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A Semi-Explicit Algorithm for Parameters Estimation in a
Time-Fractional Dual-Phase-Lag Heat Conduction Model
Stanislav Yu. Lukashchuk

Department of High Performance Computing Technologies and Systems, Ufa University of Science and
Technology, 12 K. Marx Str., Ufa 450008, Russia; lsu@ugatu.su

Abstract: This paper presents a new semi-explicit algorithm for parameters estimation in a time-
fractional generalization of a dual-phase-lag heat conduction model with Caputo fractional deriva-
tives. It is shown that this model can be derived from a general linear constitutive relation for
the heat transfer by conduction when the heat conduction relaxation kernel contains the Mittag–
Leffler function. The model can be used to describe heat conduction phenomena in a material with
power-law memory. The proposed algorithm of parameters estimation is based on the time integral
characteristics method. The explicit representations of the thermal diffusivity and the fractional
analogues of the thermal relaxation time and the thermal retardation are obtained via a Laplace
transform of the temperature field and utilized in the algorithm. An implicit relation is derived for
the order of fractional differentiation. In the algorithm, this relation is resolved numerically. An
example illustrates the proposed technique.

Keywords: non-Fourier heat conduction model; Caputo fractional derivative; inverse problem;
parameters estimation; time integral characteristic

1. Introduction

Fourier’s law is a fundamental phenomenological relation in heat transfer theory that
describes heat conduction in solids and fluids. However, it is not applicable for modelling
the heat transfer in ultrafast processes (e.g., during laser heating and cooling [1]), on
micro/nanoscales (e.g., heating of carbon nanotubes [2]), and in some complex media
(e.g., heat conduction in biological tissues [3] and materials with a non-homogeneous inner
structure [4]). For this reason, various linear and nonlinear generalizations of Fourier’s
law have been proposed by many researchers over the past two centuries. Historically, the
first one is the Maxwell–Cattaneo–Vernotte (MCV) heat conduction model [5,6]. It contains
an additional differential term to describe thermal relaxation processes. This model leads
to the hyperbolic heat conduction equation and overcomes the problem of infinite heat
propagation speed in Fourier’s law. A more common non-Fourier heat conduction model
with a time delay in the heat flux is the single-phase-lag (SPL) model [7,8]. Note that the
MCV model can be considered as a linearisation of the SPL model with respect to the
relaxation time. A further extension of the SPL model was developed by Tzou [9], who
introduced an additional phase lag associated with the temperature gradient. This model
is known as the dual-phase-lag (DPL) heat conduction model and permits one to take
into account the microstructural effects during ultrafast heat transfer in a macroscopic
formulation. Recently, time-fractional heat conduction has become a new branch of the
heat transfer theory. Time-fractional models allow us to take into account memory thermal
effects in a material by incorporating time derivatives of fractional orders [10,11] (usually,
in the Caputo sense [11]) into the thermal constitutive relation. Povstenko [12] and Jiang
and Xu [13] proposed a time-fractional generalization of Fourier’s law and studied the
corresponding fractional heat equation in different coordinate systems. Several time-
fractional generalizations of the MCV and SPL models were considered in [14–16], and
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time-fractional extensions of the DPL model were presented in [17,18]. More detailed
reviews of the non-Fourier heat conduction models can be found in [19–25].

Thermal conductivity is a unique property of a material in Fourier’s law, whereas
non-Fourier models usually include several material thermal properties. For example, the
frequently used dual-phase-lag (DPL) heat conduction model incorporates the thermal
conductivity, the thermal relaxation time, and the thermal retardation. As a result, the
possibility of using a non-Fourier model in real-world applications is based on an ability to
obtain the necessary thermal properties of a material. From a mathematical point of view,
the problem of parameters estimation can be considered as an inverse coefficient problem,
which is usually an ill-posed problem. Thus, the development of theoretical techniques
for the estimation of thermal properties in non-Fourier models is a challenging problem of
mathematical modelling in heat transfer theory.

There are two main paradigms in the field of thermal properties estimation, namely
the deterministic and stochastic approaches [26]. In the deterministic approach [27,28], the
result of parameters estimation is obtained as a single solution but is not supposed to be
exact. Usually, a deterministic technique reduces an inverse problem to an optimization
problem. In view of measurement errors, the residual principle and regularization methods
have to be used to obtain a stable solution [29–31]. However, deterministic methods
would be inappropriate when the number of parameters becomes quite large. In this case,
the stochastic approach [32] is more preferable. In this approach, an inverse problem is
considered in terms of probability in order to allow the uncertainty in measurements and
models. The Bayesian framework is an effective stochastic technique for solving inverse
problems in heat transfer [33].

The problems of parameters estimation for the MCV, SPL, and DPL models have
been studied by various researchers. Since these models are linear with respect to all
thermal parameters, the corresponding optimization problems arising during the solving
of inverse problems are similar to classical ones for Fourier’s model. Hence, the methods
of parameters estimation developed for the classical heat conduction equation are also
applicable for these models. For example, Kishore and Kumar [34] used the Levenberg–
Marquardt algorithm for the parameters estimation of the DPL model. Mochnacki and
Paruch [35] solved the problem of relaxation time identification in the MCV model by
using evolutionary optimization algorithms. Liu and Lin [36] and Strąkowska et al. [37]
applied Laplace transform together with different optimization methods to identify the
parameters of the DPL model. França and Orlande [38] studied the inverse parameter
estimation problem for the DPL heat conduction model by using the Markov chain Monte
Carlo method within the Bayesian framework.

