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Abstract: Spatiotemporal axle temperature forecasting is crucial for real-time failure detection in
locomotive control systems, significantly enhancing reliability and facilitating early maintenance.
Motivated by the need for more accurate and reliable prediction models, this paper proposes a
novel ensemble graph convolutional recurrent unit network. This innovative approach aims to
develop a highly reliable and accurate spatiotemporal axle temperature forecasting model, thereby
increasing locomotive safety and operational efficiency. The modeling structure involves three key
steps: (1) the GCN module extracts and aggregates spatiotemporal temperature data and deep
feature information from the raw data of different axles; (2) these features are fed into GRU and
BiLSTM networks for modeling and forecasting; (3) the ICA algorithm optimizes the fusion weight
coefficients to combine the forecasting results from GRU and BiLSTM, achieving superior outcomes.
Comparative experiments demonstrate that the proposed model achieves RMSE values of 0.2517 ◦C,
0.2011 ◦C, and 0.2079 ◦C across three temperature series, respectively, indicating superior prediction
accuracy and reduced errors compared to benchmark models in all experimental scenarios. The
Wilcoxon signed-rank test further confirms the statistical significance of the result improvements
with high confidence.

Keywords: spatiotemporal axle temperature forecasting; graph convolutional network; ensemble
optimization

1. Introduction

Due to the increasing demand for railway transportation, the reliability and efficiency
of railway vehicles have a significant impact on the railway system. The methods applied
to ensure the safe operation of railway vehicles have received widespread attention in
the development of railway technology [1]. The axle temperature is one of the important
indicators that reflect whether the locomotive operation is normal and healthy. Therefore,
the prediction of axle temperature is of great value for evaluating the future service status
of the bogie and formulating a reasonable operation and maintenance strategy [2]. The
axle has a certain temperature fluctuation extent during normal operations. When running
under fault conditions, the increase in internal vibration and friction of the axle gearbox
would increase the accumulated heat of the faulty axle, resulting in a higher temperature
fluctuation range than the normal axles [3]. Therefore, by predicting and tracking the axle
temperature of the locomotive bogies, the changing trend of axle temperature in the next
period can be anticipated, reserving enough time to address abnormal axle temperatures.
This has important engineering value for early warning and adjustment of driving strategy
for further decision-making [4].
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To achieve accurate and real-time axle temperature monitoring, various axle temper-
ature monitoring and management systems have been developed [5]. Liu developed a
monitoring system using onboard switched Ethernet with temperature sensors for temper-
ature fault diagnosis [6]. In the condition monitoring system from Vale et al. [7], different
kinds of sensors are utilized in the onboard system to detect faults for early warning.
Bing et al. designed a non-destructive embedding measurement method for high-speed
trains with axle temperature compensation [8]. Although these systems can obtain rel-
atively accurate real-time measurement data, they still lack the ability to predict future
temperature trends. Moreover, the analysis of internal related factors of the system cannot
be ignored. Researchers in relevant fields have recently proposed different prediction
models for fault diagnosis [9], temperature prediction [10,11], wind speed prediction [12],
power prediction [13,14], traffic flow prediction [15,16], air pollutant forecasting [17], etc.
Therefore, it is feasible and necessary to establish prediction models for the changing trend
of the bogie axle temperature to obtain early warnings and fault diagnosis of the faulty
positions on the axle in advance, preventing potential major accidents.

1.1. Related Work

With the advancement of data analysis, time series forecasting methods have gained
significant attention, and scholars have designed various models for fault diagnosis in
machinery and mechanized equipment [18]. Recently, popular time series models primarily
included statistical models and artificial intelligence (AI) models.

Multiple linear regression (MLR) is a statistical method that constructs linear mathemat-
ical models to correlate multiple variables and uses sample data for quantitative analysis [19].
Based on the regression analysis, Ma et al. utilized the stepwise regression method to iden-
tify important factors in high-speed trains that influence the trend of the collected raw
temperature data, by constructing a multivariate forecasting model [1]. The availability of
the model has been proven in the forecasting process, but its accuracy remains unsatisfactory.
The possible reason may be that the MLR relies on large amounts of statistical data, and the
ability of information extraction does not meet application requirements.

With advancements in computing platforms, AI models are widely used due to their
superior performance [14]. Hao and Liu applied the backpropagation neural network
(BPNN) for high-speed train axle temperature forecasting, showing that the accuracy of
BPNN is significantly higher than that of the grey model (GM), GM (1,1) [20]. As parts of
AI models, deep learning algorithms are also popular among scholars in axle temperature
forecasting. They are able to yield more accurate results than statistical methods by learning
from massive data using complex hidden layer structures. Zheng et al. presented the gated
recurrent unit (GRU) method for temperature forecasting, showing that GRU had better
accuracy than other neural networks [21]. Liu et al. compared the performance of two
recurrent neural networks (RNNs), long short-term memory (LSTM) and GRU [22]. Both
models achieved accurate predictions of machinery condition data trends and showed
a clear advantage in handling non-stationary datasets compared to the autoregressive
integrated moving average (ARIMA) model. Yang et al. utilized LSTM for axle temperature
forecasting of railway vehicles. The results showed that the framework is feasible and
prediction errors are within an acceptable range [23]. Luo et al. also developed an LSTM-
based model for train axle temperature prediction using collected data, which showed
satisfying results with acceptable error levels [11]. Since the information flow in the LSTM
structure moves in one direction only, the optimized bi-directional long short-term memory
(BiLSTM) method may be a better solution, more suitable for non-stationary datasets,
and able to further improve modeling performance. In the study of Zhang, BiLSTM was
employed in a hybrid forecasting framework, proving to have the best robustness and
accuracy among benchmark models [24]. The BiLSTM could analyze the non-linearity of
raw data to obtain in-depth insights and identify data features.
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Based on the above research, deep learning algorithms have proven effective in axle
temperature forecasting. However, a single prediction model cannot sufficiently process
variable complex nonlinear series data. To improve modeling adaptability and prediction
accuracy, feature extraction and ensemble learning methods in a hybrid structure are
gradually being proposed.

