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Abstract: Automated driving is a promising development in reducing driving accidents and im-
proving the efficiency of driving. This study focuses on developing a decision-making strategy for
autonomous vehicles, specifically addressing maneuvers such as lane change, double lane change,
and lane keeping on highways, using deep reinforcement learning (DRL). To achieve this, a highway
driving environment in the commercial multi-body simulation software IPG Carmaker 11 version is
established, wherein the ego vehicle navigates through surrounding vehicles safely and efficiently.
A hierarchical control framework is introduced to manage these vehicles, with upper-level control
handling driving decisions. The DDPG (deep deterministic policy gradient) algorithm, a specific DRL
method, is employed to formulate the highway decision-making strategy, simulated in MATLAB
software. Also, the computational procedures of both DDPG and deep Q-network algorithms are
outlined and compared. A set of simulation tests is carried out to evaluate the effectiveness of
the suggested decision-making policy. The research underscores the advantages of the proposed
framework concerning its convergence rate and control performance. The results demonstrate that
the DDPG-based overtaking strategy enables efficient and safe completion of highway driving tasks.

Keywords: decision making; deep reinforcement learning; carmaker simulator; deep deterministic
policy gradient algorithm; highway

1. Introduction

Automated vehicles, SAE levels 3, 4, and 5, driven by artificial intelligence (AI), are
becoming increasingly popular as they aim to reduce road accidents and improve traffic
efficiency [1,2]. To achieve high automation, four key modules are required: perception,
decision making, planning, and control [3]. However, further research and development
are needed to accomplish high automation, especially in complex driving environments.

Automated driving involves a continuous series of maneuvers to accomplish specific
navigation tasks. These maneuvers typically require adjustments to the accelerator pedal
and steering angle. Researchers have made numerous efforts to develop suitable decision-
making policies for automated driving (AD). For instance, Hole et al. employed a Monte
Carlo tree search to develop decision-making strategies for AD [4]. They modeled the
driving scenario as a partially observable Markov decision process (POMDP) and compared
the outcomes with those obtained using a neural network (NN) policy. The authors
also explored helpful lane-changing decisions to optimize the utilization of limited road
properties and mitigate competition. In [5], the authors also discussed the decisions of
high AD way exits for autonomous vehicles. They claimed that the proposed decision-
making controller significantly increases the likelihood of successful highway exits based
on 6000 stochastic simulations.

Reinforcement learning (RL), particularly deep reinforcement learning (DRL) methods,
has shown excessive potential in tackling decision-making challenges in AD [6]. For exam-
ple, in [7], deep Q-learning (DQL) was used to manage lane-changing decision making in
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uncertain highway environments. Similarly, for the lane-changing problem, Zhang et al. [8]
introduced a model-based exploration policy based on surprise intrinsic rewards. Addi-
tionally, it provided a comprehensive overview of RL or DRL applications in automated
vehicles, covering agent training, evaluation techniques, and robust estimation [9]. Despite
their promise, DRL-based decision-making strategies face several limitations that hinder
their real-world applicability, including issues with sample efficiency, slow learning rates,
and operational safety.

In [10], the authors developed an advanced decision-making capability for urban
road traffic scenarios. The decision-making policy presented incorporates multiple criteria,
enabling city cars to make practical choices in different situations. Moreover, Nie et al. ex-
plored a lane-change decision-making strategy for connected automated vehicles [11]. This
strategy incorporates cooperative car-following models and a candidate decision-making
module. Additionally, in [12], the authors introduced the concept of a human-like driving
system capable of adjusting driving decisions based on the demands of human drivers.

Deep reinforcement learning (DRL) techniques are becoming increasingly popular
for solving complex problems involving sequential decision making. In the field of AD,
several studies have explored the use of DRL-based approaches. For example, Duan
et al. [13] developed a hierarchical construction for learning decision-making policies
using reinforcement learning (RL) methods, which does not require historical labeled
driving data. In [14,15], DRL methods were employed to tackle collision avoidance and
path-following issues in automated vehicles, achieving better control performance than
conventional RL methods. Additionally, refs. [16,17] extended considerations beyond
path planning to include fuel consumption optimization for autonomous vehicles. These
studies employed the deep Q-learning (DQL) algorithm, which proved to be effective in
accomplishing driving missions. Furthermore, Han et al. [18] used the DQL algorithm
to make lane-change or lane-keeping decisions for connected autonomous cars, utilizing
feedback knowledge from nearby vehicles as input to the network. However, conventional
DRL methods face challenges in addressing highway overtaking problems due to the
continuous action space and large state space. Also, in [19], reinforcement learning has
been widely used in the field of unmanned driving, but how to improve the stability
of unmanned vehicles and meet the requirements of path tracking and vehicle obstacle
avoidance under different working conditions is still a difficult problem. Aiming at the
functional requirements of path tracking and obstacle avoidance of unmanned vehicles, an
anti-collision control strategy of unmanned vehicles based on a deep deterministic policy
gradient (DDPG) algorithm is proposed in this paper.