In a time-fractional model, the orders of fractional differentiation are additional param-
eters that also have to be estimated. Since a time-fractional constitutive relation is nonlinear
with respect to such orders, the problem of parameters estimation also becomes nonlin-
ear. Ghazizadeh et al. [39], Yu et al. [40], and Mozafarifard et al. [41] solved the inverse
time-fractional SPL heat conduction problem using the nonlinear parameter estimation
technique based on the Levenberg–Marquardt method. Goudarzi et al. [42] solved a similar
problem by employing the conjugate gradient inverse method. Sobhani et al. [43] consid-
ered the variable-order time fractional DPL model and estimated the two lagging times by
using an inverse analysis based on the Levenberg–Marquardt algorithm. Qiao et al. [44]
proposed modified hybrid Nelder–Mead simplex search and particle swarm optimization
for parameters estimation in the time-fractional DPL model. Zheng et al. [45] used the
Bayesian method to construct an algorithm to estimate the four parameters of the time-
fractional DPL model. Note that all of the mentioned approaches are based on a numerical
solution of the corresponding direct problem.

The method of time integral characteristics (TICs) is an efficient technique for the
estimation of constant parameters in linear models. It was proposed by Shatalov [46] at the
end of the last century for solving the inverse coefficient problems of the heat conduction
theory. The method is based on integral transformation of the initial-boundary value
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problem for the considered linear model on the time variable and solving the corresponding
inverse coefficient problem in the transformed space. The absence of necessity to perform
the inverse integral transform is a main advantage of this method. Also, it does not use a
numerical solution of the direct problem. Later, this method was extended to classical and
time-fractional diffusion models [47–49].

In this study, we focus on solving the problem of parameters estimation in a time-
fractional generalization of the DPL heat conduction model by the TIC method. The
time-fractional dual-phase-lag (TFDPL) model was proposed by Xu and Jiang [17] to
interpret the experiment results for processed meat. The Caputo time-fractional derivatives
of two different orders are used in this model. The authors obtained an analytical solution
for the corresponding bioheat transfer equation and solved the inverse problem for the
estimation of model parameters by applying the nonlinear least-square method. The same
model was used in [50] for treating the thermoelastic response of skin subjected to sudden
temperature shock. In [51], a fundamental solution for the TFDPL heat conduction problem
was obtained. Also, a TFDPL model with a single order of fractional differentiation was
considered by several scholars. In [52], such a model was used for describing the heat
conduction in a multi-layered spherical medium with azimuthal symmetry. In [18], a
similar model with temperature jump boundary conditions was utilized for the numerical
simulation of heat transfer in transistors. Numerical schemes for solving several TFDPL
heat conduction problems was proposed in [53,54].

However, it is necessary to note that in all of the papers mentioned above the con-
sidered TFDPL models have been obtained from the classical DPL model by the formal
replacing of the integer order time derivatives by their fractional analogues. In this paper,
we overcome this weakness by proposing the derivation of the TFDPL model from a general
linear constitutive relation for heat transfer by conduction.

The paper is organized as follows. Section 2 contains a brief description of the time
integral characteristic method. Section 3 is devoted to the derivation of the TFDPL heat
conduction model and corresponding non-Fourier heat conduction equation. A proposed
semi-explicit algorithm for TFDPL model parameters estimation is described in Section 4.
An illustrative example of using this algorithm is presented in Section 5. Section 6 contains
the discussion of the obtained results and recommendations. Finally, Section 7 presents the
concluding remarks.

2. Preliminaries

This section gives a brief description of the TIC method. This method was proposed
for solving inverse problems of parameters estimation in linear evolution equations. Note
that it is applicable only for constant coefficient equations. Also, it is assumed that the
Laplace transform of the temperature field exists.

Let us illustrate the basic idea of the TIC method by a simple problem of the thermal
diffusivity estimation. We consider the heat equation:

∂T
∂t

= a
∂2T
∂x2 , t > 0, 0 < x < ∞. (1)

Here, x and t are spatial and temporal variables, respectively, T(x, t) is the temperature field,
and a is the thermal diffusivity. This equation is accompanied with the initial condition

T(x, 0) = 0, 0 < x < ∞, (2)

the boundary conditions

T(0, t) = T0(t), lim
x→∞

T(x, t) = 0, t > 0, (3)

and the additional internal condition
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T(l, t) = Tl(t), t > 0. (4)

Here, T0(t) and Tl(t) are known functions. Then, the inverse coefficient problem is stated as
follows: given the initial boundary value problem (1), (2), (3) and the additional condition
(4), find the constant thermal diffusivity, a.

The method of TIC is based on an integral transformation of the temperature field
with respect to time. The Laplace transform

T∗(x, p) ≡ L[T(x, t)](p) =
∫ ∞

0
e−ptT(x, t)dt (5)

can be efficiently used for this purpose. The function T∗
L (p) = T∗(L, p) is referred to as a

time integral characteristic of the temperature field T at the point x = L.
The initial boundary value problem (1), (2), (3) after Laplace transformation takes the form

aT∗′′(x, p)− pT∗(x, p) = 0, 0 < x < ∞, (6)

T∗(0, p) = T∗
0 (p), lim

x→∞
T∗(x, p) = 0, (7)

and (4) gives
T∗(l, p) = T∗

l (p). (8)

In (6), prime denotes differentiation with respect to x.
The solution of (6) and (7) is

T∗(x, p) = T∗
0 (p)e−λx, λ =

√
p
a

.

Then, by using (8), we find the following explicit representation of the thermal diffu-
sivity via TICs of the temperature field:

a =
pl2

ln2 φ(p)
, φ(p) =

T∗
l (p)

T∗
0 (p)

. (9)

A main advantage of the described technique is that there is no necessity to perform the
inverse Laplace transform. If the temperature functions T0(t) and Tl(t) are known exactly,
the representation (9) gives the exact value of a for all permitted values of p. However, in
practice such functions are usually measured in an experiment with some errors. Then,
the Laplace parameter p should be considered as a regularization parameter and its value
should be chosen in agreement with experimental errors. The explicit representation (9)
permits one to obtain a linear estimate of the relative error for the thermal diffusivity as
a function of p (see [46,48,49] for more details). The minimum of this function gives the
optimal value of p.

3. The Time-Fractional Dual-Phase-Lag Heat Equation

A TFDPL heat conduction model can be obtained similarly to the time-fractional Zener
model in the theory of linear fractional viscoelasticity [55].

