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Abstract: The fatigue of adhesive joints in offshore wind turbine blades is a critical and widespread
challenge, necessitating an urgent focus on adhesive bond reliability. Given the constraints of full-
scale testing, this research explores the fatigue endurance of carbon fiber–epoxy adhesive composites,
integral to blade construction. Recognizing the fatigue characteristics’ sensitivity to environmental
factors and joint dimensions, an innovative approach to fatigue modelling and evaluation is intro-
duced. This method incorporates the influence of different environmental stresses and size effects.
Specifically, a degradation coefficient and size impact factor (SIF) are introduced into the cyclic
cohesive zone model, and a simulation-based analytic approach is proposed for analyzing adhesive
fatigue. Furthermore, we introduce a reliability modelling procedure that integrates performance
degradation theory to address the deteriorative characteristics inherent in adhesive fatigue. Subse-
quently, the specimens’ damage accumulation increased by 75% because of the stresses and escalated
to 85% with adhesive joint size effects, causing carbon fiber Reinforced Polymer/epoxy adhesive
joints to fail interfacially rather than in a mixed-mode manner. This study provides valuable insights
for the safety analysis and assessment of adhesive joint performance in offshore wind turbine blades.

Keywords: adhesive fatigue failure; reliability modelling and assessment; performance degradation;
multiple environmental stresses; size effects

1. Introduction

As a crucial component of offshore wind turbines, the performance and reliability
of the blades are crucial to ensure the normal operation of the entire system [1–3]. As
shown in Figure 1, offshore wind turbine blades are joined together through the bonding of
various composite material components: suction shell, pressure shell, leading edge, trailing
edge, and spar cap. Extensive research has indicated that adhesive bonding regions are
the most vulnerable areas in offshore wind turbine blades, and their bonding properties
are considerably influenced by the marine environment and size effects, including factors
such as temperature, humidity, salt spray, and adhesive joint sizes [4–8]. The adhesive
bonding regions are prone to various fatigue-related issues, including interface failure,
cohesive failure, and mixed failure. Furthermore, the coupling of environmental stresses
and size effects can exacerbate the aforementioned concerns [9,10]. These problems present
a significant risk to the safety and reliability of the blades during their operation.

Fatigue testing at the material level furnishes essential cyclic load data for the adhesive
structures of offshore wind turbine blades, which is instrumental for forecasting durability
and for making strategic enhancements during the design phase. Full-scale testing ensures
the safety and reliability of blades under actual operating conditions. Given the high cost,
time consumption, and low reproducibility of full-scale fatigue testing for offshore wind
blades, conducting material-level tests on adhesive samples made of carbon fiber and
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epoxy resin is particularly important [11]. Combining both testing methods can reduce
costs, advance fatigue testing technology, and improve the performance and lifespan
of wind turbine blades [12]. Zheng et al. [13] utilized nCode (2019 version) software
and an equivalent model to assess the adhesive fatigue performance of bionic glass fiber
composites blades for offshore wind turbines. The study revealed that fatigue damage
predominantly occurs at the blade’s root edge and the skin–web junction, especially near
the 50–60 m span tip. Shankar et al. [14] designed offshore wind turbine blade adhesive
joints and, via shear tests, determined that the thickest joints sustained the most damage
under a set impact energy. In contrast, thinner joints benefited from a 20% increase in failure
load due to mechanical interlocking at the bond interface. Raman et al. [15] leveraged
finite element analysis (FEA) to scrutinize the adhesive structure within the wind turbine
blade’s pivotal region. The research findings underscore that adhesive delamination at
the interface of the composite laminate and adhesive layer emerges as the predominant
factor precipitating trailing edge deterioration. Li et al. [16] applied Fluent software (2021
version) for analyzing nine adhesive joint repair models of offshore wind turbine blades.
The simulations highlighted that the overlap length and adhesive joint slope, as internal
parameters, are crucial for improving adhesive performance at the sharp edge.
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Figure 1. The structure composition of an offshore wind turbine blade.