In [20], the authors propose a deep reinforcement learning (DRL)-based motion plan-
ning strategy for AD tasks in highway scenarios where an AV merges into two-lane road
traffic flow and realizes the lane-changing (LC) maneuvers. They integrate the DRL model
into the AD system relying on the end-to-end learning method. They used a DRL algorithm
based on deep deterministic policy gradient (DDPG) with well-defined reward functions.

This study aims to create a decision-making policy that is both efficient and safe for
highway AD. To achieve this, this study introduces a deep reinforcement learning (DRL)
approach enhanced by deep deterministic policy gradient (DDPG). Also, this paper employs
the DDPG algorithm for the first time to solve the highway navigation problem for long
driving scenarios including lane change, double lane change and lane keeping for highway
navigation. One of the primary advantages of using the DDPG algorithm in AD is its ability
to operate effectively in continuous action spaces for long scenarios. Unlike traditional
discrete action algorithms such as the DQN, which limit the agent to a predefined set of
actions, DDPG allows for fine-grained control over the vehicle’s steering, acceleration, and
braking. This capability is particularly crucial in the context of highway navigation, where
smooth and precise control is essential for maintaining safety and comfort. By leveraging
an actor–critic framework, DDPG can learn a policy that outputs continuous actions in the
complex highway environment, enabling the vehicle to make more natural and efficient
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driving decisions. This leads to improved performance in dynamic and complex driving
environments, where discrete actions could result in less fluid and more abrupt maneuvers.

The approach is personalized for continuous action horizons in highway scenarios, as
shown in Figure 1.
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Figure 1. The developed highway driving policy for autonomous vehicles, enabled by deep reinforce-
ment learning [evaluation and discussion: [21]].

Based on Figure 1, highway decision making is performed by the powerful DRL
method, which means the DDPG algorithm. To accomplish this purpose, the driving
environment will be simulated in the Carmaker simulator, while the DDPG algorithm
learns the driving actions like steering angle and accelerating or decelerating.

The study begins by defining the real vehicle dynamic in [22] and driving scenarios by
the Carmaker scenario [22] to ensure the automated vehicle operates safely and efficiently.
The DDPG-enhanced DRL method leverages the actor–critic method to directly obtain
control actions, establishing a trust region with clipped objectives. The DRL algorithm’s
implementation details are elaborated upon in the subsequent sections. Finally, the per-
formance of the decision-making algorithm for a specific scenario including lane change,
double lane change, and lane keeping is evaluated, and, also, for different scenarios, the
algorithm adaptability is validated. This paper presents three key innovations that aim
to improve the safety and efficiency of AD on highways for real maneuvering. These
contributions are as follows:

1. Development of an advanced, safe, and efficient decision-making policy for AD on
highways for a real maneuver using the DDPG algorithm;

2. Using real vehicle dynamics and real scenarios in the Carmaker simulator.

To elaborate on these contributions, this paper is structured as follows:
Section 2 provides a description of vehicle dynamics and driving scenarios on high-

ways. Section 3 details the research on DDPG-enhanced DRL. Also, Section 4 evaluates the
simulation results relevant to the presented decision-making strategy. Finally, concluding
remarks are presented in Section 5.
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2. Vehicle Dynamic and Driving Scenario

This section outlines the testing scenario for highway driving, which includes the
autonomous ego vehicle (AEV) and the other vehicles on the road. It also describes
the vehicle dynamics of the AEV involved. Additionally, reference models for driving
maneuvers in the CarMmaker simulator are introduced.

2.1. Vehicle Dynamic

This study utilized the vehicle dynamics framework in the commercial multi-body
simulation IPG CarMmaker as presented in [22].

2.2. Driving Scenario

This study involves creating a driving scenario in the CarMmaker simulator with three
lanes per direction of travel. The objective is to simulate real-world driving conditions on
the highway. An AEV will navigate through the scenario by ascertaining the control actions
for vehicle speed and steering angle at each time step. The AEV aims to travel as swiftly
as possible while ensuring safety on the road and avoiding collisions with surrounding
vehicles. The ultimate goal of the AEV is to reach the highway exit (Figure 2).
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Figure 2. Driving scenario.