(1) The non-uniform driving speed of the trains may cause non-stationarity in axle
temperature data. To eliminate non-stationarity, feature extraction algorithms are used to
conduct the deep information mining of the raw data and extract the most important data
features for modeling [25]. Yan et al. applied the stacked autoencoder (SAE) to improve
the input of the group method of data handling (GMDH) model. By integrating SAE and
support vector machines (SVMs), the hybrid model shows superior experimental results
over other benchmark models in axle temperature prediction [26]. The convolutional neural
network (CNN) is employed by Fu et al. to extract deep information from raw monitoring
data, which effectively improves model ability and enhances the overall forecasting effect
of LSTM [27]. Kong et al. developed a CNN-GRU model to achieve condition forecasting
of wind turbines. The study proved that CNN can effectively extract the wave information
of raw condition data and validated its effectiveness and availability [28]. As the extension
to research the spatial connection between the axle measuring points of trains, Man et al.
used the graph convolutional network (GCN) [29] for feature extraction, which effectively
increased feature extraction ability from the original data and obtained better results with
GRU [30].

(2) Ensemble learning with hybrid modeling techniques can collect extracted features
and combine different prediction models by adopting a weighted integration principle to
achieve improved performance. This can further optimize prediction accuracy and improve
modeling adaptability for different datasets [31]. For this purpose, a GA-ANN structure is
proposed, in which the forecasting ability of artificial neural network (ANN) was enhanced
by genetic algorithm (GA) [32]. Singh used neutrosophic set theory to improve the particle
swarm optimization (PSO) algorithm [33]. It was tested with other datasets and this hybrid
framework showed significant improvement in accuracy by adding PSO. Pulido et al. also
used PSO to optimize the weights of each subnet to rebuild the network [34]. Compared with
the traditional network, their ensemble network has better robustness. Another algorithm,
the multi-objective grey wolf optimizer (MOGWO), is employed to combine different deep
learning prediction models, resulting in better performance than single prediction models
for power forecasting [35]. Song et al. presented a novel ensemble model, which uses the
grey wolf optimizer (GWO) to combine several neural networks with different structures
and achieve better performance than single networks [36]. Li et al. [37] used the imperialist
competitive algorithm (ICA) to optimize and integrate multiple extreme learning machines
(ELMs) to build forecasting models with excellent performance. The experiments show that
the generalization effect of the ICA-ELM method outperformed the classic ELM.

Through the research listed above, the hybrid structures of the abovementioned
models could significantly reduce prediction errors. It can also be found that the feature
extraction methods can greatly reduce data variability and generate meaningful information.
Therefore, the input data for prediction models is further optimized and extracted to
strengthen modeling recognition capability. Moreover, ensemble learning algorithms can
analyze the correlation in data series and integrate different neural networks to improve
model performance with lower error and higher accuracy.

1.2. Novelty of the Study

This study proposes a spatiotemporal forecasting model consisting of the GCN feature
extraction module, the GRU prediction module, the BiLSTM prediction module, and the
ICA ensemble optimization method for locomotive axle temperature forecasting. The
novelty of this study can be summarized as follows:
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(1) Different from the traditional single-variable axle temperature forecasting model,
this paper proposes a multi-data-driven forecasting model based on spatiotemporal charac-
teristic information. It is able to extract meaningful information from raw locomotive axle
temperature data to study temperature fluctuation tendencies for potential failures.

(2) GCN-GRU and GCN-BiLSTM are applied as the main prediction models to con-
struct the spatiotemporal axle temperature prediction model. On one hand, GCN uses
the spatial graph network to effectively aggregate data from different nodes and transfer
the extracted graph features to GRU and BiLSTM. On the other hand, GRU and BiLSTM
networks with special recurrent structures can deeply analyze the extracted feature in-
formation by further learning the temporal dependencies, thus building more stable and
accurate prediction models.

(3) ICA is applied in the analysis of locomotive axle temperature to optimize fusion
weight coefficients of GCN-GRU and GCN-BiLSTM and integrate the forecasting results.
ICA has demonstrated its effectiveness with faster convergence speed and better global
optimization ability than other methods in modeling optimization. Thus, the internal
relationship of the axle temperature series could be deeply analyzed to achieve better
forecasting results.

The proposed spatiotemporal axle temperature prediction model can be deployed
on computational terminals within locomotive onboard subsystems. By leveraging edge
computing, it provides real-time advanced predictions of axle temperatures at key measure-
ment points on the bogie. Additionally, the model can be deployed on high-performance
servers within ground subsystems. When axle temperature data from the onboard sub-
system is transmitted to the ground subsystem, advanced predictions can be performed,
with the results fed back to the locomotive. These predictions of future temperature states
enable a comprehensive assessment of temperature trends at various axle temperature
measurement points on the bogie. This includes analyzing temperature differences between
corresponding axles and between axles and ambient temperatures, facilitating the early
detection of potential faults. Consequently, the system can issue fault status warnings,
guiding locomotive operation and management. Overall, the locomotive control system
equipped with the axle temperature prediction model can issue alerts for potential abnor-
mal temperature rises based on predicted axle temperatures, thereby enabling real-time
detection and diagnosis of bogie faults.

