speed RPM. This figure shows different stability zones for six bit positions. The torsional
instability zone increases as the contact area between the bit and rock 1 increases.

4.2. Case Studies 2–4: Torsional/Lateral Simulations

These case studies analyse the influence of the formation changes on the lateral and
torsional stability of different drill bits (symmetric and asymmetric) and rocks (hard, soft
and very soft) is analysed.

Torsional oscillations:
Figure 16 shows the time simulation of the drill string torsional vibration using a

symmetric mesoscopic drill bit model when drilling through the sandwich formation of
Figure 12. Based on the torsional stability map in Figure 15, the values of 50 rpm and
75 kN will lead to stick–slip when drilling in P1/P6 or P2. For comparison reasons, these
positions correspond to the unstable behaviour intervals in Figure 15 where stick–slip
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vibration is generated. The time intervals where stick–slip decreases are the transition
phases from rock 1 to rock 2 and from rock 2 to rock 1. They represent the inhomogeneous
bit–rock-contact intervals.
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In case 2, the middle rock (2) is soft, leading to a torsional steady state of the drill bit
(from ~100 s). In case 3, the middle rock (2) is replaced by a very soft rock, which leads to
a shorter drilling time in rock 2. After leaving the inhomogeneity, the drill bit reaches its
torsional unstable state much faster. Case 4 is like case 2 except that the drill bit is replaced
by an asymmetric bit. The total drilling time through the formation is shorter than in case 2.

Lateral oscillations:
Figure 17, on the other hand, focuses on the lateral vibration behaviour of the bit when

drilling through the sandwich formation of Figure 12. A clearance of 0.005 m is set.
In cases 2 and 3, lateral forces can be seen at the bit level after ~80 s of simulation

time due to formation inhomogeneity. In case 4 these forces are to be seen throughout the
simulation time due to the asymmetric design of the bit. While these forces are periodic
when drilling in a single rock, they are perturbed by inhomogeneities. Comparing cases
2 and 3, it is clear that the stiffness of the formation does not have much influence on the
overall lateral vibration behaviour. However, in case 3, where the middle formation is too
soft, a shock in the axial transition from rock 1 to rock 2 and then back to rock 1 leads to
higher lateral forces, higher frequency of the lateral vibration and longer time to decay.

Figure 18 illustrates the orbital oscillations of the bit within the defined clearance (blue
circle). In cases 2 and 3 we can clearly see the effect of the inhomogeneities in pushing the
drill bit towards the hole. This effect depends on whether the drill bit is running from hard
to soft rock (see P2, P3) or otherwise (see P5). In a homogeneous formation, the drill bit is
laterally stable (see P1, P4, P6). In case 4, the drill bit is in forward whirling throughout
the whole simulation. Thus, when using a symmetrical drill bit (cases 2 and 3), the drill
bit is stable when drilling through homogeneous rock. However, when drilling through
inhomogeneities, the drill bit will rotate around its own axis while being pushed towards
the same point of the hole. This can cause malicious lateral vibrations, such as backward
whirl, which can cause tremendous damage. On the other hand, an asymmetric drill bit
(case 4) will have a continuous forward whirl in both homogeneous and inhomogeneous
formations. However, the forward whirl makes the bit more stable against backward whirl.
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5. Conclusions

The core of this work is the developed mesoscopic drill bit model, which has been
introduced and described in detail. This model can be used to simulate and analyse drill
string vibrations when drilling through inhomogeneous rock formations with symmetrical
and asymmetrical drill bits. For this task, the new drill bit model has been coupled with an
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existing drill string model, OSPLAC, which is also explicitly presented here. This allows
extensive simulation studies to be carried out for drilling through inhomogeneous rock
zones with different bit types, including anti-whirl bits. To this end, the operation of the
mesoscopic bit model and drilling through a sandwich formation were simulated in four
case studies. The resulting torsional and lateral vibrations were presented and discussed as
a function of the formation drilled and the type of bit used. These first simulation studies
show the influence of drilling through rock inhomogeneities with different drill bits on the
torsional and lateral vibration behaviour.

In future research, it will be important to investigate the sensitivity of individual
parameters in more detail through comprehensive simulation studies. For example, the
influence of the number of cutting blades and their geometric configuration on the bit and
its clearance, or of course the formation parameters such as Young’s modulus, inclination,
etc. on the bit and drill string dynamics need to be investigated in more detail. A validation
of the simulation results with measurements would be the next obvious step, but this
requires collaborative projects with drilling companies and drilling service companies on
this topic. In addition, the model should be used to investigate in detail the deviations of
the drill string when drilling through rock inhomogeneities.
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Nomenclature
Symbol Definition Unit
A Area m2

Ai, Bi, Ci, Di Characterising points of blade i of the drill bit -
abit Lever arm of the drill bit m
c Rock damping Ns/m
C Damping matrix Ns, Nms/rad
Dbit Drill bit diameter m
E Young’s elasticity modulus N/m2
→
e i Drill string attached coordinate system
F Force vector N
f,

.
f Penetration depth, velocity m, m/s

Fbit Resulting cutting force at the bit N
F c

m
Cutting force per length N/m

Ffr Cutting force on front side N
Fl Distributed force per length N
FN Normal force N
FR Friction/resistance force N
Fsh Cutting force on shoulder N
G Shear modulus N/m2

I Moment of inertia m4
→
I Inertial coordinate system at drilling tower
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→
I 1,
→
I 2,
→
I 3

Inertial coordinate vectors showing north, east and Earth
directions, respectively

Ii Point of intersection between rock 1 and 2 on blade i
Ip Polar moment of inertia m4

k Rock stiffness N/m

K Stiffness matrix
N/m,
Nm/rad

L Drill string length m
LBHA BHA length m
lf,i Distance between Ai and Bi of blade i m
lfront,i Sum of l f ,i and lsh,i of blade i m
Lfront Sum of lengths of all cutting blades m
lsh,i Shoulder length of blade i m
M Inertia matrix kg, kgm2

Mfr Cutting torque on front side of the drill bit Nm
MR Friction/resistance torque Nm
Msh Cutting torque on shoulder Nm
Mz Torsional torque Nm
n Number of blades of the drill bit -
P Centrepoint of the drill bit -
P1, P2, P3, P4,
P5, P6

Six positions of the drill bit in contact with formations 1
and 2

-

rA,i, rB,i, rC,i, rD,i
Distances between the points Ai, Bi, Ci, Di of each blade
and the bit centre P

m

RBL Borehole radius m
RDar Darboux matrix 1/m, rad/m
Ri Drill string outer radius m
RIv Total rotation matrix -
→
r L Drilling trajectory m
Rve Transformation from

→
v i to

→
e i -

T Kinetic energy Nm
..
u,

.
u, u Acceleration, velocity, deformation m/s2, m/s, m

→
v i Local coordinates at element i -
vr Relative contact speed m/s
W Work of force Nm
x, y, z Translation degrees of freedom m
α Inclination angle rad
αsh Shoulder angle rad
β Azimuth angle rad
∆r Clearance m
ε Strain -
κ Curvature 1/m
µ Friction/resistance coefficient -
Π Deformation energy Nm
τ Twisting rad/m
ϕx,ϕy,ϕz Rotation degrees of freedom rad

ψ,
.
ψ Whirl angle, velocity rad, rad/s
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