Typically, three criteria are commonly employed to assess the effectiveness of decision-
making policies: safety, efficiency, and comfort. Safety entails ensuring that the AEV
avoids collisions. Efficiency suggests that the AEV aims to enhance speed. Comfort entails
regulating the lane-changing frequency and the extent of deceleration of the vehicle. In
this study, the main priorities for the AEV are safety and efficiency. The vehicle typically
positions itself in the fast lane, as depicted in Figure 3. The AEV is represented by the white
vehicle, while the other vehicles represent the surrounding traffic. Each lane has different
types of traffic. In this context, an episode refers to the AEV overtaking all adjacent vehicles
to reach its destination on the highway. To ensure simplicity and versatility, we assume that
the highway has three lanes (N = 3). Each lane contains different surrounding vehicles. The
autonomous vehicle (AEV) is programmed to drive in the right lane. The simulation runs
at a frequency of 20 Hz, with the AEV making decisions every second (sampling time of
1 s). Each episode lasts for 50 s. The driving behavior of the adjacent vehicles is governed
by random models including autonomous vehicles and human driver vehicles.
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3. RL Method

One of the sub-items of artificial intelligence (AI) is machine learning (ML), aiming
to develop computational algorithms performance with data. Machine learning (ML) is
classified into three main types: reinforcement learning (RL), supervised learning, and
unsupervised learning. In the RL method, by trying to maximize a predefined reward
function, an autonomous agent learns to fulfill a task in an environment. When the agent
opts for a desirable action when interacting with its environment, it is rewarded. In contrast,
a punishment or a negative reward is assigned to the autonomous agent, if the selected
action is undesired.

Supervised learning concisely involves learning from labeled examples from experts.
Since finding a label that exactly denotes an interaction is complicated, the approach is not
appropriate for solving interactive problems [24].

As unsupervised learning, the method is learning to find a hidden configuration in
unlabeled data. Though finding construction in collected data through learning is useful,
the approach cannot optimize a reward, which is an objective of the RL [24].

Some RL problems have huge numbers of states and actions in the environment. In
these RL problems, an artificial neural network (ANN) can be used as a function approxi-
mator. Utilizing an ANN as a function approximator in RL is called the deep reinforcement
learning (DRL) method. The RL problems are typically depicted as Markov decision
processes (MDPs). An MDP is a mathematical structure employed to represent decision-
making challenges where results are influenced by both random factors and the decisions
made by an agent. This framework finds extensive application in fields such as RL and
operations research.

The key components of a Markov decision process are as follows:
States (S): The states of MDPs represent all possible situations or configurations of

the environment. These states can be discrete or continuous, depending on the prob-
lem domain.

Actions (A): For each state in the MDP, there is a range of potential actions that the
decision making can take. Actions represent the choices or decisions available to the
decision making at each state.

Transition Probabilities (P): The transition probabilities ascertain the likelihood of tran-
sitioning from one state to another after executing a particular action. In other words,
they specify the likelihood distribution across potential next states given the current state
and action.

Rewards (R): At each state–action pair, there is an associated reward that represents
the immediate benefit or cost of taking that action in that state. Rewards can be positive
(rewards) or negative (penalties), and they may be deterministic or stochastic.

Policy (π): A policy is a mapping from states to actions, specifying the decision maker’s
strategy for selecting actions at each state. Reinforcement learning algorithms often strive
to discover an optimal policy that maximizes the expected total reward over time.

Value Function (Q): The value function signifies the anticipated total reward achievable
by adhering to a specific policy or executing a particular action within a given state. It
helps in evaluating the quality of different policies or actions.
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MDPs satisfy the Markov property, which implies that the subsequent state relies
solely on the current state and action, not on the history of previous states and actions. This
property simplifies the modeling and analysis of decision-making problems and allows
for the application of various solution techniques, encompassing dynamic programming,
Monte Carlo methods, and temporal difference learning.

Markov decision processes supply a formal framework for studying decision making
under uncertainty and are widely used in areas such as robotics, autonomous systems,
game theory, economics, and more.

The expected discounted reward Rt after the t time step can be considered as:

Rt = ∑∞
t γt·rt (1)

where, when γ is in the range [0, 1], it is a discount factor. Parameter t, depending on the
problem, is the finite value. Also, policy π (a|s) maps from states to action probabilities.
Vπ(s) can be recognized as an expected return regarding policy π from state s and is a
value function and it is as follows:

Vπ(st) = Eπ[Rt|St,π] (2)

Qπ(s, a) is an action-value function as follows:

Qπ(st, at) = Eπ[Rt|St, at,π] (3)

The iterative Bellman equation is satisfied:

Qπ(st, at) = Eπ[rt + γ max(Qπ(st+1, at+1))] (4)

However, not all RL problems can be formulated as MDP. In specific situations, if state
S can only be observed partly from the environment or cannot be observed directed from the
defined environment, then our problems are able to be formulated as a partially observable
Markov decision process (POMDP) for such events. A way to solve the problem is to
produce observations that include past knowledge by containing previous observations or
prior information together with a current observation and therefore solve the problem as
an MDP. Learning a policy that maximizes the expected return is the main objective of the
RL algorithm.