The proposed model shows great innovation in the dynamic integration of GCN,
GRU, BiLSTM, and ICA. Therefore, it is of great significance to test the applicability
and efficiency of the proposed model in axle temperature spatiotemporal forecasting. To
reveal its advanced and accurate performance, several models from other researchers are
reproduced and compared with the proposed GCN-GRU-BiLSTM-ICA model.

2. Methodology
2.1. Framework of the Proposed Axle Temperature Prediction Model

The overall framework of the proposed spatiotemporal forecasting model is shown in
Figure 1, encompassing feature extraction, deep learning prediction models, and ensemble
learning algorithms. The details of the framework are listed below:

Part A: The spatial and temporal datasets of raw axle temperature are preprocessed,
and the raw data are separated into the training set, validation set, and test set. The end-to-
end learning ability of node features and structural information of the GCN is applied to
preprocess the spatiotemporal temperature data of the bogie axles. The combinations of
GCN-GRU and GCN-BiLSTM are utilized for spatiotemporal axle temperature prediction,
and the model parameters are obtained using the training set. GCN is used to extract the
spatiotemporal correlation information from the original data and transmit the acquired
features to BiLSTM and GRU to obtain the forecasting results.

Part B: ICA is used to integrate GCN-GRU and GCN-BiLSTM by solving and optimiz-
ing two weighting coefficients (w1 and w2). ICA optimizes the weight coefficients based on
the model forecasting results to improve the overall prediction performance.
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Part C: The final output of the ensemble model is calculated using the following equation:

ô(t) = w1ô1(t) + w2ô2(t) (1)

where w1 and w2 are the weight coefficients of GCN-GRU and GCN-BiLSTM, respectively;
ô1(t) and ô2(t) are the predictions of the two models, respectively.

The validation set is utilized to train the ICA, while the test set is used to analyze and
evaluate the prediction ability of the proposed GCN-GRU-BiLSTM-ICA model.
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2.2. Graph Convolutional Network

In the analysis of railway vehicles, due to various spatial data such as the complex
structure of these vehicles and the relevance of each component, researchers have begun to
focus on the application of graph deep learning to extract deep signal features and increase
the expressive ability of models on graphs [30]. Graph neural networks can be classified
into two categories depending on the type of convolutions: spectral graph neural networks
and spatial graph neural networks [38]:

(1) Spectral graph convolution: This method primarily performs convolution oper-
ations on topological graphs with the support of graph theory. It transforms data from
the spatial domain to the spectral domain by using the graph Fourier transform [39]. The
convolution operation is then performed in the spectral domain, and finally, the data are
transformed back into the spatial domain using the inverse Fourier transform [40].

(2) Spatial graph convolution: Different from the spectral approach, spatial graph
convolution directly operates on the graph structure by defining convolutions on the
graph nodes and their neighbors. This method analyzes the correlations of nodes based
on their connectivity in the graph, making it more intuitive and often more efficient
than spectral methods [41]. Spatial graph convolutions are generally implemented using
message-passing techniques, where each node updates its feature representation based on
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the information from its neighbors [42]. This method has the advantages of extendibility,
high flexibility, and low computational complexity [43]. Hence, spatial graph convolution
is applied in this study to describe the locomotive axle temperature data graph network.

To demonstrate graph convolution, the axle temperature graph data can be repre-
sented as a graph, G = (V , E , W), where V represents the node set, composed of the axle
temperature measuring points; E represents the edge set, containing the connection infor-
mation between all nodes; W ∈ RN×N represents the weights of edges. The equations of W
and the degree matrix D are presented in Equations (2) and (3).

W =


w11 w12 . . . w1N
w21 w22 . . . w2N
. . . . . . . . . . . .

wN1 wN2 . . . wNN

 (2)

Dii =
N

∑
j=1

wij (3)

where wij is the weight between node i and node j.
GCN can mine the spatial information of graph structure data. Based on the graph

theory, the GCN model can be constructed using the graph Laplacian matrix L, as presented
in Equation (4) [44]: 

L = D − W
L̃ = D− 1

2 (D − W)D− 1
2

L̃ = U⊤ΛU
(4)

where L̃ represents the symmetric normalization of L; the orthogonal matrix U and the
diagonal matrix Λ = diag(λ1, λ2, . . . , λN) represent the eigen decomposition of L̃ [45].

Then, the graph convolution can be calculated using Fourier transform and inverse
Fourier transform as follows [46]:

x ∗ h = [U(U⊤x)⊙ (U⊤h)] (5)

where x is the input graph signal matrix; h represents the convolutional kernel of graph
signals; and ⊙ represents the Hadamard product.

The GCN can be applied in feature extraction and graph data prediction. An undi-
rected graph is needed for GCN to ensure the decomposition of the graph Laplacian
matrix. In the paper, the spatiotemporal axle temperature graph data are represented as
an undirected graph due to its structural topology, making it suitable for the application
requirements.

2.3. Bi-Directional Long Short-Term Memory

The LSTM, a variety of the RNN, was proposed in 1997 [47]. Compared with other
RNNs, the most remarkable feature of LSTM is its gate structure, which can control the
information flow [48]. Due to this structure, LSTM is very suitable for the storage and mod-
eling of long historical information and the selective handling of relevant information. The
three gates of LSTM are the input gate, output gate, and forget gate, which collaboratively
control the flow of information through the LSTM cell [49].

