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Abstract: The purpose of this study is to investigate the effective behaviour of a micro-cracked
material whose matrix bulk and shear moduli are ruled by a linear viscoelastic Burgers model.
The analysis includes a detailed study of randomly oriented and distributed cracks displaying an
overall isotropic behaviour, as well as aligned cracks resulting in a transversely isotropic medium.
Effective material properties are approximated with the assumption that the homogenized equivalent
medium exhibits the characteristics of a Burgers model, leading to the identification of short-term
and long-term homogenized modules in the Laplace–Carson space through simplified formulations.
The crucial advantage of this analytical technique consists in avoiding calculations of the inverse
Laplace–Carson transform. The micromechanical estimates are validated through comparisons with
FE numerical simulations on 3D microstructures generated with zero-thickness void cracks of disc
shape. Intersections between randomly oriented cracks are accounted for, thereby highlighting a
potential percolation phenomenon. The effects of micro-cracks on the material’s behaviour are then
studied with the aim of providing high-performance creep models for macrostructure calculations at
a moderate computation cost through the application of analytical homogenization techniques.

Keywords: cracked media; viscoelasticity; Burgers model; 3D numerical simulation

1. Introduction

In the context of long-term deep disposal of nuclear waste in the Callovo-Oxfordian
(COx) claystone, the excavation of tunnels in the host rock inevitably leads to macroscopic
fracturing, raising potentially significant challenges for nuclear waste management [1–3].
Characterizing the behaviour of the COx claystone is complex, as various factors are
involved in determining the appropriate behaviour of the claystone. In particular, the
creep properties of the argillite play a crucial role in the crack sealing process [4], an
anticipated key phase expected to take place following the closure of the underground waste
disposal [5]. This study aims to provide a description for the creep phenomenon within a
simplified linear viscoelastic framework. Furthermore, it is intended to model the behaviour
of a fractured viscoelastic material by approximating its effective properties and identifying
the parameters by means of a macroscopic Burgers model [6]. For the purpose of validating
the analytical approach, the results are compared with numerical simulations performed
using the finite element method with the Cast3M (http://www-cast3m.cea.fr/ (version
2022, accessed on 4 April 2022)) software. This comparison between the two approaches
offers key validation requirements when it comes to modelling the macroscopic behaviour

Modelling 2024, 5, 625–641. https://doi.org/10.3390/modelling5020033 https://www.mdpi.com/journal/modelling

https://doi.org/10.3390/modelling5020033
https://doi.org/10.3390/modelling5020033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/modelling
https://www.mdpi.com
https://orcid.org/0000-0003-3990-1095
https://orcid.org/0000-0003-1788-9857
http://www-cast3m.cea.fr/
https://doi.org/10.3390/modelling5020033
https://www.mdpi.com/journal/modelling
https://www.mdpi.com/article/10.3390/modelling5020033?type=check_update&version=2


Modelling 2024, 5 626

of damaged materials while exploiting the use of multi-scale approaches. The excavation
of tunnels for the Cigéo project causes fracturing of the COx claystone. Characterizing the
cracking state through in situ observations provides means for dimensioning the damaged
zone and determining crack orientations as a function of distance from the excavated drifts.
In the vicinity of the galleries, crack orientations appear widely variable and random. With
increasing distance from the drifts, cracks show preferential orientations mostly parallel to
the galleries [2].

Several techniques are employed to accurately describe the complex phenomenon of
fracture in materials [7–11]. Alongside damage models, which incorporate the effect of
cracks by introducing a damage variable [12], methods based on continuum mechanics can
also capture the presence of cracking in a solid material [13]. In particular, micromechanical
techniques based on the calculation of homogenized moduli can be used to estimate the ef-
fect of fractures on the material’s macroscopic properties [14–16]. Cracks are considered as
heterogeneities distributed in the solid matrix, and solutions based on micromechanical es-
timates are presented to deduce homogenized properties. The approach used by Budiansky
and O’connell [17] involves the utilization of a crack density parameter to characterize the
fracturing effect, assuming that all cracks are circular with an identical shape and size. The
crack density parameter can be associated macroscopically with a damage variable, whose
effects are calculated from analytical homogenization schemes [18]. In addition, other
techniques, notably finite element modelling [19], can be used to create microstructures
representative of the fracturing condition, with considerably fewer limitations in terms of
design simplifications. This numerical approach can be directly compared to analytical
techniques obtained by approximation schemes, which is a key objective of this study.

Materials subjected to constant loads can exhibit a delayed (creep) behaviour, char-
acterized by continuous deformation over time. Linear viscoelastic models can depict
such effects in a simplified context [20]. Moreover, it is possible to use the Laplace–Carson
transform (LC) and proceed to operate with an equivalent linear elastic behaviour in the
Laplace–Carson space. This provides a straightforward framework to have recourse to
for analytical solutions obtained with classical homogenization procedures developed for
elastic materials affected by the presence of cracks and/or heterogeneities [21]. For this
purpose, the behaviour of the COx claystone is represented here by non-ageing linear vis-
coelastic Burgers models combining Maxwell and Kelvin–Voigt models. Using a minimum
number of parameters, the Burgers model is indeed able to capture the main features of a
viscoelastic material behaviour, particularly providing an adequate representation of the
long-term characteristics of the COx claystone. In linear viscoelastic applications, dealing
with heterogeneous media considerably complexifies the formulated equations in LC space.
This difficulty renders model equation inversion into real time space challenging. Com-
monly, numerical solutions, such as the collocation method, are used to provide effective
resolutions to the equations describing the material’s behaviour [22,23].