To derive the model, we make the following assumptions.

Assumption 1. A heat transfer medium is homogeneous and isotropic.

Assumption 2. The temperature history affects the heat flux (the thermal memory exists).

Assumption 3. There is a linear relation between the heat flux and the temperature gradient
(thermal relaxation process is linear).
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Assumption 4. The heat conduction relaxation function r(t) is a differentiable, decreasing function
of time.

Assumption 5. The relaxation function r(t) has a power-law decay in time (the so-called “heavy tail”).

Assumption 6. The temperature gradient ∇T is a continuously differentiable function with respect
to time and space variables.

Under Assumptions 1–3, a general linear constitutive relation for heat transfer by
conduction in a medium is defined mathematically using a Riemann–Stieltjes integral as

q(t) =
∫ ∞

−∞
r(t − s)dg(s). (10)

Here, q(t) ≡ q(x, t) is the heat flux vector, g(t) ≡ g(x, t) = −∇T is the temperature
gradient, and r(t) is the heat conduction relaxation function, which does not depend on the
spatial coordinate x.

In accordance with the physical principle of causality, the relaxation function r(t) is
zero for negative time. Hence, the constitutive relation (10) takes the form

q(t) =
∫ t

−∞
r(t − s)dg(s). (11)

It is easy to see that this equation reduces to Fourier’s law, q = −k∇T if r(t) = k,
where k is the thermal conductivity, which is a constant in time. Here, we additionally used
the natural condition g(−∞) = 0, which means that the medium has finite total thermal
energy over all times.

Based on the above Assumptions 4 and 6, we can rewrite (11) in a more conve-
nient form:

q(t) =
∫ t

−∞
r(t − s)g′(s)ds. (12)

Let us now consider the case when the heat conduction relaxation function has the form

r(t) = r0 + r1Eα

(
− tα

τq

)
, α ∈ (0, 1), (13)

where r0, r1, τq are constants and

Eα(z) =
∞

∑
n=0

zn

Γ(αn + 1)
(14)

is the Mittag–Leffler function (see, e.g., [11]). Note that the function r(t) defined by (13) has
a power-law decay and therefore Assumption 5 is fulfilled. In the limiting case of α = 1,
we have E1(z) = ez and relation (13) gives the heat conduction relaxation function for the
classical DPL model.

The Mittag–Leffler function (14) has the known property

C
a Dα

t Eα[λ(t − a)α] = λEα[λ(t − a)α], a ∈ R, λ ∈ C, (15)

i.e., it is invariant with respect to the left-sided Caputo fractional derivative of order α. This
fractional derivative reads

(C
a Dα

t y)(t) ≡ (a I1−α
t y′)(t) =

1
Γ(1 − α)

∫ t

a

y′(s)
(t − s)α

ds, t > a, α ∈ (0, 1). (16)
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Here, a I1−α
t is the left-sided fractional integral operator of order 1 − α. Letting a = −∞ in

(16), we obtain the Caputo fractional operator C
−∞Dα

t for the whole axis R. Applying this
operator to both sides of (12), we get

( C
−∞Dα

t q)(t) = C
−∞Dα

t

(∫ t

−∞
r(t − s)g′(s)ds

)
= r(0)( C

−∞Dα
t g)(t) + −∞ I1−α

t

(∫ t

−∞
r′(t − s)g′(s)ds

)
= r(0)( C

−∞Dα
t g)(t) +

1
Γ(1 − α)

∫ t

−∞

1
(t − ξ)α

(∫ ξ

−∞
r′(ξ − s)g′(s)ds

)
dξ.

Note that the existence of integrals in this expression is a consequence of Assumptions 5 and 6.
Changing the order of integration in the last term of the above expression, we obtain

( C
−∞Dα

t q)(t) = r(0)( C
−∞Dα

t g)(t) +
1

Γ(1 − α)

∫ t

−∞
g′(s)

(∫ t

s

r′(ξ − s)
(t − ξ)α

dξ

)
ds

= r(0)( C
−∞Dα

t g)(t) +
∫ t

−∞
(C

s Dα
t r)(t − s)g′(s)ds. (17)

Substituting r(t) given by (13) into (17), and using (15), we have

( C
−∞Dα

t q)(t) = (r0 + r1)(
C

−∞Dα
t g)(t)− r1

τq

∫ t

−∞
Eα

(
− (t − s)α

τq

)
g′(s)ds. (18)

On the other hand, relation (12) with (13) takes the form

q(t) = r0g(t) + r1

∫ t

−∞
Eα

(
− (t − s)α

τq

)
g′(s)ds. (19)

It is easy to see that the integrals in the last terms of (18) and (19) coincide and therefore
can be excluded. As a result, we obtain the time-fractional constitutive relation

q + τq
C

−∞Dα
t q = r0g + τq(r0 + r1)(

C
−∞Dα

t g).

Using the definition of the function g, this relation can be written as

q + τq
C

−∞Dα
t q = −k

[
∇T + τT

C
−∞Dα

t (∇T)
]
. (20)

Here, k = r0 is the thermal conductivity, τq is the fractional analogue of the thermal relax-
ation time (the so-called phase lag in the heat flux), and τT = τq(1 + r1/r0) is the fractional
analogue of the thermal retardation (the so-called temperature gradient phase lag).

The constitutive relation (20) describes the heat conduction in a medium with full
power-law memory. This relation is invariant with respect to translation in time, and
therefore the time origin can be arbitrarily chosen.

Let us now assume additionally that there is no heat transfer in a medium for time
t < 0. Then, relation (20) reduces to

q + τq
C
0 Dα

t q = −k
[
∇T + τT

C
0 Dα

t (∇T)
]
. (21)

Note that this relation is not invariant with respect to translation in time, and the time
origin is fixed in this case.