The input and forget gates decide which information should be extracted or discarded,
and the output gate analyses the output of the cell. The framework of the LSTM cell is
visualized in Figure 2. The transfer and network calculations are shown in the following
equations [50]:
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ft = σ(Wf · [ht−1, xt] + bf)
it = σ(Wi · [ht−1, xt] + bi)
r̃t = tanh(Wr · [ht−1, xt] + br)
rt = ft ⊙ rt−1 + it ⊙ r̃t
ot = σ(Wo · [ht−1, xt] + bo)
ht = ot · tanh(rt)

(6)

where xt is the input; ft, it, and ot are the outputs of the forget gate, input gate, and output
gate, respectively; Wf, Wi, Wr, and Wo are the weight matrices of each gate, respectively; bf,
bi, br, and bo are the bias vectors of each gate, respectively; rt−1 and rt represent the LSTM
cell states; ht−1 and ht are the hidden states; σ represents the sigmoid activation function,
and tanh represents the hyperbolic tangent activation function; [ht−1, xt] represents the
concatenation of ht−1 and xt.
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Figure 2. Gate structure and information flow of the LSTM cell.

The BiLSTM consists of a forward LSTM and a backward LSTM, which are usually
applied to handle data flow in data processing tasks [51]. LSTM is unable to encode
information from back to front whereas BiLSTM can acquire the bi-directional semantic
dependencies by connecting two hidden layers with forward and backward data [52].
Generally, BiLSTM can provide the performance of LSTM in prediction and effectively
learn deeper correlations. The output layer can obtain bi-directional information on data
flow through this framework. The structure of the BiLSTM is demonstrated in Figure 3.
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2.4. Gate Recurrent Unit

The GRU, proposed by Cho et al. in 2014, is a simplified version of LSTM that retains
most of the capabilities of LSTM [53]. GRU addresses the long dependency and gradient
vanishing problems of the RNN network by storing and processing information flow [54].
The gate structure of the GRU mainly consists of an update gate and a reset gate, resulting
in a simpler structure than LSTM and reducing the possibility of overfitting [55].
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The update gate determines the amount of historical information to the current status.
With a larger value, the update gate can bring more historical information from the previous
time step [56]. The reset gate determines the insignificant historical information to ignore.
With a smaller value, the reset gate can ignore more historical information [57]. The reset
gate functions by analyzing the deep information from the historical data selectively [58].
GRU can be defined as follows [59]:

zt = σ(Wz · [ht−1, xt] + bz)
rt = σ(Wr · [ht−1, xt] + br)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t

(7)

where xt represents the input; zt is the output of the update gate; rt is the output of the
reset gate; h̃t is the candidate activation state; ht represents the output vector; Wz, Wr, and
Wh are the corresponding weight matrices; bz, bz, and bh are the bias vectors; σ represents
the sigmoid activation function. The structure of the GRU cell is visualized in Figure 4.
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The reset gate functions by analyzing the deep information from the historical data selec-
tively [58]. GRU can be defined as follows [59]: 
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where tx  represents the input; tz  is the output of the update gate; tr  is the output of 
the reset gate; th  is the candidate activation state; th  represents the output vector; zW
, rW , and hW  are the corresponding weight matrices; zb , zb , and hb  are the bias vec-
tors; σ  represents the sigmoid activation function. The structure of the GRU cell is visu-
alized in Figure 4. 
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2.5. Imperialist Competitive Algorithm

The ICA, proposed in 2007, is an optimization method formed by simulating the
colony assimilation mechanism and the imperial competition system [60]. The ICA draws
on the competition, occupation, and annexation of colonies between empires in the political
and social colonial times of human history to model the evolution of empires. The ICA is
a global optimization algorithm, in which all initialized individuals are divided into two
types: imperialists and colonies, based on national power [61].

To handle a multi-dimensional optimization problem, a country can be represented by
an array [62]:

country = [V1, V2, V3 . . . , VN ] ∈ R1×N (8)

where Vi represents the i-th variable to be optimized.
The cost of each country is calculated by a cost function f :

cost = f (country) = f (V1, V2, V3 . . . , VN) (9)

At the beginning of the optimization, a total of Ncountry countries are initialized. The
Nimperialist countries with the least cost and most power are selected as imperialists. The
remaining Ncolony countries are regarded as colonies.

The normalized imperialist cost Cn for colonization is described as:

Cn = cn − max
i

{ci} (10)

where cn represents the cost of the n-th imperialist and max
i

{ci} is the imperialist with the

highest cost.
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The normalized power for the imperialist pn is:

pn =

∣∣∣∣∣∣ Cn

∑
Nimperialist
i=1 Ci

∣∣∣∣∣∣ (11)

All imperialists can control some colonies. The number of colonies N.Cn occupied by
the n-th empire is [63]:

N.Cn = round
{

pn · Ncolony

}
(12)

where round denotes a function that rounds numbers. For each imperialist country, it will
randomly select some countries from Ncolony colonies and allocate them to it, forming the
initial empires [63].

Assimilation and revolution caused the movement of the colony towards the appro-
priate empire. If the cost function value of a colony is lower than that of an empire, the
colony will switch within the empires [26]. Figure 5 illustrates the movement of the colony
by x units at an angle of θ:

x ∼ U(0, β × d)
θ ∼ U(−γ, γ)

(13)

where d represents the distance between imperialist and colony; β (β > 1) and γ are
random numbers; U represents a uniform distribution [64].
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The total cost T.Cn of the n-th empire is:

T.Cn = f (impn) + α × ∑N.Cn
i=1 f (coli)

N.Cn
(14)

where the impn represents the imperialist country of the n-th empire; coli represents the
i-th colony of the n-th empire; α decides the extent of effect from the colony to the empire.

The competition of empires leads to stronger empires by occupying colonies. An
empire will collapse when it possesses no colonies. The ICA stops running when only one
empire is left [65].