3.1. Deep Deterministic Policy Gradient (DDPG)

The deep deterministic policy gradient (DDPG) algorithm [24] is a reinforcement
learning algorithm that combines elements of both value-based and policy-based methods.
It is particularly well-suited for addressing problems with continuous action spaces in
reinforcement learning.

DDPG utilizes an actor–critic architecture in which there are two main networks:

• Actor network: This network learns the policy function, which maps states to actions.
It aims to maximize the expected return by directly selecting actions based on the
current state;

• Critic network: This network learns the value function, which approximates the
expected return (cumulative reward) of following a particular policy. It helps to
evaluate the actions chosen by the actor network.

Also, DDPG is an off-policy algorithm, meaning it learns from data sampled from an
experience replay buffer without explicitly following a specific policy. It is also model free,
meaning it does not involve knowledge of the underlying dynamics of the environment.
Unlike some other algorithms that are more suited to discrete action spaces, DDPG is
designed to handle continuous action spaces, making it applicable to a wide range of
problems, including robotics and control tasks.



Modelling 2024, 5 957

A mean-squared Bellman error (MSBE) is defined as:

L(∅, θ) = ED

[
(Q∅(s, a)− (r + γ(1 − d)maxQ∅(ś, á)))2

]
(5)

The DDPG algorithm combines elements of policy gradient methods and Q-learning.
The actor network is trained using policy gradient methods to directly maximize the
expected return, while the critic network is trained using Q-learning to approximate the
value of state–action pairs.

In addition, DDPG introduces target networks to stabilize training. These are copies of
the actor and critic networks that are updated less frequently than the main networks. Addi-
tionally, DDPG utilizes an experience replay buffer to store and sample experiences during
training (based on Figure 4). This helps to decorate the data and improve sample efficiency.
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Also, the reward function is as follow:

Rt = 0.5|θ|+ 0.1|a| − collision + M (6)

where θ is the steering angle, a is longitudinal acceleration, and collision is 1, if drelative = 0,
and M is a constant.

Based on Equation (6), the agent is trained in the highway environment to cross the
highway exit.

3.2. Deep Q-Network (DQN)

The Deep Q-network (DQN) algorithm is a deep reinforcement learning technique that
integrates Q-learning with deep neural networks to approximate the optimal action-value
function in a continuous state space. The DQN operates by learning to map states to actions
directly from raw sensory inputs, typically images, enabling it to handle high-dimensional
input spaces. It uses experience replay and a target network for stabilizing training and
preventing over fitting by storing and randomly sampling past experiences from a replay
buffer and periodically updating a target network with the weights of the trained Q-
network. Through iterative updates using gradient descent, the DQN aims to minimize
the temporal difference error between the forecasted Q-values and the target Q-values,
ultimately learning a policy that maximizes cumulative rewards in the environment.
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4. Discussion

This section assesses the performance of a proposed decision-making strategy for
the AEV using the deep deterministic policy gradient (DDPG) method. The evaluation
covers three main aspects. Firstly, it compares and verifies the efficacy of this decision-
making approach against an alternative method using detailed simulation outcomes to
demonstrate its superiority. Secondly, it validates the DDPG algorithm’s learning capability
by examining the accumulated rewards. Lastly, it assesses the derived decision-making
strategy in two comparable driving scenarios on the highway to showcase its adaptability.

Figure 5 illustrates the specific scenario performed by the DDPG agent in the CarM-
maker simulator.
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Figure 5. Specific scenario including lane change, double lane change, and lane keeping (1: preparing
for lane change, 2: executing lane change, 3: preparing for double lane change, 4: executing double
lane change, 5: preparing for second lane change, 6: executing second lane change, 7: executing third
lane change, 8: executing lane keeping).
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4.1. Performance Evaluation

In this section, we are comparing the performance of DDPG and the DQN, both of
which employ a hierarchical control framework. However, the upper levels differ. The
default parameters for both DDPG and the DQN are identical. Figures 6 and 7 display the
average rewards and episode rewards obtained by the DDPG and DQN agents, respectively.
According to Figures 6 and 7, a higher reward signifies, when driving on the preferred lane,
more efficiently maneuvering.
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The DDPG approach exhibits superior training stability and learning speed than
the DQN approach (based on Table 1), resulting in consistently higher rewards after
approximately 1000 episodes. The main reason why DDPG is considered superior is due to
the actor–critic network it uses. These networks can calculate the value of the chosen action
at each step, allowing the ego vehicle to quickly identify a better decision-making policy.

Table 1. Comparative analysis of DDPG and DQN algorithms.

Parameter DDPG DQN

Max episode reward 892 791

Max average reward 443 355

Max speed (m/s) 16.9 14.7

Max distance (m) 961 907

To analyze the trajectories of the state variable in this study, Figure 8 displays the
average vehicle speed for DDPG and DQN agents for 200 s.
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Figure 8. DDPG and DQN agent velocity.

