Parameter Choice Strategy That Computes Regularization Parameter before Computing the Regularized Solution
Abstract
:1. Introduction
2. Error Analysis
- (i)
- ∃ constant and a continuous function such that for , there is a such that
- (ii)
- ∃ constant and a continuous function such that for , there is a such that
- (iii)
- ∃ constant and a continuous function such that for , there is a such that
- (iv)
- ∃ constant and a continuous function such that for , there is a such that
- (b)
- Using the above assumptions, one can prove the following identities (proof of which is given in Appendix A). Let Then,
- (c)
- We will be using the following estimates:
- (P1)
- for some
- (P2)
- for some
- (P1′)
- for someand
- (P2′)
- for some
3. New Parameter Choice Strategy
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of the Identities (17)–(20)
Appendix B. Proof Proposition 1
Appendix C. Proof of Lemma 1
Appendix D. Proof of Lemma 2
Appendix E. Proof of Lemma 3
Appendix F. Proof of Lemma 4
Appendix G. Verification of Assumptions (iii) and (iv)
- (A1)
- Let , and assume that ∃ with ∀ Then, ∃ of in such that
- (A2)
- for all and
References
- Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations; Dover Publications: New York, NY, USA, 1953. [Google Scholar]
- Ramm, A.G. Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering; Springer: New York, NY, USA, 2004. [Google Scholar]
- Akimova, E.N.; Misilov, V.E.; Sultanov, M.A. Regularized gradient algorithms for solving the nonlinear gravimetry problem for the multilayered medium. Math. Methods Appl. Sci. 2020, 21, 7012. [Google Scholar] [CrossRef]
- Byzov, D.; Martyshko, P. Three-Dimensional Modeling and Inversion of Gravity Data Based on Topography: Urals Case Study. Mathematics 2024, 12, 837. [Google Scholar] [CrossRef]
- Scherzer, O.; Engl, H.W.; Kunisch, K. Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM. J. Numer. Anal. 1993, 30, 1796–1838. [Google Scholar] [CrossRef]
- Engl, H.W.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Kluwer Academic Publisher: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Flemming, J. Generalized Tikhonov Regularization and Modern Convergence Rate Theory in Banach Spaces; Shaker Verlag: Aachen, Germany, 2012. [Google Scholar]
- Mair, B.A. Tikhonov regularization for finitely and infinitely smoothing operators. SIAM J. Math. Anal. 1994, 25, 135–147. [Google Scholar] [CrossRef]
- Engl, H.W.; Kunisch, K.; Neubauer, A. Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Probl. 1989, 5, 523–540. [Google Scholar] [CrossRef]
- Jin, Q.N.; Hou, Z.Y. On the choice of regularization parameter for ordinary and iterated Tikhnov regularization of nonlinear ill-posed problems. Inverse Probl. 1997, 13, 815–827. [Google Scholar] [CrossRef]
- Jin, Q.N.; Hou, Z.Y. On an a posteriori parameter choice strategy for Tikhnov regularization of nonlinear ill-posed problems. Numer. Math. 1999, 83, 139–159. [Google Scholar]
- Rieder, A. On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Probl. 1999, 15, 309–327. [Google Scholar] [CrossRef]
- Vasin, V.; George, S. Expanding the applicability of Tikhonov’s regularization and iterative approximation for ill-posed problems. J. Inverse -Ill-Posed Probl. 2014, 22, 593–607. [Google Scholar] [CrossRef]
- Blaschke, B. Some Newton Type Methods for the Regularization of Nonlinear Ill-posed Problems. Trauner 1996, 13, 729. [Google Scholar]
- Nair, M.T. Linear Operator Equations: Approximation and Regularization; World Scientific: Singapore, 2009. [Google Scholar]
- Argyros, I.K.; George, S.; Jidesh, P. Inverse free iterative methods for nonlinear ill-posed operator equations. Int. J. Math. Math. Sci. 2014, 2014, 754154. [Google Scholar] [CrossRef]
- George, S. On conversence of regularized modified Newton’s method for nonlinear ill-posed problems. J. Inv. Ill-Posed Probl. 2010, 18, 133–146. [Google Scholar] [CrossRef]
- George, S.; Nair, M.T. An a posteriori parameter choice for simplified regularization of ill-posed problems. Inter. Equat. Oper. Th. 1993, 16, 392–399. [Google Scholar] [CrossRef]
- Hohage, T. Logarithmic convergence rates of the iteratively regularized Gauß-Newton method for an inverse potential and an inverse scattering problem. Inverse Probl. 1997, 13, 1279–1299. [Google Scholar] [CrossRef]
- Mahale, P.; Singh, A.; Kumar, A. Error estimates for the simplified iteratively regularized Gauss-Newton method under a general source condition. J. Anal. 2022, 31, 295–328. [Google Scholar] [CrossRef]