Now we can obtain the TFDPL heat equation. The energy conservation law for a
constant property material without heat sources can be written as

cρ
∂T
∂t

+∇ · q = 0, (22)
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where c is the specific heat and ρ is the density of the material. Combining (21) and (22),
after simple algebra, we get

∂T
∂t

+ τq
C
0 Dα+1

t T = a
[
∆T + τT

C
0 Dα

t (∆T)
]
, α ∈ (0, 1), (23)

where a = k/(cρ) is the thermal diffusivity. TFDPL heat Equation (22) models heat conduc-
tion in a medium with power-law memory and constant temperature field for time t < 0.
Note that under the given assumptions we obtain a linear one-temperature heat conduction
model with constant parameters and a single order of fractional differentiation, α.

A final brief remark should be made about the physical interpretation of the term
“power-law memory”. In complex heterogeneous media, a complexity of the heat transfer
process can be associated with memory effects at the macroscopic description level. If
these effects demonstrate power-law behaviour at large times, it is said that the medium
or material has a power-law memory [56]. It is worth noting that memory effects in
such a medium are usually the results of averaging microscopic heterogeneities. In other
words, a complex heterogeneous medium microscopically obeys Fourier’s law, whereas
macroscopically it is modelled as a homogeneous medium that obeys the non-Fourier’s
law with a power-law memory. Time-fractional derivatives are natural to describe such
types of memory. Time-fractional heat conduction models were proposed, for example,
for the porous media [43], for a carbon–carbon composite medium [57], for metal-oxide-
semiconductor field-effect transistors [38], and for processed meat [17].

4. An Algorithm of TFDPL Model Parameters Estimation

Let us consider a one-dimensional case of TFDPL heat Equation (23) in a half space,
namely

∂T
∂t

+ τq
C
0 Dα+1

t T = a
[

∂2T
∂x2 + τT

C
0 Dα

t

(
∂2T
∂x2

)]
, t > 0, 0 < x < ∞, 0 < α < 1. (24)

This is a time-fractional equation of order α + 1 ∈ (1, 2), and therefore two initial conditions
are needed for its unique solvability. We take them in the form

T(x, 0) = T0,
∂T(x, t)

∂t

∣∣∣
t=0

= 0, 0 < x < ∞, (25)

where T0 is a constant initial temperature.
We will also assume that (24) is accompanied by the boundary conditions

T(0, t) = T0(t), lim
x→∞

T(x, t) = T0, t > 0, (26)

and by the additional internal condition

T(l, t) = Tl(t), l > 0, t > 0. (27)

Here, T0(t), Tl(t) are known functions.
We will consider the following inverse problem: given the initial boundary value

problem (24), (25), (26) and the additional condition (27), find the constants a, τT , τq, α. For
solving this problem, the TIC method can be efficiently used.

For convenience, we introduce a new function, θ(x, t) = T(x, t) − T0. Then, the
problem (24)–(27) takes the form

∂θ

∂t
+ τq

C
0 Dα+1

t θ = a
[

∂2θ

∂x2 + τT
C
0 Dα

t

(
∂2θ

∂x2

)]
, t > 0, 0 < x < ∞, 0 < α < 1, (28)

θ(x, 0) = 0,
∂θ(x, t)

∂t

∣∣∣
t=0

= 0, 0 < x < ∞, (29)
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θ(0, t) = θ0(t), lim
x→∞

θ(x, t) = 0, t > 0, (30)

θ(l, t) = θl(t), l > 0, t > 0. (31)

Here, the functions θ0(t) = T0(t)− T0 and θl(t) = Tl(t)− T0 are known.
The initial-boundary problem (28), (29), (30) after Laplace transform can be written as

a(1 + τT pα)θ∗
′′
(x, p)− p(1 + τq pα)θ∗(x, p) = 0, 0 < x < ∞, 0 < α < 1, (32)

θ∗(0, t) = θ∗0 (p), lim
x→∞

θ∗(x, p) = 0, (33)

and (31) gives
θ∗(l, p) = θ∗l (p), l > 0. (34)

Here, θ∗(x, p) denotes the Laplace transform of θ(x, t), which is defined by

θ∗(x, p) ≡ L[θ(x, t)](p) =
∫ ∞

0
e−ptθ(x, t)dt.

In (32), prime denotes differentiation with respect to x.
The solution of (32), (33) is

θ∗(x, p) = θ∗0 (p)e−λx, λ =

√
p(1 + τq pα)

a(1 + τT pα)
.

Using the additional condition (34), we obtain the main equation for parameters
estimation, which can be written as

Φ(a, b, τq, α; p) = 0, (35)

where

Φ(a, b, τq, α; p) = (a + bpα)ψ(p)− τq pα − 1, b = aτT , ψ(p) =
1

pl2 ln2 θ∗0 (p)
θ∗l (p)

. (36)

Note that the function Φ is linear with respect to a, b, τq, and nonlinear with respect to α.
As mentioned in the Preliminaries section, the problem of finding the Laplace parame-

ter p arises if the functions T0(t) and Tl(t) are not known exactly. In the TIC method, the
Laplace parameter p is assumed to be real and positive. Therefore, it is natural to assume
that this parameter belongs to a finite interval, [pmin, pmax] (0 < pmin < pmax < ∞). A
discussion of different approaches to the estimation of pmin and pmax can be found in [48,49].
Then, the considered inverse problem can be reduced to a minimization problem:

f (a, b, τq, α) ≡
∫ pmax

pmin

Φ2(a, b, τq, α; p)dp → min . (37)

This is a classical problem of finding a minimum of four variables function, f . The physical
constraints are a > 0, b > 0, τq > 0, and α ∈ (0, 1). In general, this problem can be solved
numerically by using different optimization software.

However, explicit TIC representations for the desired parameters can be obtained in a
special case when the order of fractional differentiation α is known. Let us consider (37)
as the unconstrained minimization problem. It is obvious that function f defined by (37)
is a quadratic function in three variables, a, b, and τq. The necessary conditions for local
optimality read

∂ f
∂a

= 0,
∂ f
∂b

= 0,
∂ f
∂τq

= 0.
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These conditions provide the system of linear equations

Az = B, (38)

where

A =


I0
2 I1

2 −I1
1

I1
2 I2

2 −I2
1

−I1
1 −I2

1 I2
0

, B =


I0
1

I1
1

−I1
0

, z =


a

b

τq

,

and
In
m =

∫ pmax

pmin

ψm(p)pαndp.