A high speed means that the ego vehicle can maneuver through the driving envi-
ronment more quickly, resulting in the acquisition of greater total rewards. Also, higher
average vehicle speed indicates that the DDPG agent has learned a better policy for control-
ling the vehicles in the environment. This could suggest that the DDPG algorithm is more
effective in this particular scenario for maximizing speed-related objectives. In other words,
DDPG is an actor–critic algorithm that utilizes deterministic policy gradients. It tends to be
more sample efficient and stable than the DQN.

The greater travel distance achieved by the DDPG agent suggests that it navigated the
environment more efficiently than the DQN agent (based on Figure 9). This indicates that
the DDPG agent made better use of its actions and state information to move through the
environment, avoiding unnecessary delays or detours. Also, DDPG’s continuous action
space allows for more nuanced control over the agent’s actions compared with the DQN’s
discrete actions. This finer-grained control has enabled the DDPG agent to select actions
that result in smoother, more continuous movement, facilitating longer travel distances.
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Figure 9. DDPG and DQN agent travel distance.

As mentioned earlier, DDPG often requires fewer samples to learn compared with
the DQN. If DDPG achieved higher speeds and greater travel distances, it indicates that
DDPG has learned a more effective policy more efficiently than the DQN in this particular
scenario. In addition, the combination of higher average speeds and greater travel dis-
tances demonstrates that the DDPG agent outperformed the DQN agent regarding overall
movement efficiency and effectiveness in the environment. This indicates that DDPG may
be better suited for tasks where minimizing travel time is important.

The differences observed in the performance of the decision-making policies in this
study were highlighted by the trajectories displayed. These results indicate that the policy
proposed in this study outperforms the DQN benchmark methods. The superiority of the
decision-making strategy enabled by DDPG is evident when considering all the results
presented in this subsection, as it achieved successful episodes consistently.

4.2. Criticality Evaluation

According to Figure 5, part 7, the DDPG agent has a near condition for collision; then,
we consider criticality metrics as follows:

To calculate the time to collision (TTC) in this scenario, we use the following formula:

TTClow = min(
∆X(t)
∆V(t)

) (7)

where
Agent velocity (vagent) = 2.8 m/s

Distance to the static vehicle (d) = 4.4 m

The relative velocity (vrelative) in this case would be the sum of the agent’s velocity and
the static vehicle’s velocity (since it is not moving):

vrelative = vagent − 0 = 2.8 m/s − 0

vrelative = 2.8 m/s

Now, we can calculate TTC based on (6):

TTClow =
4.4
2.8

= 1.57 s (8)

So, the TTClow in this scenario is approximately 1.57 s.
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A time to collision (TTC) of 1.57 s indicates that there is still a reasonable (based on
UN regulation No. 157 [26]) amount of time before a potential collision occurs between the
agent and the static vehicle.

Figure 10 shows the behavior of the calculated TTC(t) according to Equation (6) in
the presented scenario (based on Figure 5, parts 6–7), when following a target vehicle. We
observe the lowest value for TTC at 1.57 s, a mean value of 2.89 s., and a standard deviation
of 0.90 s when approximated with Gaussian behavior. Typically, autonomous emergency
braking (AEB) systems include an intervention strategy that warns the driver if the TTC
falls below approximately 2.5 s and initiates partial braking at approximately 1.5 s. Full
braking would be applied at TTClow values below 0.6 to 0.8 s. The vehicle manufacturer
defines the thresholds of these intervention strategies and is also sometimes adjusted by
the driver, changing the setup of the AEB system in the configuration menu of the car.
Hence, the algorithm is usually in an acceptable range but sometimes requires braking
interventions to stay in a safe area.
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Figure 10. Time to collision (TTC) behavior.

In addition, the time gap between the ego vehicle and the target vehicle was calculated
according to the following Equation (8),

tGap =
∆X

VEgo
(9)

where, again, ∆X is the relative distance between the target and ego vehicle and VEgo is the
ego vehicle speed.

Figure 11 shows the behavior of the time gap during the same scenario (based on
Figure 5, parts 6–7). The lowest value reads 0.86 s, the average value is 2.60 s, and the
standard deviation is 0.95 s. According to [26], most drivers prefer a time gap of 1.8 s
compared with 1.0 and 1.3 s. Hence, we conclude that, in the current setting of the
algorithm, the driving scenario is usually uncritical and acceptable for most drivers. A
more detailed consideration of criticality is part of future investigations and will include
more advanced criticality metrics as compared with the TTC. TTC is limited to the constant
relative velocity between the target and ego vehicle and therefore not always suitable for
criticality evaluation.
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Figure 11. Time gap behavior.

4.3. Comparison between DDPG and DQN

This experiment evaluates the DDPG and DQN algorithms, both established tech-
niques in deep reinforcement learning (DRL), to determine their effectiveness in learning
and training methods.