Most classical approaches used to estimate the behaviour of heterogeneous materials
with homogenization techniques are based on the Eshelby solution [24]. These approaches
have proved to be very efficient for approximating the effective behaviour of such materials
in various contexts, including for micro-cracked linear elastic materials [19,25]. In this
case, an alternative approach has been proposed in [26], based on the linear relationship
between macroscopic stress and the discontinuity of local displacements across the crack.
This approach will be explored in the present study, together with an approximation
method assuming that the effective behaviour of the material can be represented by a set
of Burgers models. This efficient method provides an analytical solution of the model
equations in simplified forms, making inversion calculations analytically achievable. One
key advantage is that their parameters can be directly expressed as a function of the
parameters of the viscoelastic models describing the sound material and the crack density
parameter characterizing the cracking state. This differs from more classical approaches
based on the application of homogenization schemes in the LC space, which generally
requires a numerical inversion to characterize the model in the time space. The analytical
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results will be compared to finite element simulations obtained using 3D samples generated
with disc-shaped voids of zero thickness, thus mimicking very accurately the behaviour
of micro-cracked materials. In this context, the material’s behaviour will be analysed by
considering relevant cases of crack orientations including randomly oriented cracks as well
as a parallel crack distribution in an isotropic medium.

2. Viscoelastic Burgers Model

The majority of bedrock masses, when subjected to a permanent stress, exhibit to
some degree a deferred behaviour, which is expressed by an increase in strain under con-
stant loading. This phenomenon indicates that a complete description of the constitutive
behaviour of a rock mass must assume time-dependence. A rigorous approach is to use vis-
coelastic or viscoplastic behaviour laws to describe the evolution of the creep phenomenon
for geomaterials [4,27,28]. In analysing the behaviour of the Callovo-Oxfordian claystone,
the effect of delayed long-term response of the material must be taken into account to ensure
an accurate representation of the COx claystone [29]. In this context, we focus mainly on
non-ageing linear viscoelastic models, which allow establishing a linear relation between
the stress and strain in the Laplace–Carson space using the correspondence principle. The
development of the Burgers model equations provides an efficient representation of the
material’s short- and long-term behaviour, while requiring a limited number of parameters.
It is intended to use this model to represent the behaviour of the COx claystone. The indices
M and K designate, respectively, the Maxwell and Kelvin parts of the model, while expo-
nents s and d are attributed to the spherical and deviatoric parts of the model (Figure 1).
Moreover, we propose to use two different Burgers models to describe independently the
shear and bulk moduli denoted by µ and k, respectively.

1
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1
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+

1

pηs
M
3

+
1

kK + pηs
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Equation (1) expresses the effective compressibility and shear moduli in Laplace–Carson
space, denoted by k∗ and µ∗, respectively, where p is the LC variable. The eight parameters
of the Burgers model can be distinguished in Equation (1). The Maxwell part is represented
by four parameters, including spherical components (kM,ηs

M) and deviatoric components
(µM,ηd

M). Additionally, the Kelvin part of the model is also composed of four parameters,
with (kK,ηs

K) describing the spherical parameters and (µK,ηd
K) representing the deviatoric

components. The parameters of the Burgers models are identified through an analytical
resolution of the strain under constant stress loading, followed by comparisons with
experimental creep testing results. Armand et al. [30] have published a series of creep tests
widely used in the literature to characterize this phenomenon. Cores of COx were extracted
from the Meuse/Haute-Marne underground research laboratory, and the samples were
drilled perpendicular to the bedding plane of the rock, as the COx claystone naturally
exhibits a transversely isotropic behaviour. These tests include different series of loadings
and have been designed to examine the deferred behaviour of the material for different
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loading conditions. The applied loadings are a function of the maximum deviatoric stress
that the material can withstand. The argillite is considered anisotropic, and therefore,
its properties change as a function of the imposed loading with respect to the bedding
plane. Here, for conformity, the solid material will be considered isotropic, meaning that
the elastic moduli do not vary with respect to the bedding plane. The model parameters
have been identified under loading conditions corresponding to 75% of the maximum
deviatoric stress.