Note that the matrix A is symmetric.
Using Cramer’s rule, the solution of (38) can be written in the explicit form

a =
∆1

∆
, b =

∆2

∆
, τq =

∆3

∆
, (39)

where
∆ = det(A), ∆i = det(Ai), i = 1, 2, 3,

and Ai is the matrix formed by replacing the i-th column of A by the column vector B.
Thus, the explicit representations (39) permit one to obtain the values of a, b, and τq for a
given value of α.

The representations (39) can also be used in the case of unknown α. Then, we have

∂ f
∂α

= 0

and obtain
abJ1

2 + b2 J2
2 − 2bτq J2

1 − (aτq + b)J1
1 + τ2

q J2
0 + τq J1

0 = 0, (40)

where
Jn
m ≡ Jn

m(α) =
∫ pmax

pmin

ψm(p)pαn ln pdp.

In (40), the parameters a, b, and τq are the functions of α, which are defined by (39). We
thus obtain a single equation for α. Equation (40) is nonlinear and quite complex. Therefore,
it should be solved numerically.

As a result, we can state the following semi-explicit algorithm for parameters estima-
tion in the TFDPL heat conduction model:

1. The Laplace transforms θ∗0 (p) and θ∗l (p) are computed for the given functions θ0(t)
and θl(t), respectively.

2. The function ψ(p) from (36) is found.
3. The order of fractional differentiation α is obtained by numerically solving nonlinear

Equation (40).
4. The desired parameters a, b, and τq are calculated by the explicit TIC representations

given by (39).

It is necessary to note that the proposed algorithm is based on the unconstrained
minimization problem. As a result, the order of fractional differentiation α, which is
obtained as the solution of (40), does not necessarily belong to the interval [0, 1]. Then,
the constrained minimization problem mentioned above should be considered and solved
numerically. Note that usually this situation arises when the initial functions θ0(t) and θl(t)
have quite large errors (usually more than 5 %).

The considered problem of parameters estimation belongs to the class of inverse
coefficient problems. Hence, it is an ill-posed problem in most cases. In the proposed
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algorithm, the stabilization of the solution is achieved by integration with respect to the
Laplace parameter p. However, numerical experiments show that the solution is stable
only if pmax/pmin = O(10k) with k ≥ 1. If pmax/pmin = O(1), the determinant det(A) is
close to zero, and the corresponding approximate solution is unstable. Also, det(A) → 0
with pmax → 0. An additional regularization is needed in this case. For example, the the
Tikhonov regularization method can be used for this purpose. By applying this method to
the system (38), we get a regularized system

AT Az + εz = AT B, (41)

where AT is the transpose matrix of matrix A and ε is the regularization parameter. This
parameter can be found from the discrepancy principle if an upper error bound of the
experimental temperature measurements is known. However, in this case we dramatically
increase the computational cost of the algorithm and therefore remove the main advantage
of the TIC approach. Thus, the parameters pmin and pmax should be chosen so that det(A)
is not close to zero.

Calculations show that the value of det(A) highly depends on α. Hence, the values
of pmin and pmax should also be chosen dependently on α. Note that for a given interval
[pmin, pmax], the numerical value of det(A) can be calculated for any α ∈ (0, 1). If α is
initially unknown, an appropriate interval [pmin, pmax] can be found iteratively.

5. An Example

To illustrate the above algorithm, let us consider Equation (28) with

a = 1, τT = 8, τq = 0.2.

Hence, b = 8 and

ψ(p) =
1 + 0.2pα

1 + 8pα
. (42)

Three different values of fractional order are considered: α = 0.75, 0.5, and 0.25.
Graphs of the function ψ(p) defined by (42) for these values of α are shown in Figure 1.

Figure 1. Graphs of the function ψ(p) defined by (42) for different values of α.

Denote by T̄(x, t) and T̃(x, t), the exact and perturbed temperature fields, respec-
tively. Let

|T̄(x, t)− T̃(x, t)| ≤ ∆T ,
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where ∆T is the upper error bound. Then, it is easy to prove (see, e.g., [46]) that

|T̄∗(x, p)− T̃∗(x, p)| ≤ ∆T
p

.

Thus, the error of T∗(x, p) is increased as the parameter p is decreased. The same is valid
for the function ψ(p).

To simulate experimental errors, we approximated the function ψ(p) on the interval
[pmin, pmax] by polynomials of different degrees with respect to a new dependent variable

P = ln p.

We utilized the relative error as a metric of accuracy. For a quantity q, it is defined by

δq =
|q̄ − q̃|

q̄
100%,

where q̄ and q̃ are exact and perturbed values of q, respectively. All computations were
performed in Maple 17.

To illustrate the fact that pmin and pmax should depends on α, we firstly consider the
fixed interval p ∈ [0.01, 10].

Case 1: α = 0.75.

The following approximations of ψ(p) were constructed:

ψ1 = −2.0871605 · 10−4 P3 + 1.5908660 · 10−2 P2 − 7.6804434 · 10−2 P + 0.14207071,

ψ2 = −4.3025293 · 10−4 P4 − 1.0286478 · 10−3 P3 + 2.0448222 · 10−2 P2

−7.4697380 · 10−2 P + .13433121,

ψ3 = 5.4973602 · 10−6 P6 + 1.1001135 · 10−4 P5 − 4.0590709 · 10−4 P4

−2.4193687 · 10−3 P3 + 2.1332786 · 10−2 P2 − 7.2620046 · 10−2 P + 0.13333333.

(43)

Graphs of relative errors for these functions are plotted in Figure 2. It can be seen that
the maximum value of relative error is approximately equal to 6.5% for ψ1, 2% for ψ2, and
0.5% for ψ3.

Figure 2. Graphs of relative errors for functions (43).