To demonstrate how the dueling network can be applied to future decisions in AD,
Figure 12 displays the trajectory of cumulative rewards for 100 episodes.
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According to Figure 12, higher cumulative rewards indicate that the DDPG agent’s
learned policy was more effective at maximizing rewards in the environment compared
with the DQN agent. This suggests that DDPG was able to make better decisions over time,
leading to higher overall rewards. Also, DDPG’s continuous action space and deterministic
policy gradients may have allowed it to optimize its policy more efficiently than the DQN.
This could have enabled the DDPG agent to explore and exploit the state–action space more
effectively, leading to higher cumulative rewards.

In other words, DDPG’s ability to learn a deterministic policy and its actor–critic
architecture has enabled it to consider the long-term consequences of its actions better
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than the DQN. This has contributed to its ability to accumulate higher rewards over time.
Moreover, DDPG’s deterministic policy gradients have provided a more stable learning
process compared with the epsilon-greedy exploration strategy used in the DQN. This
has allowed DDPG to learn a more optimal policy with less variance, leading to higher
cumulative rewards.

Figure 12 shows a decreasing trend, which indicates that both ego vehicles are becom-
ing more acquainted with the driving environment as they interact with it. Moreover, the
DDPG algorithm can gain a greater understanding of traffic situations in the same number
of episodes, resulting in a faster learning process. As a result, the ego vehicle can navigate
more efficiently and safely with the guidance of the DDPG algorithm.

4.4. Adaptability Estimation

After training automated vehicles for highway driving scenarios, a phase is imple-
mented to evaluate their ability to adapt. The testing phase consists of 10 episodes with the
initial configurations remaining consistent with the training phase. The neural networks’
parameters acquired during training are preserved and can be directly applied in new
circumstances. During testing, the average reward achieved and instances of collisions are
analyzed to ensure that the vehicles can adapt to new situations. During the testing phase,
Figure 13 shows the normalized average reward achieved by the DDPG and DQN methods.
The reward is mainly determined by the vehicle’s speed and collision occurrences.
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The average reward might not reach its maximum score of 100 in this study due
to instances where the ego vehicle must decelerate to prevent collisions. Additionally,
the ego vehicle may need to switch lanes to facilitate overtaking maneuvers. To illus-
trate decision-making performance, three representative situations (A and B indicated in
Figures 14 and 15) are selected for analysis without loss of generality.

Figure 14 demonstrates a driving scenario where the ego vehicle is surrounded by
three vehicles in front of it. The ego vehicle needs to engage in extended car-following
maneuvers until it finds an opportunity to overtake them. Consequently, the vehicle may
not achieve its maximum speed, and it might not surpass all surrounding vehicles before
reaching its destination.
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change, 3: preparing for lane change, 4: executing lane change, 5: preparing for second lane change,
6: executing second lane change, 7: executing second lane change, 8: executing lane keeping).
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Moreover, Figure 15 depicts an uncommon driving scenario where the ego vehicle
attempts a risky lane change to gain higher rewards. Then, due to insufficient operating
space, it overtakes nearby vehicles while it has minimum speed. These kinds of occurrences
are infrequent during training and can potentially lead the ego vehicle to cause collisions.

The comprehensive analysis presented in Figures 14 and 15 suggests the need for
further refinement of the adaptable decision-making strategy through extended training.
These findings also underscore the applicability of the corresponding control policy in
real-world settings.

The DDPG algorithm succeeded in two different scenarios tested; it indicates a high
level of adaptability and generalization ability.

The fact that DDPG performed well across multiple scenarios suggests that it was
able to generalize its learned policy effectively. Generalization refers to the capability
of an algorithm to apply knowledge gained from one scenario to perform well in new,
unseen scenarios. DDPG’s success in two scenarios indicates that it learned a policy that is
robust and applicable across a range of environments. Moreover, DDPG’s success in diverse
scenarios highlights its flexibility as a reinforcement learning algorithm. It was able to adapt
its policy to different environmental conditions and task requirements, demonstrating its
ability to handle varying complexities and dynamics. DDPG’s success across multiple
scenarios also reflects its learning dynamics, including exploration strategies, update rules,
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and memory mechanisms. These learning dynamics have enabled DDPG to efficiently
learn and adapt its policy to different environmental conditions.

Eventually, DDPG’s consistent success across different scenarios also presents its
robustness as an algorithm. Robustness refers to an algorithm’s ability to maintain good
performance despite variations in the environment or perturbations in the learning process.
DDPG’s ability to perform well in diverse scenarios suggests that it is robust to changes
and uncertainties.