3. Case Study
3.1. Datasets

To verify the performance and application value of the axle temperature prediction
methods for the locomotive status analysis, this paper uses actual axle temperature data
collected from a bogie of an electric locomotive for experiments. The data are originally mea-
sured and collected by the onboard subsystem of the China locomotive remote monitoring
and diagnosis system (CMD).
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The bogie consists of three axles, each with two temperature sensors considered.
Figure 6a shows the axle and wheel of the bogie of an electric locomotive. Figure 6b shows
the spatial structure and topology of the dataset graph, composed of multiple temperature-
measuring sensors and their connections. This paper considers six temperature sensors
installed on one bogie. The distance between the parallel axles is 1950 mm, and the distance
between two measuring points of the same axle is 2120 mm.
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In this paper, the sensors are considered the nodes of a graph, and the connections
between them are considered the edges of the graph. The time interval between temperature
samples is 1 min (thus the sampling rate is 60 samples per hour) and the measurement
resolution is 1 ◦C (i.e., the temperature values are all integers). A total of 1500 samples are
collected for each axle. Therefore, a total of 6 × 1500 samples is used in this paper, and
these series are numbered as series #1-#6.

The 1st–900th samples of each series are used as the training set, the 901st–1200th are
used as the validation set, and the last 300 samples are used as the test set. In general, the
1st–900th samples are used to train the GCN-GRU and GCN-BiLSTM, the 901st–1200th
samples are selected for the optimization of ICA, and the 1201st–1500th samples are used
to test the performance of the proposed GCN-GRU-BiLSTM-ICA.

To establish a high-precision spatiotemporal axle temperature prediction model, this
paper uses multi-axis graph time series as inputs for the proposed model. The historical
axle temperature data collected from six sensors and the graph structure of the sensors are
used as model input. The proposed model finally provides the prediction for the point of
interest. Measuring points 1, 2, and 3 are selected as three distinct points of interest, which
means that the axle temperature series #1, #2, and #3 are separately used for prediction and
performance evaluation.

3.2. Evaluation Metrics

The evaluation metrics for regression analysis can comprehensively assess the devia-
tion between the original data and predicted values. In the paper, three classic evaluation
metrics—the mean absolute error (MAE), the root mean square error (RMSE), and the
mean absolute percentage error (MAPE)—are used to demonstrate modeling accuracy.
Moreover, the promoting percentages of evaluation metrics, PMAE, PMAPE, and PRMSE, are
also calculated to further analyze the prediction abilities. The equations of the metrics are
presented in (15) and (16), respectively.
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

MAE =
1
N

N
∑

t=1
|rt − r̂t|

MAPE =
1
N

N
∑

t=1

∣∣∣∣ rt − r̂t

rt

∣∣∣∣× 100%

RMSE =

√
1
N

N
∑

t=1
(rt − r̂t)

2

(15)


PMAE = MAE1−MAE2

MAE1
× 100%

PMAPE = MAPE1−MAPE2
MAPE1

× 100%
PRMSE = RMSE1−RMSE2

RMSE1
× 100%

(16)

where rt is the actual axle temperature at time t; r̂t is the predicted axle temperature at time
t; and N represents the number of samples.

In addition to the aforementioned regression error evaluation metrics, this paper also
employs the non-parametric Wilcoxon signed-rank test to verify whether there is a statisti-
cally significant difference in the prediction performance between the proposed model and
individual models. The null and alternative hypotheses are formulated as follows:

• Null hypothesis (H0): There is no significant difference in the median prediction errors
between model A and model B;

• Alternative hypothesis (H1): There is a significant difference in the median prediction
errors between model A and model B.

3.3. Comparison and Analysis of Different Modules
3.3.1. Comparison and Analysis of Different Prediction Models

To demonstrate the effective prediction performance of the individual GRU and
BiLSTM within the proposed hybrid axle temperature forecasting model, several traditional
models and classic deep learning models are selected for comparison. These models include
RNN, deep belief network (DBN), echo state network (ESN), ELM, multilayer perceptron
(MLP), SVM, and ARIMA. The metrics of each model are presented in Table 1 and visualized
in Figure 7, from which the following conclusions can be drawn:

(1) The accuracy of the ELM, MLP, SVM, and ARIMA is worse than other models, which
might be influenced by the nonstationary and nonlinearity of the raw data series.
This demonstrates that deep networks with multiple hidden layers can better an-
alyze the deeply hidden information within graph time series. They outperform
traditional shallow neural networks by extracting more data features and achieving
superior results.

(2) Compared with other classic deep learning networks, the GRU and BiLSTM show
better prediction accuracy. This indicates that these two models can effectively conduct
axle temperature forecasting and achieve better results than the other models. The
possible reason may be that the GRU improves modeling efficiency through its gate
structure, and the bi-directional operation structure of BiLSTM can extract deeper
information from both directions of the time series.

(3) It can be observed that the BiLSTM and GRU exhibit satisfying prediction performance
compared to other deep learning models. However, they still show different strengths
and weaknesses across different series, reflecting the fluctuation among the best
prediction accuracy. This proves that a single deep learning prediction model is
difficult to adapt to different types of axle temperature series. Therefore, individual
deep networks may lead to varying recognition and calculation performances in
different time series forecasting. It is necessary to adopt other modules and models to
further enhance the prediction ability and robustness of axle temperature forecasting.
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Table 1. Error metrics for various individual prediction models.