The use of numerical models with a number of parameters can render the precise
identification of each parameter from a single experimental test complex. Although some
simplifications can be achieved at the limits as time tends to zero or infinity, it remains
difficult to identify each parameter individually. Consequently, optimization methods were
employed to refine the model parameters. The least-squares method is used to optimize
the Burgers model parameters using standard Python libraries (Figure 2). The normal and
tangential components of the strain tensor (εnn and εtt , respectively) in the time space are
identified by calculating the inverse of the Carson–Laplace transform of:

ε∗ =
1 + ν∗

E∗ σ∗ − ν∗

E∗ tr(σ∗)I (2)

where the superscript * stands for a quantity expressed in the LC space. The normal and
tangential strain components due to the application of a uniaxial constant stress σ0 can be
deduced in LC space from Equation (2):

ε∗nn =
σ0

E∗ and ε∗tt =
−σ0ν∗

E∗ (3)
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This expression involves the eight parameters of the Burgers model and the time.
Overall, the proposed model provides an acceptable representation of the argillite’s

behaviour in both the short and long term, see Figure 2 for the comparison between
experimental and numerical results of a creep test. The characteristic parameters of the
Burgers model are summarized in Table 1.
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Table 1. Identified viscoelastic parameters of the COx claystone.

Parts k (GPa) µ (GPa) ηs (GPa.s) ηd (GPa.s)

Maxwell 6.872 3.870 35.381·107 12.463·107

Kelvin 7.308 3.099 26.364·106 4.020·106

3. Representation of Cracking in a Viscoelastic Material

In this work, we make use of the approach proposed in [6,26,31,32] for considering
the presence of cracks, which is not directly based on Eshelby’s classical approach [24],
although is very close. The interested reader is invited to refer to the cited papers for more
details that would be too lengthy to include here.

3.1. Isotropic Crack Distribution

Considering an isotropic distribution of cracks in a solid matrix (Figure 3), where
cracks are characterized by the crack density parameter ϵ in which N is the number of
cracks per unit volume of REV (Representative Elementary Volume) and a is the crack
radius, assuming an identical circular shape and a uniform size for all cracks (Equation (5)).

ϵ = Na3 (5)
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The apparent effective stiffness tensor in the Laplace–Carson space defined by Chom∗

is therefore isotropic, expressed in the (J,K) basis in Equation (6). The tensors J and K
are, respectively, the projectors of the spherical and deviatoric parts of the fourth-order
unit tensor.

Chom∗
= 3khom∗J+ 2µhom∗K (6)

The homogenized moduli khom∗
and µhom∗

are calculated as a function of the crack
density parameter ϵ, taking into account two distinct loading conditions: spherical loading,
which is used to determine the compressibility modulus, and deviatoric loading, which is
used to determine the shear modulus. A homogenized stiffness matrix is then constructed
in the LC space, reflecting the material cracking conditions [26].

1
khom∗ =

1
k∗

+
8ϵ

3
(1 − ν∗)

µ∗ (7)

1
µhom∗ =

1
µ∗ +

32ϵ

µ∗
(1 − ν∗)(5 − ν∗)

45(2 − ν∗)
(8)

To simplify, here, the homogenized material behaviour in the LC space is studied by
considering a general analogy with a homogenized macroscopic Burgers model, i.e., we
assume that the behaviour of the homogenized material can be approached by Burgers
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models. This makes it possible to identify the homogenized modules khom∗
and µhom∗

in
the LC space using a simplified form:

1
khom∗ =

1
kM(ϵ)

+
1

pηs
M(ϵ)/3

+
1

kK(ϵ) + pηs
K(ϵ)/3

(9)

1
µhom∗ =

1
µM(ϵ)

+
1

pηd
M(ϵ)/2

+
1

µK(ϵ) + pηd
K(ϵ)/2

(10)

This maintains the same structure of the Burgers model formulated in Equation (1).
Proceeding with a Taylor expansion of the expressions of the moduli with respect to the
variable p in the Carson space in the vicinity of 0 and infinity, the eight parameters of the
Burgers models can be identified as a function of the crack density parameter (Figure 4). A
correlation of the parameters as a function of crack density (Equation (5)) is established,
as illustrated in Figure 4. In summary, this approach provides an alternative method for
characterizing the behaviour of a micro-cracked material in the Laplace–Carson space [6].

Modelling 2024, 5, FOR PEER REVIEW 6 
 

 

1µ௛௢௠∗ =  1µ∗ + 32𝜖µ∗  (1 − 𝜈∗)(5 − 𝜈∗)45(2 − 𝜈∗)   (8)

To simplify, here, the homogenized material behaviour in the LC space is studied by 
considering a general analogy with a homogenized macroscopic Burgers model, i.e., we 
assume that the behaviour of the homogenized material can be approached by Burgers 
models. This makes it possible to identify the homogenized modules 𝑘௛௢௠∗ and µ௛௢௠∗  
in the LC space using a simplified form: 1𝑘௛௢௠∗ = 1𝑘ெ(𝜖) + 1𝑝 ղெ௦ (𝜖) 3⁄ + 1𝑘௄(𝜖) + 𝑝 ղ௄௦ (𝜖) 3⁄  (9)
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Determining the parameter equations as a function of crack density for a macroscop-
ically cracked material of the Burgers type enables a straightforward formulation of the
homogenized moduli that define this problem. This approach can provide an explicit formu-
lation of the effective Burgers model equations in the time space as a function of the param-
eters of the undisturbed material and the crack density parameter (Equations (9) and (10)).
This significantly reduces the complexity of the calculation of the modules in the time space
as it avoids the direct application of the inverse of the Laplace–Carson transform on such
equations. This in turn leads to the development of straightforward analytical solutions,
offering results comparable to those obtained by alternative numerical approaches such as
the finite element method [19] or the FFT approach, which also enable an analysis of the
effective moduli on microstructures [7,33].