5. Conclusions

The study employs DRL techniques to explore the challenge of highway decision
making. In this study, we introduce an innovative approach by incorporating a unique
combination of driving scenarios, specifically lane change, double lane change, and lane
keeping, which have not been collectively utilized in prior studies. This combination
allows for a comprehensive evaluation of the decision-making DDPG algorithm under
varied and complex driving conditions. By addressing this complex scenario, the present
study offers a more realistic testing framework, enhancing the reliability adaptability of
AD systems in real-world situations. This innovation not only fills a gap in the existing
research but also contributes to the advancement of safer and more efficient AD technolo-
gies. A tailored control framework is established using the DDPG algorithm within the
driving environments to ensure safety and effectiveness. The paper presents the proposed
approach’s performance, convergence rate, and adaptability through a sequence of sim-
ulation experiments. According to the results, the DDPG algorithm is more efficient and
safer than the DQN technique. Furthermore, the testing results are thoroughly evaluated,
showcasing the potential of the proposed approach to be successfully implemented in
real-world driving scenarios. Future work involves implementing online highway decision
making via hardware-in-loop research and using real-world highway databases to estimate
relevant overtaking strategies.

Author Contributions: Conceptualization, A.R. and S.A.; methodology, A.R. and S.A.; software, A.R.
and S.A.; validation, A.R. and A.E.; formal analysis, A.R.; investigation, A.R.; resources, A.R. and
A.E.; data curation, A.E.; writing—original draft preparation, A.R.; writing—review and editing, A.E.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We acknowledge the use of online translation tools to enhance the quality of
our text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, T.; Huang, B.; Deng, Z.; Wang, H.; Tang, X.; Wang, X.; Cao, D. Heuristics-oriented overtaking decision making for autonomous

vehicles using reinforcement learning. IET Electr. Syst. Transp. 2020, 10, 417–424. [CrossRef]
2. Rasouli, A.; Tsotsos, J.K. Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE Trans. Intell.

Transp. Syst. 2019, 21, 900–918. [CrossRef]
3. Liu, T.; Tian, B.; Ai, Y.; Chen, L.; Liu, F.; Cao, D. Dynamic States Prediction in Autonomous Vehicles: Comparison of Three

Different Methods. In Proceedings of the IEEE Intelligent Transportation Systems Conference (ITSC 2019), Auckland, New
Zealand, 27–30 October 2019.

4. Hoel, C.; Driggs-Campbell, K.; Wolff, K.; Laine, L.; Kochenderfer, M. Combining planning and deep reinforcement learning in
tactical decision making for autonomous driving. IEEE Trans. Intell. Veh. 2019, 5, 294–305. [CrossRef]

5. Cao, Z.; Yang, D.; Xu, S.; Peng, H.; Li, B.; Feng, S.; Zhao, D. Highway Exiting Planner for Automated Vehicles Using Reinforcement
Learning. IEEE Trans. Intell. Transp. Syst. 2020, 22, 990–1000. [CrossRef]

6. Sakib, N. Highway Lane Change under Uncertainty with Deep Reinforcement Learning Based Motion Planner. 2020. Available
online: https://era.library.ualberta.ca/items/501e8502-0e1c-4ab9-adbe-aeb2da0e29fd (accessed on 17 June 2024).

https://doi.org/10.1049/iet-est.2020.0044
https://doi.org/10.1109/TITS.2019.2901817
https://doi.org/10.1109/TIV.2019.2955905
https://doi.org/10.1109/TITS.2019.2961739
https://era.library.ualberta.ca/items/501e8502-0e1c-4ab9-adbe-aeb2da0e29fd


Modelling 2024, 5 968

7. Alizadeh, A.; Moghadam, M.; Bicer, Y.; Ure, N.; Yavas, U.; Kurtulus, C. Automated Lane Change Decision Making using
Deep Reinforcement Learning in Dynamic and Uncertain Highway Environment. In Proceedings of the 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1399–1404.

8. Zhang, S.; Peng, H.; Nageshrao, S.; Tseng, E. Discretionary Lane Change Decision Making using Reinforcement Learning with
Model-Based Exploration. In Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications
(ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 844–850.

9. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Sallab, A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous
driving: A survey. arXiv 2020, arXiv:2002.00444. [CrossRef]

10. Furda, A.; Vlacic, L. Enabling safe autonomous driving in real-world city traffic using multiple criteria decisions making. IEEE
Intell. Transp. Syst. Mag. 2011, 3, 4–17. [CrossRef]

11. Nie, J.; Zhang, J.; Ding, W.; Wan, X.; Chen, X.; Ran, B. Decentralized cooperative lane-changing decision-making for connected
autonomous Vehicles. IEEE Access 2016, 4, 9413–9420. [CrossRef]

12. Li, L.; Ota, K.; Dong, M. Humanlike driving: Empirical decisionmaking system for autonomous vehicles. IEEE Trans. Veh. Technol.
2018, 67, 6814–6823. [CrossRef]

13. Duan, J.; Li, S.E.; Guan, Y.; Sun, Q.; Cheng, B. Hierarchical reinforcement learning for self-driving decision-making without
reliance on labeled driving data. IET Intell. Transp. Syst. 2020, 14, 297–305. [CrossRef]