Series Model MAE (◦C) MAPE (%) RMSE (◦C)

#1

GRU 0.1345 0.4013 0.3029
BiLSTM 0.1365 0.3993 0.3045

RNN 0.1550 0.4550 0.3277
DBN 0.1960 0.4962 0.3282
ESN 0.1987 0.5830 0.3141
ELM 0.1920 0.5250 0.3291
MLP 0.1781 0.4869 0.3941
SVM 0.2174 0.5367 0.3664

ARIMA 0.2127 0.5440 0.3705

#2

GRU 0.1158 0.2988 0.2561
BiLSTM 0.1211 0.3096 0.2645

RNN 0.1345 0.3479 0.2717
DBN 0.1950 0.4372 0.3038
ESN 0.1757 0.4597 0.2770
ELM 0.1850 0.5582 0.3105
MLP 0.2156 0.5735 0.3184
SVM 0.2029 0.5134 0.3231

ARIMA 0.2107 0.4837 0.3717
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Table 1. Cont.

Series Model MAE (◦C) MAPE (%) RMSE (◦C)

#3

GRU 0.1226 0.3122 0.2711
BiLSTM 0.1710 0.3043 0.2759

RNN 0.1813 0.3577 0.2827
DBN 0.1868 0.3819 0.3031
ESN 0.2061 0.3571 0.2844
ELM 0.2235 0.4136 0.2841
MLP 0.2401 0.4140 0.3672
SVM 0.2876 0.5057 0.4005

ARIMA 0.3041 0.5814 0.4506
The values in bold represent the lowest error metrics.

3.3.2. Comparison and Analysis of Different Feature Extraction Modules

To explore the possibility of further optimization of the GRU and BiLSTM, the GCN
is applied to extract the graph feature information and is connected with deep learning
prediction models to obtain more satisfactory accuracy. The proposed GCN-GRU and GCN-
BiLSTM are compared with individual GRU and BiLSTM. Two other feature extraction
models, SAE and CNN, are compared with the GCN. All the relevant experimental results
are presented in Tables 2 and 3 and visualized in Figure 8, from which the following can
be concluded:

(1) In contrast to individual GRU and BiLSTM prediction models, the hybrid model
GCN-GRU and GCN-BiLSTM achieve better prediction results with the feature ex-
traction module GCN. The overall results showed that the GCN could deeply analyze
and optimize the original graph data features for prediction models, promoting the
improvement in the forecasting accuracy of the hybrid model.

(2) In the comparison experiment with the SAE, the GCN based on graph structure
information learning presented better performance. This proves that the GCN as a
graph feature extraction method, which is a promotion of the CNN based on graphs,
is suitable for researching the deep relations between graph nodes to learn the optimal
features. The possible cause may be that GCN can improve the applicability of feature
extraction by reasonably considering nodes and analyzing the edge weights and inner
connections between the nodes.

(3) In the comparison experiment with the CNN, the GCN-based models also obtained
better results in the hybrid framework and improved the overall forecasting result of
GRU and BiLSTM, which proves that the GCN had excellent node feature learning and
analysis ability in spatiotemporal axle temperature modeling. The GCN could achieve
end-to-end learning of node features and convolve the topological graph, which can
further improve the learning of the weight correlation between nodes, extract the
optimal feature based on the data fluctuation trend, and obtain optimal results.

Table 2. Percentage improvement in error metrics of GCN-GRU and GCN-BiLSTM compared to GRU
and BiLSTM.

Model Metric (%) Series #1 Series #2 Series #3

GCN-GRU
vs.

GRU

PMAE 43.0483 43.6960 32.2186
PMAPE 40.8879 46.3520 22.0051
PRMSE 17.5305 7.1847 19.4024

GCN-BiLSTM
vs.

BiLSTM

PMAE 43.8828 44.5087 52.3392
PMAPE 51.2397 46.9315 21.4591
PRMSE 17.9639 7.1456 17.1801
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Table 3. Error metrics for models with different feature extraction modules across three series.

Series Model MAE (◦C) MAPE (%) RMSE (◦C)

#1

GCN-GRU 0.0766 0.2011 0.2598
GCN-BiLSTM 0.0743 0.1947 0.2593

CNN-GRU 0.1246 0.3325 0.2625
CNN-BiLSTM 0.1198 0.3203 0.2613

SAE-GRU 0.1321 0.3540 0.2650
SAE-BiLSTM 0.1274 0.3417 0.2638

#2

GCN-GRU 0.0652 0.1603 0.2377
GCN-BiLSTM 0.0672 0.1643 0.2456

CNN-GRU 0.1070 0.2733 0.2426
CNN-BiLSTM 0.0724 0.1767 0.2390

SAE-GRU 0.1145 0.2916 0.2422
SAE-BiLSTM 0.1141 0.2919 0.2426

#3

GCN-GRU 0.0831 0.2435 0.2685
GCN-BiLSTM 0.0815 0.2390 0.2685

CNN-GRU 0.0994 0.2892 0.2554
CNN-BiLSTM 0.0906 0.2653 0.2531

SAE-GRU 0.1032 0.3035 0.2541
SAE-BiLSTM 0.1015 0.2980 0.2520

The values in bold represent the lowest error metrics.
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3.3.3. Comparison and Analysis of Different Ensemble Methods

To verify the effect of ensemble learning on prediction ability and the applicability
and effectiveness of the proposed GCN-GRU-BiLSTM-ICA, several ensemble methods are
evaluated together with GCN-GRU and GCN-BiLSTM. Moreover, this experiment also
verifies the potential of ICA in decision-making by ensemble learning. Several heuristic
ensemble methods, such as GWO, GA, and PSO, are used for comparative experiments. The
loss convergence of the algorithms is visualized in Figure 9, and the evaluation metrics are
presented in Tables 4–6 and visualized in Figure 10, from which the following conclusions
can be made:

(1) The prediction accuracies of all ensemble models are superior to the GCN-GRU
and GCN-BiLSTM. This proves that ensemble learning algorithms can improve the
performance of prediction models. These ensemble learning algorithms can effec-
tively analyze the specialties of the base prediction models and enhance the overall
performance of the axle temperature forecasting model.