3.2. Parallel Crack Distribution

In this section, the effect of a random distribution of parallel cracks in a linear viscoelas-
tic material, as described in the previous sections, will be discussed. In this case, a trans-
versely isotropic behaviour is obtained (Figure 5). In this context, it is convenient to work
with the expression of the material compliance tensor in LC space S∗(p) (Equation (11)),
which is the inverse of the stiffness tensor using the Walpole basis [34]. Using the Walpole
basis simplifies the expression of the viscoelastic compliance tensor in the case of anisotropy,
making the analysis of modules affected by the fracturing more convenient.

S∗(p) =
6

∑
i=1

s∗i (p)Ei (11)
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with
s∗1(p) = 1+ν∗

2µ∗(1+ν∗) ; s∗2(p) = 1
2µ∗(1+ν∗) ; s∗3(p) = 1

2µ∗

s∗4(p) = 1
2µ∗ ; s∗5(p) = s∗6(p) = − ν∗

2µ∗(1+ν∗)

(12)
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By decomposing the compliance tensor in the Walpole basis (Equation (11)), we obtain
six scalars with indices i ranging from 1 to 6 denoted s∗i (p). The tensors Ei are defined in
accordance with the specifications given in the Walpole basis [34]. Equation (12) describes
the expressions of the scalars s∗i (p) in the Laplace–Carson space. Note that the directions
(e1, e2, e3), respectively, correspond to the conventional directions in a Cartesian coordinate
system (x, y, z). n is the direction normal to the fractures along e1 (Figure 5).

As demonstrated, e.g., in [26], the calculations highlight that for a transversely isotropic
medium, some of the modules are not influenced by the cracking state of the material. This
observation has been confirmed in an analysis of a linear elastic behaviour case, where
only the Young’s modulus perpendicular to the bedding plane and the shear coefficients
were affected by the cracking [35]. Following the notation for the scalar indices in the
Walpole’s basis, the expression for the moduli shom∗

2 and shom∗
4 as a function of the cracking

density yields:

shom∗
2 = se

M2(ϵ) +
1
p

sv
M2(ϵ) +

(
se

K2(ϵ)
−1 + psv

K2(ϵ)
−1

)−1
(13)

shom∗
4 = se

M4(ϵ) +
1
p

sv
M4(ϵ) +

(
se

K4(ϵ)
−1 + psv

K4(ϵ)
−1

)−1
(14)

provided that shom∗
2 and shom∗

4 are the two moduli affected by the cracking [26]. The ex-
ponents e and v are attributed to the elastic and viscous parts, respectively. The model
parameters are determined based on the assumption that the macroscopic model is es-
sentially of the Burgers type, allowing the parameters to be identified with simplified
analytical expressions, analogous to the isotropic case discussed in the previous section.
The determination of shom∗

2 is obtained by imposing a uniaxial tensile load along the normal
to the cracks, while that of shom∗

4 requires a shear loading in the form σ (e2 ⊗ n + n ⊗ e2),
e.g., with σ = 1 MPa. As the other modules will not be affected by the cracks, it is
possible to attribute to them the modules of the undisturbed material without requiring
further calculations.

The same identification technique as for the isotropic case was used, considering that
the homogenized behaviour of the cracked material corresponds to a macroscopic Burgers
model, while accounting for the crack density parameter. Conserving the same structure of
the Burgers model formulation, it is possible to define a correlation of the eight coefficients
in Equations (13) and (14) as a function of crack density (Equation (5)), as shown in Figure 6.
The moduli affected by cracking in a Cartesian coordinate system, such as Ehom

1 and µhom
12 ,

can be determined from calculations in the Walpole basis as a function of the coefficients
shom

2 and shom
4 [34]. As mentioned above, investigating the transversely isotropic case is

representative of the in situ behaviour of the fractured COx claystone, since in reality,
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fracture formation in parts of the damaged zone is produced with a preferential orientation
parallel to the excavated drifts [2]. A more in-depth analysis of the analytical results is
carried out by comparing the results with the numerical simulations obtained with the
Cast3M finite element code.
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4. Numerical Simulations
4.1. Three-Dimensional Microstructures and Meshes

The Burgers model is implemented in the Mfront (https://tfel.sourceforge.net/gallery.
html (accessed on 2 February 2022)) library, offering several advantages and convenient
access for Cast3M users. Mfront is a code generator that enables convenient implementation
of behavioural laws, which can be efficiently linked to Cast3M to perform finite element
calculations [36]. The parameters of the Burgers model have been calibrated in the previous
section. A simple uniaxial creep test with a loading of Σ11 = 1 MPa is performed to
verify the perfect agreement between analytical and numerical results for the case where a
homogeneous isotropic material is portrayed (Figure 7).
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Figure 7. Cast3M verification of the conformity between the implemented Burgers model and the
analytical results, obtained following a creep test using the undisturbed material.