Table 1 contains the results of parameters estimation by using the explicit expressions
given in (39) for α = 0.75 and approximate functions ψi from (43). Note that, in this case,
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det(A) = O(10−1). It can be seen that the relative errors of a and b are of the same order of
magnitude as the corresponding relative errors of functions ψi. The relative errors of τT
and τq are also in good agreement with the relative errors of ψ3 and ψ2. However, in the
case of quite large initial error when the function ψ1 is used, the error level of τT and τq is
highly increased.

Table 1. Comparison of the restored parameters for different approximations of ψ(p) with α = 0.75.

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

a 1.0042 0.42 1.0072 0.72 1.0700 7.00
b 8.0269 0.34 8.0591 0.74 7.4649 6.70

τT 7.9933 0.08 8.0015 0.02 6.9765 12.8
τq 0.1997 0.15 0.2031 1.55 0.1664 16.8

Table 2 contains the results of parameters estimation for unknown α. In this case,
Equation (40) was solved for each ψi (i = 1, 2, 3). As can be seen from the table, the accuracy
of α identification is highly depends on the error of input data. The same is valid for the
other parameters.

Table 2. Comparison of the restored parameters including α for different approximations of ψ(p).

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

α 0.7479 0.28 0.7831 4.41 0.8606 14.7
a 0.9968 0.32 1.1264 12.6 1.4314 43.1
b 7.9981 0.02 7.9802 0.25 7.1442 10.7

τT 8.0238 0.30 7.0847 11.4 4.9912 37.6
τq 0.1990 0.50 0.2139 6.95 0.1978 1.10

Case 2: α = 0.5.

The following approximations of ψ(p) were obtained:

ψ1 = 7.9024062 · 10−3 P2 − 5.0950384 · 10−2 P + 0.13779823,

ψ2 = −4.0453570 · 10−4 P3 + 8.4778168 · 10−3 P2 − 4.8909305 · 10−2 P + 0.13482677,

ψ3 = −1.1327318 · 10−4 P4 − 5.8706810 · 10−4 P3 + 9.6778542 · 10−3 P2

−4.8760918 · 10−2 P + 0.13333333.

(44)

Graphs of relative errors for these functions are plotted in Figure 3. The maximum
value of relative error is approximately equal to 5% for ψ1, 2.2% for ψ2, and 0.5% for ψ3.

Figure 3. Graphs of relative errors for functions (44).
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The results of parameters estimation are given in Table 3 for α = 0.5, and in Table 4
for initially unknown α. In general, the results of this case are close to the previous one.
However, the magnitudes of relative errors for estimated parameters are greater than those
obtained previously. In this case, det(A) = O(10−3).

Table 3. Comparison of the restored parameters for different approximations of ψ(p) with α = 0.5.

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

a 0.9893 1.07 1.0530 5.30 1.1456 14.6
b 8.0371 0.46 7.7986 2.52 7.3658 7.93

τT 8.1242 1.55 7.4060 7.43 6.4296 19.6
τq 0.2029 1.45 0.1867 6.65 0.1588 20.6

Table 4. Comparison of the restored parameters including α for different approximations of ψ(p).

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

α 0.5058 1.16 0.5249 4.98 0.5932 18.6
a 1.0262 2.62 1.2017 20.2 1.6321 63.2
b 8.0298 0.37 7.7744 2.82 7.2866 8.92

τT 7.8247 2.19 6.4693 19.1 4.4645 44.2
τq 0.2073 3.65 0.2052 2.60 0.2214 10.7

Case 3: α = 0.25.

In this case, the following approximations of ψ(p) were constructed:

ψ1 = −2.7262704 · 10−2 P + 0.14595998;

ψ2 = 2.3647866 · 10−3 P2 − 2.4888663 · 10−2 P + 0.13385186;

ψ3 = −8.7191573 · 10−5 P3 + 2.3025763 · 10−3 P2 − 2.4102390 · 10−2 P + 0.133395.

(45)

Graphs of relative errors for the functions in (45) are plotted in Figure 4. The maximum
value of relative error is approximately equal to 10% for ψ1, 1% for ψ2, and 0.1% for ψ3.

Figure 4. Graphs of relative errors for functions (45).

Table 5 contains the results of parameters estimation by using (39) for α = 0.25 and
approximations (45). In this case, we found det(A) = O(10−5) and therefore the estimation
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results are highly sensitive to errors of input data. It follows from the table that if we use
the ψ1 function, having a relative error of, at most, ±10%, the proposed algorithm does not
permit us to identify τq with the chosen values of pmin and pmax. However, we obtained
reasonable values for all of the desired parameters for the function ψ3. This demonstrates
the stability of the algorithm.

Table 5. Comparison of the restored parameters for different approximations of ψ(p) with α = 0.25.

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

a 1.0117 1.17 0.9273 7.27 2.7387 174
b 7.9691 0.39 8.0479 0.60 2.6336 67.1

τT 7.8770 1.54 8.6791 8.49 0.9616 88.0
τq 0.1977 1.15 0.1988 0.60 −0.2138 —

Finally, Table 6 contains the results of parameters estimation for unknown α. It can be
seen from the table that, in all cases, we have a high level of error, especially for τq.

Table 6. Comparison of the restored parameters including α for different approximations of ψ(p).

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

α 0.2541 1.64 0.3299 32.0 0.0187 92.5
a 1.0706 7.06 1.8943 89.4 0.3296 67.0
b 7.9662 0.42 7.9957 0.05 0.3262 95.9

τT 7.4411 6.99 4.2208 47.2 0.9896 87.6
τq 0.2053 2.65 0.3227 61.4 −0.9045 —

To explain the obtained results, we first consider det(A) as a function of α. The
graphs of this function for different intervals [pmin, pmax] are given in Figures 5 and 6. It
can be seen that decreasing α decreases the value of det(A). Therefore, the sensitivity
of the estimated parameters to measurement errors increases with decreasing the order
of fractional differentiation. The simulation results given in the above tables confirm
this conclusion.