(2) Among all the ensemble models in this experiment, the ICA algorithm has lower error
metrics than other heuristic ensemble methods, proving that the ICA has excellent op-
timization ability in optimizing the axle temperature prediction models. The possible
reason is that the ICA can conduct the optimization with high convergence speed and
high convergence accuracy due to its strong global convergence ability. By greatly
improving the ability of the exploration analysis and weight coefficients decision, the
ensemble model based on ICA can provide optimal predictions.

Table 4. Error metrics for models with different ensemble methods.

Series Model MAE (◦C) MAPE (%) RMSE (◦C)

#1

GCN-GRU-BiLSTM-ICA 0.0725 0.1900 0.2517
GCN-GRU-BiLSTM-PSO 0.0736 0.1929 0.2530
GCN-GRU-BiLSTM-GA 0.0756 0.1957 0.2590

GCN-GRU-BiLSTM-GWO 0.0810 0.2155 0.2692

#2

GCN-GRU-BiLSTM-ICA 0.0633 0.1534 0.2011
GCN-GRU-BiLSTM-PSO 0.0637 0.1557 0.2102
GCN-GRU-BiLSTM-GA 0.0695 0.1574 0.2159

GCN-GRU-BiLSTM-GWO 0.0714 0.1663 0.2292

#3

GCN-GRU-BiLSTM-ICA 0.0789 0.2311 0.2079
GCN-GRU-BiLSTM-PSO 0.0805 0.2360 0.2100
GCN-GRU-BiLSTM-GA 0.0810 0.2390 0.2154

GCN-GRU-BiLSTM-GWO 0.0933 0.2426 0.2293
The values in bold represent the lowest error metrics.

Table 5. Percentage improvement in error metrics of GCN-GRU-BiLSTM-ICA compared to GCN-
GRU-BiLSTM-PSO, GCN-GRU-BiLSTM-GA, and GCN-GRU-BiLSTM-GWO.

Model Metric (%) Series #1 Series #2 Series #3

GCN-GRU-BiLSTM-ICA
vs.

GCN-GRU-BiLSTM-PSO

PMAE 1.4946 0.6279 1.9876
PMAPE 1.5034 1.4772 2.0763
PRMSE 0.5138 4.3292 1.0000

GCN-GRU-BiLSTM-ICA
vs.

GCN-GRU-BiLSTM-GA

PMAE 4.1001 8.9209 2.5926
PMAPE 2.9126 2.5413 3.3054
PRMSE 2.8185 6.8550 3.4818

GCN-GRU-BiLSTM-ICA
vs.

GCN-GRU-BiLSTM-GWO

PMAE 10.4938 11.3445 15.4341
PRMSE 11.8329 7.7571 4.7403
PRMSE 6.5007 12.2600 9.3328
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Table 6. Percentage improvement in error metrics of GCN-GRU-BiLSTM-ICA compared to GCN-GRU
and GCN-BiLSTM.

Model Metric (%) Series #1 Series #2 Series #3

GCN-GRU-BiLSTM-ICA
vs.

GCN-GRU

PMAE 5.3168 21.5511 13.5132
PMAPE 5.0493 7.4407 19.4159
PRMSE 5.0397 5.4131 19.5777

GCN-GRU-BiLSTM-ICA
vs.

GCN-BiLSTM

PMAE 5.0322 22.6347 13.4331
PMAPE 5.3816 6.4984 19.5146
PRMSE 5.3727 4.5366 19.6051

3.4. Significance Analysis of the Proposed Model Performance

To evaluate the significance of the performance improvement of the proposed spa-
tiotemporal locomotive axle temperature prediction model over individual baseline models,
this section employs the Wilcoxon signed-rank test to analyze the significance of the pre-
diction performance (by using paired prediction errors). Table 7 presents the p-values and
significance levels of the Wilcoxon tests for comparisons between the proposed model and
individual models across different series.

As shown in Table 7, the p-values for comparisons between the proposed model and
all individual models across different series are far below 0.05. Therefore, we can reject the
null hypothesis with a very high level of confidence, concluding that there is a significant
difference in predictive performance between the proposed model and each individual
baseline model.

Table 7. Wilcoxon p-values and significance (α = 0.05) for error comparisons between the proposed
model and individual models.

Individual
Model

Series #1 Series #2 Series #3

p-Value Significance p-Value Significance p-Value Significance

GRU 4.91 × 10−43 Significant 1.37 × 10−22 Significant 1.01 × 10−36 Significant
LSTM 1.02 × 10−42 Significant 7.45 × 10−38 Significant 2.26 × 10−39 Significant
RNN 9.92 × 10−42 Significant 1.15 × 10−35 Significant 3.88 × 10−37 Significant
DBN 1.68 × 10−43 Significant 7.33 × 10−37 Significant 7.33 × 10−35 Significant
ESN 2.96 × 10−43 Significant 7.12 × 10−40 Significant 6.60 × 10−36 Significant
ELM 5.85 × 10−43 Significant 1.21 × 10−37 Significant 9.97 × 10−36 Significant
MLP 3.37 × 10−42 Significant 2.30 × 10−30 Significant 7.21 × 10−38 Significant
SVM 3.22 × 10−43 Significant 5.17 × 10−39 Significant 5.86 × 10−32 Significant

ARIMA 3.87 × 10−44 Significant 8.06 × 10−40 Significant 1.41 × 10−41 Significant

Combining these results with the previously discussed MAE, MAPE, and RMSE evalu-
ation metrics, it is evident that the proposed model significantly outperforms each baseline
model in terms of prediction error. The consistent significance across multiple series further
reinforces the robustness and generalizability of the performance improvements of the
proposed model.