The 3D sample generation procedure is based on a random distribution of inclusions
of prescribed shape and size in a box [37,38]. Disc-shaped cracks of zero thickness were
introduced as they are suitable for direct comparisons with analytical results [7,39,40]. From
this viewpoint, this generation procedure constitutes an improvement with respect to the
previous method in which the inclusions are constituted of volume inclusions of non-zero
thickness [19]. The geometry of the REV is periodic, which implies that periodic boundary
conditions can be applied. The 3D meshes with tetrahedral elements were generated

https://tfel.sourceforge.net/gallery.html
https://tfel.sourceforge.net/gallery.html


Modelling 2024, 5 633

according to the selected periodic geometries using automatic software connected to Salome
(https://www.salome-platform.org (accessed on 8 February 2022)) (Figure 8). In this study,
we use the MG-CADSurf algorithm since it allows us to generate periodic meshes. A mesh
refinement is imposed systematically on the surfaces of the cracks by increasing the density
of elements to improve the quality of the simulation results. The technique employed to
create the cracks is intended to be used with specific interface elements of zero thickness,
i.e., double nodes are created at each point of the crack mesh. Here, as the cracks are void,
no interface elements are introduced, allowing us to drastically reduce the calculation time
at the REV scale [7,40].
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Figure 8. Microstructure meshes generation in Salome with a crack density equal to 0.1 with 100 cracks
distributed in the solid matrix (ratio of crack radius to cube side length is 20/200), considering a
parallel crack distribution (left) and an isotropic crack distribution (right) in the REV.

A series of test cases were examined featuring an increasing range of crack density
parameters, and comparisons were subsequently conducted with analytical results. Starting
with relatively low crack density parameters, the four crack density parameters investigated
are 0.05, 0.1, 0.15 and 0.2. A progressively increasing number of cracks has been used in
order to keep a constant size of the micro-cracks in the REV. Thus, for the corresponding
testing cases, the number of cracks used is 50, 100, 150 and 200, respectively. This is
applicable to both isotropic and transversely isotropic cases. In order to achieve a consistent
isotropic behaviour of the microstructure, the “Fibonacci sphere” method is used, defining
a uniform distribution of points on a sphere [41]. The number of these points is equivalent
to the number of cracks considered, and the uniformly distributed points on the sphere
serve to define the crack orientations in the microstructure (Figure 9). The placement of the
cracks, however, remains completely random in all considered cases.
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Sufficient numbers of micro-cracks must be included in the solid matrix to ensure a
good representativeness, which is why a comprehensive study must be carried out prior to
calculations to minimize errors attributable to the REV generation.

The analysis of Figure 10 demonstrates that the microstructures generated are fairly
representative, and with minimized deviations, based on the calculation of the effective
Young’s modulus as a function of time, whereas the number of cracks involved is varied
from 100 to 200 cracks, while the crack density parameter is constant at 0.2. An exponential
evolution of the time steps was considered, using 100 time steps in total, ensuring a high
concentration of time steps at the early stages of the calculation where there is the greatest
variation in the material’s behaviour. The loading applied is a stress of σ = 1 MPa with
Σ = σ e1 ⊗ e1, constant with time. Simulations last around 2 h on average in these cases.
The number of elements in the meshes in each case majorly affects the simulation time. A
mesh convergence study must be carried out to ensure that a sufficient number of mesh
elements are used to guarantee optimized results with minimized deviations. In this case,
convergence is achieved with a relatively low error of no more than 1% in cases where the
number of tetrahedral mesh elements averages 1.5 million. This is shown by calculating the
homogenized Young and shear modulus considering microstructures with an increasing
number of elements. Consequently, increasing the number of elements beyond this level
has no significant effect on the investigated mechanical properties. The calculations are
illustrated for the last time step of 100 days (Tables 2 and 3), with periodic boundary
conditions and the material subjected to a constant stress of σ = 1 MPa. Two simulations
are required to calculate the effective properties: one with Σ = σ e1 ⊗ e1 for the calculation
of the homogenized Young’s modulus, and the second one with Σ = σ (e1 ⊗ e2 + e2 ⊗ e1)
to determine the homogenized shear modulus. For all subsequent simulations, a mesh
size of around 1.5 million elements was used. It is important to note that the number of
elements is strongly related to the number of cracks, and technically to the crack density,
given that the mesh refinement is imposed to accurately describe the cracks.

Modelling 2024, 5, FOR PEER REVIEW 11 
 

 

 
Figure 10. Evaluation of REV representativity by varying the number of cracks distributed in the 
microstructure while keeping a constant crack density  ϵ = 0.2. The effective Young’s modulus in 
the direction normal to the cracking plane for the transverse isotropic case is calculated (left) as well 
as the effective Young’s modulus for the isotropic case (right), and periodic stress boundary condi-
tions were applied. 