As it follows from Figure 5, the value of det(A) highly depends on the value of pmax, so
that bigger values of det(A) correspond to bigger values of pmax. The value of det(A) also
depends on pmin. However, the comparison of Figures 5 and 6 shows that this dependence
is weaker than the previous one. Therefore, the large value of det(A) cannot be used as a
criterion for finding the value of pmin, especially in the case of small values of α.

Figure 5. Graphs of det(A) for a fixed pmin and various pmax.
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Figure 6. Graphs of det(A) for a fixed pmax and various pmin.

An essential feature of the heat conduction processes described by the TFDPL model
is that the corresponding temperature field has a power-law asymptotic behaviour at large
times, known as a “heavy tail”. This means that such a temperature field varies significantly
over a larger time interval than a temperature field described by the classical Fourier model,
and this interval increases with decreasing α. In view of the final value theorem of the
Laplace transform

lim
t→∞

T(x, t) = lim
p→0

pT∗(x, p),

one can conclude that a smaller value of pmin should be used in the algorithm for a smaller
value of α.

Indeed, for the function ψ(p) defined by (42), we have ψ ∈ (0.025, 1) for p ∈ (0, ∞) and
any α ∈ (0, 1). However, for a fixed interval, p ∈ [0.01, 10], we obtain ψ ∈ [0.037, 0.928] for
α = 1, ψ ∈ [0.046, 0.803] for α = 0.75, ψ ∈ [0.062, 0.567]) for α = 0.5, and ψ ∈ [0.089, 0.301]
for α = 0.25. Hence, for α = 1 (the case of the classical DPL model) more than 90%
of available information about the heat transfer process will be used in the algorithm if
p ∈ [0.01, 10]. Therefore, this interval will be close to the optimal one in this case. For this
reason, the interval [0.01, 10] has been taken at the beginning of this example. However, less
than 25% of available information about the heat transfer process was used in the algorithm
for α = 0.25. Moreover, we lost all information about the “heavy tail”. This was the main
reason for high errors in parameters estimation and failure of the algorithm to identify τq
for the ψ1 function.

To confirm this conclusion, let us consider the case of α = 0.25 with pmin = 10−6 and
pmax = 100. Then, we have ψ ∈ [0.0288, 0.9997] and det(A) = O(10−1). The following
three approximations of ψ(p) were constructed:

ψ1 = −1.9267106 · 10−5 P3 + 1.8909449 · 10−3 P2 − 2.4338496 · 10−2 P + 0.13601138,

ψ2 = −4.3025293 · 10−4 P4 − 1.0286478 · 10−3 P3 + 2.0448222 · 10−2 P2

−7.4697380 · 10−2 P + 0.13433121,

ψ3 = 1.4056011 · 10−8 P6 + 5.7969313 · 10−7 P5 − 4.9566485 · 10−6 P4

−9.6317687 · 10−5 P3 + 2.3708119 · 10−3 P2 − 2.41545903 · 10−2 P + 0.13333333.

(46)
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Graphs of relative errors for these functions are plotted in Figure 7. It can be seen that
the maximum value of relative error is approximately equal to 10% for ψ1, 0.9% for ψ2, and
0.5% for ψ3.

Figure 7. Graphs of relative errors for functions (46).

Table 7 presents the results of parameters estimation by using the explicit expressions
given in (39) for α = 0.25 and approximate functions ψi from (46). A comparison of the
results given in Table 7 with those given in Table 5 shows that for the enlarged interval
p ∈ [10−6, 100] the proposed algorithm provides much better results than for p ∈ [0.01, 10].

Table 7. Comparison of the restored parameters for different approximations of ψ(p) with α = 0.25.

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

a 0.9948 0.52 0.9849 1.51 0.9026 9.74
b 8.0114 0.14 8.0687 0.86 7.8859 1.43

τT 8.0531 0.66 8.1922 2.40 8.7370 9.21
τq 0.2006 0.30 0.2050 2.50 0.1894 9.47

Table 8 contains the results of parameters estimation for unknown α. It can be seen
that for the function ψ3 with an error level of approximately 0.5%, the proposed algorithm
permits one to estimate all parameters with high accuracy. However, for the more perturbed
functions ψ2 and ψ3, the obtained parameters have quite large errors.

Table 8. Comparison of the restored parameters including α for different approximations of ψ(p).

ψ3 Error (%) ψ2 Error (%) ψ1 Error (%)

α 0.2502 0.08 0.2331 6.76 0.3280 31.2
a 0.9992 0.08 0.5929 40.7 2.2791 128
b 8.0079 0.10 8.3753 4.69 6.6933 16.3

τT 8.0145 0.18 14.126 76.6 2.9368 63.3
τq 0.2008 0.40 0.1915 4.25 0.2257 12.9

6. Discussion and Recommendations

Now, let us briefly discuss the advantages and limitations of the algorithm described
in Section 4.

The algorithm is based on the exact analytical solution of the considered initial-
boundary value problem for the TFDPL heat conduction equation in the Laplace space. As
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a result, there is no necessity to solve this problem numerically. Also, it is not necessary
to perform the inverse Laplace transform. Note that most modern algorithms for solving
the inverse problems of model parameters estimation require a numerical solution of the
corresponding direct problem. Moreover, if an inverse problem reduces to the optimiza-
tion problem, the corresponding direct problem should be solved many times. However,
finding a numerical solution of the direct problem for the TFDPL model is computationally
expensive due to memory effects.

The algorithm utilizes a small amount of experimental data. The temperature mea-
surement should be performed only in two points: on the surface of the body and at
any interior point. Hence, only two thermal sensors are needed. This reduces the cost of
experimental research.

The algorithm uses explicit representations for three model parameters — the thermal
diffusivity, a, the fractional analogue of thermal relaxation time, τq, and the fractional
analogue of thermal retardation, τT . All integrals in these representations can be efficiently
evaluated by quadratures. The direct Laplace transform can be made numerically by using
the Gauss–Laguerre quadrature (see, e.g., [49]). Thus, the algorithm is simple and has a
small time complexity.