14. Li, G.; Li, S.; Li, S.; Qu, X. Continuous decision-making for autonomous driving at intersections using deep deterministic policy
gradient. IET Intel. Transp. Syst. 2021, 16, 1669–1681. [CrossRef]

15. Zhang, Q.; Lin, J.; Sha, Q.; He, B.; Li, G. Deep interactive reinforcement learning for path following of autonomous underwater
vehicle. IEEE Access 2020, 8, 24258–24268. [CrossRef]

16. Chen, C.; Jiang, J.; Lv, N.; Li, S. An intelligent path planning scheme of autonomous vehicles platoon using deep reinforcement
learning on the network edge. IEEE Access 2020, 8, 99059–99069. [CrossRef]

17. Yang, C.; Zha, M.; Wang, W.; Liu, K.; Xiang, C. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid
electric vehicles: Review and recent advances under intelligent transportation system. IET Intell. Transp. Syst. 2020, 14, 702–711.
[CrossRef]

18. Han, S.; Miao, F. Behavior planning for connected autonomous vehicles using feedback deep reinforcement learning. arXiv 2020,
arXiv:2003.04371. Available online: http://arxiv.org/abs/2003.04371 (accessed on 4 September 2022).

19. Nageshrao, S.; Tseng, H.E.; Filev, D. Autonomous highway driving using deep reinforcement learning. In Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2326–2331.

20. Lv, K.; Pei, X.; Chen, C.; Xu, J. A Safe and Efficient Lane Change Decision-Making Strategy of Autonomous Driving Based on
Deep Reinforcement Learning. Mathematics 2022, 10, 1551. [CrossRef]

21. Available online: https://www.avl.com/en/engineering/vehicle-engineering/vehicle-development/global-vehicle-benchmarking-
and-technology (accessed on 17 November 2022).

22. Reichmann-Blaga, E. ‘Validierung von Fahrzeugdynamischen Simulationsmodellen anhand von 546 Fahrzeugmessungen.
Master’s Thesis, Graz University of Technology, Graz, Austria, 2024. Available online: https://repository.tugraz.at/publications/
3kttg-zmr02 (accessed on 17 June 2024).

23. The Reinforcement Learning Framework—Hugging Face Deep RL Course. Available online: https://huggingface.co/learn/
deep-rl-course/unit1/rl-framework (accessed on 4 May 2022).

24. Song, W.; Xiong, G.; Chen, H. Intention-aware autonomous driving decision-making in an uncontrolled intersection. Math. Probl.
Eng. 2016, 2016, 1025349. [CrossRef]

25. Hu, Z.; Gao, H.; Wang, T.; Han, D.; Lu, Y. Joint Optimization for Mobile Edge Computing-Enabled Blockchain Systems: A Deep
Reinforcement Learning Approach. Sensors 2022, 22, 3217. [CrossRef]

26. Lai, J.-P.; Li, H.; Shi, Y.; Xu, L.-M.; Yan, H. Anti Collision Control Strategy of Unmanned Vehicle Based on DDPG Algorithm.
Wuhan Ligong Daxue Xuebao/J. Wuhan Univ. Technol. 2021, 43, 68–76.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/MITS.2011.940472
https://doi.org/10.1109/ACCESS.2017.2649567
https://doi.org/10.1109/TVT.2018.2822762
https://doi.org/10.1049/iet-its.2019.0317
https://doi.org/10.1049/itr2.12107
https://doi.org/10.1109/ACCESS.2020.2970433
https://doi.org/10.1109/ACCESS.2020.2998015
https://doi.org/10.1049/iet-its.2019.0606
http://arxiv.org/abs/2003.04371
https://doi.org/10.3390/math10091551
https://www.avl.com/en/engineering/vehicle-engineering/vehicle-development/global-vehicle-benchmarking-and-technology
https://www.avl.com/en/engineering/vehicle-engineering/vehicle-development/global-vehicle-benchmarking-and-technology
https://repository.tugraz.at/publications/3kttg-zmr02
https://repository.tugraz.at/publications/3kttg-zmr02
https://huggingface.co/learn/deep-rl-course/unit1/rl-framework
https://huggingface.co/learn/deep-rl-course/unit1/rl-framework
https://doi.org/10.1155/2016/1025349
https://doi.org/10.3390/s22093217

	Introduction 
	Vehicle Dynamic and Driving Scenario 
	Vehicle Dynamic 
	Driving Scenario 

	RL Method 
	Deep Deterministic Policy Gradient (DDPG) 
	Deep Q-Network (DQN) 

	Discussion 
	Performance Evaluation 
	Criticality Evaluation 
	Comparison between DDPG and DQN 
	Adaptability Estimation 

	Conclusions 
	References