Table 2. Mesh convergence study considering an isotropic behaviour: computation of the homoge-
nized Young’s modulus and shear modulus. The relative error with respect to the last column is 
given in parentheses. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 
Number of mesh elements 0.614 M 1.115 M 1.602 M 2.55 M 𝐸௛௢௠ (GPa) 2.9877 (2.45%) 2.8543 (1.78%) 𝟐. 𝟖𝟗𝟒1 (0.41%) 2.9063  𝜇௛௢௠ (GPa) 1.2299 (4.39%) 1.2066 (2.41%) 𝟏. 𝟏𝟓𝟕𝟖 (1.71%) 1.1781 

Table 3. Mesh convergence study considering a transversely isotropic behaviour: computation of 
the effective out-of-plane Young’s modulus 𝐸ଵ௛௢௠ and shear modulus  𝜇ଵଶ௛௢௠. The relative error with 
respect to the reference case (last column) is calculated. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 
Number of mesh elements 0.675 M 0.919 M 1.88 M 2.88 M 𝐸ଵ௛௢௠ (GPa) 1.3627 (6.71%) 1.4053 (3.79%) 𝟏. 𝟒𝟒𝟗𝟑 (0.78%) 1.4607  𝜇ଵଶ௛௢௠ (GPa) 0.8918 (2.27%) 0.9054 (0.77%) 𝟎. 𝟗𝟎𝟖𝟗 (0.38%) 0.9125 

The specific nature of imposed boundary conditions can also influence the numerical 
results, and in this case, three boundary conditions were tested: uniform displacement 
boundary conditions (KUBCs), uniform stress boundary conditions (SUBCs) and finally 
periodic boundary conditions (PBCs). Modules are calculated by applying a constant load 
of stress equal to 1 MPa, and the full load is applied from the very first time step. As ex-
pected, the calculation results reported in Figure 11 show that the most rigid response is 
obtained when imposing uniform displacement boundary conditions, while the softest 
response is obtained when imposing homogeneous stress boundary conditions. Consid-
ering that periodic boundary conditions yield an intermediate response both when testing 
the isotropic and transversely isotropic material, one assumes that they provide the most 
accurate results, and they will be used as a reference for comparison with analytical re-
sults. 
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microstructure while keeping a constant crack density ϵ = 0.2. The effective Young’s modulus in the
direction normal to the cracking plane for the transverse isotropic case is calculated (left) as well as
the effective Young’s modulus for the isotropic case (right), and periodic stress boundary conditions
were applied.

Table 2. Mesh convergence study considering an isotropic behaviour: computation of the homog-
enized Young’s modulus and shear modulus. The relative error with respect to the last column is
given in parentheses.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Number of mesh elements 0.614 M 1.115 M 1.602 M 2.55 M

Ehom (GPa) 2.9877 (2.45%) 2.8543 (1.78%) 2.8941 (0.41%) 2.9063
µhom (GPa) 1.2299 (4.39%) 1.2066 (2.41%) 1.1578 (1.71%) 1.1781
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Table 3. Mesh convergence study considering a transversely isotropic behaviour: computation of
the effective out-of-plane Young’s modulus Ehom

1 and shear modulus µhom
12 . The relative error with

respect to the reference case (last column) is calculated.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Number of mesh elements 0.675 M 0.919 M 1.88 M 2.88 M

Ehom
1 (GPa) 1.3627 (6.71%) 1.4053 (3.79%) 1.4493 (0.78%) 1.4607

µhom
12 (GPa) 0.8918 (2.27%) 0.9054 (0.77%) 0.9089 (0.38%) 0.9125

The specific nature of imposed boundary conditions can also influence the numerical
results, and in this case, three boundary conditions were tested: uniform displacement
boundary conditions (KUBCs), uniform stress boundary conditions (SUBCs) and finally
periodic boundary conditions (PBCs). Modules are calculated by applying a constant load
of stress equal to 1 MPa, and the full load is applied from the very first time step. As
expected, the calculation results reported in Figure 11 show that the most rigid response
is obtained when imposing uniform displacement boundary conditions, while the softest
response is obtained when imposing homogeneous stress boundary conditions. Consider-
ing that periodic boundary conditions yield an intermediate response both when testing
the isotropic and transversely isotropic material, one assumes that they provide the most
accurate results, and they will be used as a reference for comparison with analytical results.
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Figure 11. Effects of the applied boundary conditions KUBCs, SUBCs and PBCs on the calculated
homogenized Young’s modulus (a) and shear modulus (b) for the isotropic medium, and on the
Young’s modulus in the direction normal to the crack (c) and the effective shear modulus (d) for the
transverse isotropic case, as a function of time.