There are only two internal parameters in the algorithm: pmin and pmax. These pa-
rameters can be considered as regularization parameters and allows one to obtain a stable
solution of inverse problem.

However, the present version of the algorithm is limited to a one-dimensional linear
TFDPL model with constant parameters for a half-space heat transfer medium.

Numerical calculations show (see results in Section 5) that for a given fractional order
α the algorithm permits one to estimate other parameters of the TFDPL model with a
good accuracy if the parameters pmin and pmax are chosen correctly. The value of pmax
is controlled by the determinant of the matrix A from the system (38). For stability, it is
recommended that det(A) = O(10k) with k ≥ −3. The value of pmin is highly depended
on α: the decreasing of α leads to the decreasing of pmin, so that pmin ≈ p1/α

0 , where
p0 = pmin|α=1 < 1. In practice, the value of pmin can be obtained iteratively from the
condition ψ(pmin) ≈ a−1, where a is the thermal diffusivity and the function ψ(p) is
defined in (36). In this case, the estimation errors and errors of input data have the same
order of magnitude.

The proposed algorithm permits one to estimate all four parameters of the TFDPL
model only if the relative error of input data is less than 1%. Despite the fact that thermal
sensors can measure the temperature with much less errors, this is a strict limitation of
the algorithm. The cause of this limitation is that Equation (35) is nonlinear with respect
to fractional order α and linear with respect to other parameters of the TFDPL model. As
a result, even a small perturbation of α leads to a high perturbation of a, τt, and τq. Note
that τq and b = aτT are multipliers in the terms with pα, whereas a is not one. For this
reason, the thermal diffusivity a is more sensitive to a perturbation of α. Since τT = b/a, its
error depends on the error of a. The example given in Section 5 demonstrates these trends.
The fractional order α governs the asymptotic behaviour of the temperature field for large
times. Therefore, it can be potentially estimated from this asymptotic. However, how we
can incorporate this idea into the TIC algorithm is still an open question.

Finally, we will pay attention to another important issue. As mentioned in [27],
confidence intervals for estimated parameters should be established during a parameter
estimation process. An example of the successful calculation of such intervals can be
found in [58]. However, the proposed algorithm does not allow one to compute these
intervals in the classical manner. This is because we work in the Laplace space and deal
with the continuous function ψ(p). Thus, it is a significant task to develop an approach
for evaluating the confidence intervals of the parameters that were estimated using the
proposed algorithm.
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7. Conclusions

In this paper, we propose a new semi-explicit algorithm for parameters estimation in
a time-fractional dual-phase-lag heat conduction model. The algorithm was developed
by using the time integral characteristics method and allows one to identify the model
parameters using the temperature measurements at only one interior point. The algo-
rithm has a low computational cost because it does not require a numerical solution of
the corresponding direct heat conduction problem. This makes it different from most
other algorithms of parameters estimation. We provide the recommendations for choosing
numerical values of the internal parameters of the algorithm. A numerical example illus-
trates its strengths and weaknesses. The algorithm was obtained under the assumption
of half-space heat conduction medium. In particular, this assumption is fulfilled during
laser heating. However, overcoming this assumption is a possible direction of future work.
The algorithm showed a low accuracy for estimating the order of fractional differentiation
if temperature measurement errors are high enough. Solving this problem is another im-
portant direction for further research. Finally, developing an approach for calculating the
confidence intervals of the estimated parameters is also a challenging problem.
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Nomenclature

Symbol Desription
a Thermal diffusivity (m2/s )
A Coefficient matrix of the linear system
b Fractional analogue of the modified thermal retardation (m2/s1−α )
B Column vector of r.h.s. of the linear system
c Specific heat (J/kg · K )
C
0 Dα

t Caputo fractional differential operator with respect to time
and zero low limit (1/sα )

C
−∞Dα

t Caputo fractional differential operator with respect to time
and infinite low limit (1/sα )

Eα Mittag–Leffler function
f Least squares objective function
g Temperature gradient (K/m )
i subscript

0 I1−α
t Left-sided fractional integral operator of order 1 − α

and zero low limit (1/sα )

−∞ I1−α
t Left-sided fractional integral operator of order 1 − α

and infinite low limit (1/sα )
In
m Fractional moments for powers of time integral

characteristics (sm−1−αn/m2m)
Jn
m Fractional moments for powers of time integral characteristics

with logarithmic weight function
k Thermal conductivity (W/m · K )
l Coordinate of the inner point (m )
p Parameter of Laplace transform (1/s )
pmin Left boundary of the Laplace parameter (1/s )



Modelling 2024, 5 794

pmax Right boundary of the Laplace parameter (1/s )
q Heat flux (W/m2 )
r Relaxation function (W/m · K )
t Time variable (s )
T Temperature (K )
T0 Initial temperature (K )
T0 Boundary temperature (K )
Tl Temperature at the point x = l (K )
T∗ Laplace transform of the temperature T (K/s )
x Spatial variable (m )
y Auxiliary function
z Column vector of unknowns
α Order of fractional differentiation
δq Relative error for a quantity q
∆ Determinant of the matrix A
∆T Upper error bound for temperature (K )
ε Regularization parameter
φ Time integral characteristic of the temperature field
Φ Residual function
λ Analogue of wave number (1/m )
θ Shifted temperature (K )
θ0 Boundary shifted temperature (K )
θl Shifted temperature at the point x = l (K )
θ∗ Laplace transform of the shifted temperature T (K/s )
τq Fractional analogue of the thermal relaxation time (sα )
τT Fractional analogue of the thermal retardation (sα )
ψ Time integral characteristic of the shifted temperature field (s/m2 )

Abbreviations

The following abbreviations are used in this manuscript:

DPL dual-phase-lag
MCV Maxwell–Cattaneo–Vernotte
SPL single-phase-lag
TFDPL time-fractional dual-phase-lag
TIC time integral characteristic
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