3.5. Comparison and Analysis with Existing Models

The above experiments demonstrate that the proposed GCN-GRU-BiLSTM-ICA axle
temperature prediction model achieves relatively high accuracy among all the investigated
models. To further verify its effectiveness and innovation, several existing advanced models
are used as the benchmark models for comparison, including Mi’s model [12], Zhao’s
model [66], and Liu’s model [58]. Additionally, several classical prediction models, such as
DBN, SVM, and ARIMA in the time series forecasting field are also included. Figures 11–13
present the forecasting results and residuals of the abovementioned prediction models.
Figures 14–16 visualize the MAPE, MAE, and RMSE metrics. From Figures 11–16, the
following conclusions can be made:
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(1) Among the models mentioned, the prediction performance of advanced models
surpasses that of the classical models. This demonstrates that these advanced models
are effective in exploring the deep correlation in various features of spatiotemporal
axle temperature data and achieving satisfactory results. The possible reason is that
these advanced models can efficiently enhance the data aggregation and the overall
framework integration degree of deep learning networks through feature extraction
or ensemble learning methods.

(2) Compared with the existing models, the proposed GCN-GRU-BiLSTM-ICA model
achieves the most precise and satisfactory results in all cases. The proposed GCN
utilizes improved topological graphs that establish corresponding relationships be-
tween nodes and edges to integrate the input features of six nodes, which increases
the quality of the extracted features and the identification power of prediction models.
Subsequently, the data after feature extraction are passed into GRU and BiLSTM net-
works to obtain two forecasting results, respectively. Finally, through dynamic heuristic
iteration for weight selection, the ICA effectively combines the results of the two neural
networks for the final optimal forecasting results. The proposed model effectively
integrates the advantages of each component and demonstrates excellent research
potential and application prospects in spatiotemporal axle temperature forecasting.
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4. Conclusions

Axle temperature forecasting significantly contributes to real-time failure detection
and status management in locomotive control systems. This paper proposes a novel
ensemble deep graph prediction model that combines GCN, GRU, BiLSTM, and ICA to
construct a multi-data-driven spatiotemporal axle temperature forecasting framework. The
key findings of this study are summarized as follows:

(1) The proposed framework integrates data from multiple axle nodes, replacing the
typical single-variable time series prediction model. This approach enhances the analysis
and identification of axle temperature changes, leading to increased forecasting accuracy.

(2) The GCN module effectively aggregates and extracts spatiotemporal axle tempera-
ture data. Unlike traditional feature extraction methods, the graph-based GCN algorithm
analyzes spatial correlations among different locomotive axles, extracting spatial-temporal
features through a multi-layer graph convolutional neural network. This improves the
spatiotemporal modeling capability by providing better input for the prediction models
and optimizing the final forecasting results.

(3) The ICA algorithm optimizes the weight coefficients and integrates the forecasting
results from GCN-GRU and GCN-BiLSTM, significantly enhancing the applicability and
generalization of single deep learning prediction models. The ICA algorithm achieves
superior ensemble results compared to other heuristic algorithms by combining effective
neural network optimization and decision-making capabilities.

(4) The proposed model framework achieved the best accuracy, with RMSE values
of 0.2517 ◦C, 0.2011 ◦C, and 0.2079 ◦C across three temperature series, respectively. The
Wilcoxon signed-rank test further confirmed that the performance improvements are
statistically significant.

The proposed spatiotemporal axle temperature forecasting model offers valuable
insights for locomotive control and intelligent operation management. Future applications
could involve embedding the model into onboard subsystems or intelligent ground sub-
systems to create a comprehensive real-time warning system and lifecycle maintenance
scheduling for locomotives.

Author Contributions: Conceptualization, Y.L. and L.Y.; methodology, Y.L.; software, Y.L. and L.Y.;
validation, Y.L.; formal analysis, Y.L.; investigation, L.Y.; resources, Y.W.; writing—original draft
preparation, Y.L.; writing—review and editing, Y.L. and Y.B.; visualization, Y.W.; supervision, Y.B.;
funding acquisition, Y.B. All authors have read and agreed to the published version of the manuscript.



Modelling 2024, 5 1052

Funding: This research received no external funding.

Data Availability Statement: The authors do not have the authorization to publicly share the data.

Acknowledgments: This study is fully supported by the National Natural Science Foundation of China
(Grant No. 61902108) and the Natural Science Foundation of Hebei Province (Grant No. F2019208305).

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

AI Artificial intelligence
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
BiLSTM Bi-directional long short-term memory
BPNN Backpropagation neural network
CMD China locomotive remote monitoring and diagnosis system
CNN Convolutional neural network
DBN Deep belief network
ELM Extreme learning machine
ESN Echo state network
GA Genetic algorithm
GCN Graph convolutional network
GM Grey model
GMDH Group method of data handling
GRU Gated recurrent unit
GWO Grey wolf optimizer
ICA Imperialist competitive algorithm
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MLP Multilayer perceptron
MLR Multiple linear regression
MOGWO Multi-objective grey wolf optimizer
PSO Particle swarm optimization
RMSE Root mean square error
RNN Recurrent neural network
SAE Stacked autoencoder
SVM Support vector machine
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