4.2. Transversely Isotropic Case Results

Starting with the transversely isotropic medium and applying periodic stress boundary
conditions, a uniaxial creep test is carried out under constant normal stress Σ11 = 1 MPa.
The time step intervals are identical to the ones defined in Section 4.1. At t = 0, the initial
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conditions correspond to the REV assumed at rest and without any loading. At t = 0+,
the full loading is applied. Again, the size of REV meshes is around 1.5 million elements,
consistent with the mesh convergence study presented in Section 4.1. Comparisons are
subsequently conducted between numerical and analytical methods through the calculation
of homogenized moduli and the determination of the normal strain as a function of time.
In the present case, the moduli affected by cracking are Young’s modulus E11 and shear
modulus µ12 = µ13, considering the case of parallel cracks where the Ox axis is the direction
perpendicular to the corresponding fracture plane in a Cartesian reference coordinate
system. The normal strain is calculated as a function of time for the considered crack density
parameter (Figure 12). The effective moduli are determined from two separate simulations:
the first involving an axial loading at constant stress Σ11 = 1 MPa to calculate the effective
Young’s modulus, and the second requiring a deviatoric loading at Σ12 = 1 MPa to assess
the effective shear modulus (Figure 12). The analytical approach, however, involves
calculating the inverse of the Laplace transform, and thus returning to temporal space.
The inverse of the Laplace–Carson transform can be derived directly from the simplified
expressions outlined in the previous sections, since it follows a classical form of the Laplace
transform, which can be analytically computed. The analytical results are deduced from the
equations presented in Section 3.2. For the transverse isotropic case, homogenized moduli
are calculated using Walpole’s basis (Equations (13) and (14)), which is subsequently used
to determine the Young’s modulus and the homogenized shear modulus.
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equal to 50. The strain under constant stress loading is calculated (a) as well as the homogenized
moduli affected by the cracking for the transverse isotropic medium (b,c).

Initial results show that for the relatively low crack density parameter equal to 0.05,
whereby the material still retains a large proportion of its mechanical strength, the numerical
and analytical approaches produce very similar results for this case (Figure 12). However,
upon investigating the cases with a greater crack density parameter, the numerical results
gradually start to deviate from the analytical estimations for the transverse isotropic case,
as shown in Figure 13, which depicts the evolution of the creep strain as a function of time
for crack density parameters of 0.1, 0.15 and 0.2.

In the final case, where the crack density parameter is equal to 0.2, it becomes clear
that the numerical results are no longer comparable with the analytical ones (Figure 13c).
In this situation, a different and more appropriate analytical technique is required since the
previously described analytical method is only suitable for low crack density parameters.
In this regard, previous studies have demonstrated that, in the case of parallel cracks
within a linear elastic framework, the differential scheme gives very good results when
compared to numerical calculations using the finite element method [35]. This aspect will
be investigated in a future contribution.
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Figure 13. Creep strain calculation featuring numerical–analytical comparisons with an increasing
crack density of 0.1 (a), 0.15 (b) and 0.2 (c).

4.3. Isotropic Case Results

We analyse in this section the creep response of the material when the cracks are
randomly oriented, assuming periodic stress boundary conditions. Identical simulation
conditions in this section are used to determine the properties of an isotropic medium where
the only difference relative to the transverse isotropic case presented in Section 4.1 lies in
the definition of crack orientations. The first test is based on an REV with a defined crack
density parameter of 0.05 (Figure 14), and the numerical results in terms of normal strain
and effective moduli evolutions show good agreement with the analytical ones, similarly
to the transverse isotropic results. The analytical solution was obtained using the simpli-
fied equations for homogenized moduli in Laplace–Carson space (Equations (9) and (10)),
enabling direct calculation of the homogenized Young’s modulus and shear modulus in
real time space. The normal strain εnn is calculated as a function of the Young’s modulus
Ehom and the applied constant stress σ = 1 MPa in LC space (Equation (3)).
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shear modulus (c) for an isotropically cracked medium.

For the remaining analyses performed with crack density parameters equal to 0.1, 0.15
and 0.2, the results show that there is a better agreement between the analytical results and
the numerical ones than for the transverse isotropic case (Figure 15). Therefore, it can be
concluded that the validity domain of the analytical approach for this particular case of
isotropic behaviour is extended to include more significantly damaged cases.

Additional investigations were carried out with crack density parameters of 0.3 and 0.4
(Figure 16) for confirming the conclusion of the previous analysis. As shown in Figure 16,
the results were consistently similar, maintaining a relatively good agreement between
the analytical and numerical approaches even for higher crack density parameters. Con-
sequently, the validity of the analytical solution can be considered as reasonable up to
a crack density parameter reaching 0.3–0.4. This is an important conclusion since the
reliable analytical solution can be used with confidence to perform structure simulations,
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thus benefiting from a significant reduction in computational time. The application of
this analytical approach within the framework of investigating the behaviour of damaged
claystone can be advantageous for a simplified isotropic representation. As mentioned, this
applies primarily to situations where cracks are assumed to have a random orientation in
some areas of the damaged zone.
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5. Discussion