- Chen, D.; Yousept, I. Variational source condition for ill-posed backward nonlinear Maxwell’s equations. Inverse Probl. 2019, 35, 025001. [Google Scholar] [CrossRef]
- Hohage, T.; Weidling, F. Verification of a variational source condition for acoustic inverse medium scattering problems. Inverse Probl. 2015, 31, 075006. [Google Scholar] [CrossRef]
- Hohage, T.; Weidling, F. Variational source condition and stability estimates for inverse electromagnetic medium scattering problems. Inverse Probl. 2017, 11, 203–220. [Google Scholar]
- Hohage, T.; Weidling, F. Characerizations of variational source conditions, converse results, and maxisets of spectral regularization methods. SIAM J. Numer. Anal. 2017, 55, 598–620. [Google Scholar] [CrossRef]
- Hofmann, B.; Kaltenbacher, B.; Póschl, C.; Scherzer, O. A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Probl. 2007, 23, 987–1010. [Google Scholar] [CrossRef]
- Jin, Q. On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems. Math. Comput. 2000, 69, 1603–1623. [Google Scholar]
- Jin, Q. A convergence analysis of the iteratively regularized Gauss-Newton method under Lipschitz condition. Inverse Probl. 2008, 24, 045002. [Google Scholar] [CrossRef]
- Mahale, P.; Dixit, S.K. Convergence analysis of simplified iteratively regularized Gauss-Newton method in a Banach space setting. Appl. Anal. 2017, 97, 1386785. [Google Scholar] [CrossRef]
- Bakushinskii, A. The problem of the convergence of the iterativley regularized Gauß-Newton method. Comput. Maths. Math. Phys. 1992, 32, 1353–1359. [Google Scholar]
- Bakushinskii, A. Iterative methods without saturation for solving degenerate nonlinear operator equations. Dokl. Akad. Nauk. 1995, 1, 7–8. [Google Scholar]
- Bakushinskii, A.; Kokurin, M. Iterative Methods for Approximate Solution of Inverse Problems; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Blaschke, B.; Neubauer, A.; Scherzer, O. On convergence rates for the iteratively regularized Gauß-Newton method. Ima J. Numer. Anal. 1997, 17, 421–436. [Google Scholar] [CrossRef]
- Deuflhard, P.; Engl, H.W.; Scherzer, O. A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Probl. 1998, 14, 1081–1106. [Google Scholar] [CrossRef]
- Hanke, M. Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Numer. Funct. Anal. Optim. 1997, 18, 971–993. [Google Scholar] [CrossRef]
- Kaltenbacher, B. A posteriori parameter choice strategies for some Newton type methods for the regularization of nonlinear ill-posed problems. Numer. Math. 1998, 79, 501–528. [Google Scholar] [CrossRef]
- Mahale, P. Simplified Generalized Gauss-Newton iterative method under Morozove type stopping rule. Numer. Funct. Anal. Optim. 2015, 36, 1448–1470. [Google Scholar] [CrossRef]
- Krasnoselskii, M.A.; Zabreiko, P.P.; Pustylnik, E.I.; Sobolevskii, P.E. Integral Operators in Spaces of Summable Functions; Noordhoff International Publ.: Leyden, IL, USA, 1976. [Google Scholar]
- Ford, W. Numerical Linear Algebra with Applications; Academic Press: New York, NY, USA, 2015; pp. 163–179. [Google Scholar]
Method | Elapsed Time in Seconds | |||
---|---|---|---|---|
0.01 | 3.8147 × 10−6 | 0.0255 | 0.1664 | |
0.001 | 3.7253 × 10−9 | 0.0081 | 0.3884 | |
(29) | 0.05 | 3.0518 × 10−5 | 0.0298 | 0.1277 |
0.005 | 9.5367 × 10−7 | 0.0178 | 0.1865 | |
0.01 | 1.9073 × 10−6 | 0.0138 | 0.2190 | |
0.001 | 3.7253 × 10−9 | 0.0086 | 0.5289 | |
(30) | 0.05 | 6.1035 × 10−5 | 0.0404 | 0.3383 |
0.005 | 4.7684 × 10−7 | 0.0143 | 0.3988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, S.; Padikkal, J.; Kunnarath, A.; Argyros, I.K.; Regmi, S. Parameter Choice Strategy That Computes Regularization Parameter before Computing the Regularized Solution. Modelling 2024, 5, 530-548. https://doi.org/10.3390/modelling5020028
George S, Padikkal J, Kunnarath A, Argyros IK, Regmi S. Parameter Choice Strategy That Computes Regularization Parameter before Computing the Regularized Solution. Modelling. 2024; 5(2):530-548. https://doi.org/10.3390/modelling5020028
Chicago/Turabian StyleGeorge, Santhosh, Jidesh Padikkal, Ajil Kunnarath, Ioannis K. Argyros, and Samundra Regmi. 2024. "Parameter Choice Strategy That Computes Regularization Parameter before Computing the Regularized Solution" Modelling 5, no. 2: 530-548. https://doi.org/10.3390/modelling5020028
APA StyleGeorge, S., Padikkal, J., Kunnarath, A., Argyros, I. K., & Regmi, S. (2024). Parameter Choice Strategy That Computes Regularization Parameter before Computing the Regularized Solution. Modelling, 5(2), 530-548. https://doi.org/10.3390/modelling5020028