This research suggests an analysis of micro-cracked viscoelastic materials by compar-
ing a numerical approach based on the finite element method and an analytical simplified
approach. This analytical approach consists in approximating the effective moduli of the
material in the Laplace–Carson space by Burgers models, thereby providing analytical
solutions that can be directly compared with the numerical calculations. One key advantage
is that the parameters of these approximated Burgers models can be calculated as a function
of the parameters of the linear viscoelastic models defining the behaviour of the sound
material and the crack density parameter. This makes the approach adapted for structure
simulations as the models can be implemented as a classical behaviour law. The presented
results include uniaxial creep tests, involving the calculation of normal strain as well as the
evaluation of homogenized moduli affected by the cracking. The analysis for the transverse
isotropic medium shows that the analytical approach only seems satisfactory for crack
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density parameters below around 0.1–0.15. For higher values, the numerical calculations
diverge significantly from the analytical results. It is envisaged to investigate the use
of more adapted analytical approaches for this case of parallel cracks such as methods
deriving from the differential scheme, as it has previously proven to be valid in a linear
elastic context [35].

In the case of an isotropic crack distribution, the analytical results were consistently
closer to the numerical ones, including in the case of a crack density parameter up to 0.4. In
that case, although the material is considered severely damaged, the analytical calculations
were still in line with the numerical results, proving the validity of this method in the
specific case of randomly oriented cracks in an isotropic medium.

Numerical approaches can be used to increase the crack density parameter to val-
ues greater than 1, which opens up possibilities for investigating phenomena occurring
in severely damaged materials. As crack density increases, interactions between cracks
inevitably intensify, creating microstructures highly dense in fractures. This can lead to
the formation of preferential cracking paths, particularly in the case of randomly oriented
cracks, generating a percolation phenomenon that is particularly interesting to explore. It
would also be pertinent to consider irregular crack shapes to achieve an accurate representa-
tion of cracks in reality. Numerical approaches provide a means of studying more complex
crack geometries, which can be compared with the conventional example of penny-shaped
cracks. Overall, this study highlights the importance of combining analytical and numerical
approaches to fully understand the behaviour of cracked materials, taking into account the
respective limitations of each method and exploiting the results to obtain a more accurate
and representative model.

6. Conclusions

In this study, the combined application of numerical and analytical approaches was
explored in order to characterize the behaviour of the cracked viscoelastic COx claystone.
This approach features a concrete application for representing the argillite in the context of
the Cigéo project devoted to the storage of nuclear waste. Indeed, cracking of the host rock
results from the excavation of the tunnels at 500m below ground level. Given the significant
creep properties of the claystone, it is essential to account for both cracking and creep of
the material. For simplification purposes, a linear viscoelastic behaviour has been adopted,
which allows the application of the Laplace–Carson transform. This reduces the problem to
a linear elastic behaviour in the Carson space, greatly simplifying the equations to provide
straightforward analytical solutions. The Burgers model is selected as the viscoelastic
model as it is capable, with a minimum number of parameters, of providing an appropriate
representation of the behaviour of the undamaged COx claystone.

In addition, two different cases were investigated, one involving an isotropic distri-
bution of cracks in the solid matrix, resulting in an isotropic behaviour, and the second
featuring a parallel distribution of cracks, resulting in a transversely isotropic behaviour of
the material. A simplified approach was used to calculate the homogenized moduli, assum-
ing that the macroscopic behaviour of the damaged material conforms to a Burgers model.
This approach makes the identification of the model parameters feasible as a function of
the parameters of the sound material and the crack density parameter, using simplified
analytical expressions. While examining the transversely isotropic case, increasing the
crack density parameter induces a progressive divergence in the approaches, and the
analytical and numerical solutions are no longer fully comparable for parameters greater
than 0.1–0.15. Advanced numerical studies can be pursued by investigating the material’s
behaviour at crack densities greater than 0.2. The objective is to represent the behaviour of
a severely damaged material, particularly in the context of describing the damaged zone
behaviour for applications associated with the Cigéo project. With this background, two
different cases of crack orientations are examined, consistent with in situ observations of
the damaged zone. The first case involves a parallel crack distribution with a preferential
orientation, while the second features randomly oriented cracks in an isotropic matrix.
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Ultimately, further testing with an isotropic medium showed that the analytical solu-
tion gives fairly good results even for relatively high crack density parameters, as shown
when comparing it with the numerical results. Potentially, time-consuming calculations
of complex microstructures using the finite element method can be replaced by analytical
solutions, as they have been proven to provide very similar results in certain conditions.
Furthermore, this approach would provide basic solutions for multi-scale applications,
in order to obtain the macroscopic response of a cracked material. Further investigations
would involve examining different crack geometries, given that the crack shape can in-
fluence the calculations of the effective properties of the material. Alternatively, different
analytical approaches can be explored, particularly in the case of aligned cracks exhibiting
a transverse isotropic behaviour. This could involve the use of homogenization schemes
that could produce results more consistent with the numerical ones. The application of the
differential scheme would be relevant, given its proven validity in the case of a transversely
isotropic medium in a linear elastic framework [19]. The application of this approach with
the differential scheme in a linear viscoelastic context is currently being investigated and
will be discussed in a forthcoming contribution.
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