Numerous studies have shown that the fatigue characteristics of adhesive joints are
influenced by multienvironmental stresses. Yang et al. [17] conducted torsion–tension tests
and found that CFRP–steel adhesive specimens, when exposed to salt spray aging, would
develop local cracks. This leads to a significant decrease in the torsional strength of the joint
and ultimately adhesive failure. Chen [18] simulated the impact of marine environments on
stitched joints through salt spray aging, analyzing changes in fracture surfaces and strain
energy release rates. The study found that salt spray aging predominantly led to adhesive
debonding failure by reducing critical strain energy release rates. Mu et al. [19] delved into
the temperature’s influence on the fatigue life of adhesive joints in composite materials via
aging tests. Their findings revealed that temperature has a negligible effect on fatigue life
up to the brink of the adhesive’s glass transition temperature. However, beyond this point,
the fatigue life experiences a pronounced downturn as temperatures escalate. Na et al. [20]
conducted static tensile tests on BFRP–Al adhesive joints across a range of temperatures.
The findings indicated that the adhesive strength of these joints significantly decreases with
elevated temperatures. This decrease in adhesive strength leads to a decline in the joints’
adhesion and a reduction in their fatigue life. Rafiee et al. [21] revealed through static testing
that glass–epoxy composite joints, when subjected to elevated humidity conditions, exhibit
reduced shear strength, abbreviated fatigue life, and are prone to debonding and cracking
at earlier stages of their service life. Hage et al. [22] found an inverse relationship between
the fatigue life of glass–epoxy composite adhesives and aging time through shear tests.
Initially, the fatigue life plummeted as moisture and oxidation rose in the adhesive layer.
After 30 days, the specimens entered a saturated state, with fatigue life slowly deteriorating
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until eventual failure. Taskin et al. [23] compared metal lap shear tests between aged and
nonaged specimens, finding a 50% drop in aged joints’ strength, mainly from interface
failure. This underscores the substantial impact of environmental aging on adhesive joints’
fatigue properties.

Moreover, a comprehensive examination of the existing literature has delineated
that adhesive joints, contingent upon their dimensional attributes, manifest divergent
failure mechanisms and fracture topologies, underscoring the complexity of adhesive
bond performance under fatigue conditions. Makkonen et al. [24] used the S-N method to
fatigue-test 34CrNi3Mo adhesive joints with U-notches, revealing varying fracture rates
and types, with quicker fractures tending towards cohesive failure. Sun and Zou [25,26]
investigated single-lap carbon fiber composite joints with varying overlaps and found that
increasing overlap length initially lowers shear strength, which later stabilizes, while the
failure mode shifts from interface to mixed failure. Similarly, Zhao et al. [27] conducted
shear tests on aluminum alloy adhesive specimens with varying adhesive thicknesses.
Their results indicated that increasing the adhesive layer thickness by 0.1 mm, within the
range of 0.1 mm to 0.5 mm, led to a 3.5% increase in shear strength. Tanulia et al. [28] used
the virtual crack closure technique to simulate wind turbine blades with thick adhesive
layers, finding that a 0.05 mm change in adhesive thickness caused roughly a 200 N
variation in the blade’s load-bearing capacity. Rajad et al. [29] found through stiffness
degradation tests that composite samples with adhesive lengths of 3.5–7.5 mm experienced
rapid stiffness degradation, short fatigue lives, and were more likely to suffer interfacial
damage. Meanwhile, samples with adhesive lengths over 7.5 mm showed slower stiffness
degradation and longer fatigue lives, but were more prone to cohesive failure. The reviewed
literature has meticulously examined the mechanical characteristics and the influence of
size on specimens with varying adhesive dimensions.

Current research has mainly focused on the impact of individual environmental
stresses on structural performance. However, few studies have addressed the effects of
multiple environmental stresses, and even fewer have investigated the adhesive joint size
effect on fatigue performance degradation under these conditions. The aforementioned
studies compellingly underscore the imperative of examining the multienvironmental
stress and size effects on the fatigue failure of bonded joints, highlighting the critical need
for further investigation in this domain. Given this necessity, this study aims to fill these
research gaps by proposing a novel modelling and assessment method. It evaluates the
fatigue reliability of adhesive bonding in offshore wind turbine blades, taking into account
the combined effects of multiple environmental stresses and size effects. Compared to
existing research, this paper offers significant contributions, detailed as follows:

(1) The degradation of adhesive performance is analyzed using the cyclic cohesive zone
theory, which assesses cumulative fatigue damage in adhesive bonding. Additionally,
a model depicting the degradation process is constructed.

(2) The impact of various environmental stresses and size effects on the fatigue perfor-
mance of the carbon fiber and epoxy adhesive bonding structures is investigated using
a combination of experimental and simulation tests conducted on adhesive joints.

(3) A novel approach is developed to model the fatigue reliability of the carbon fiber and
epoxy adhesive bonding structures, taking into consideration the combined impacts
of multiple environmental stresses and size effects.

The remainder of this paper is organized as follows: Section 2 presents the method-
ology for analyzing cumulative fatigue damage, considering the influence of multiple
environmental stresses and size effects. Additionally, it proposes a novel adhesive fatigue
reliability modelling method based on performance degradation theory. Section 3 conducts
an experimental–numerical simulation to gather data on the degradation of fatigue perfor-
mance in adhesive joints, taking into account the combined effects of environmental stresses
and size variations. Section 4 utilizes the Wiener process to elucidate the degradation of
fatigue performance and assesses the fatigue reliability of the adhesive joint under these
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conditions, and discusses the current assumptions and limitations of the CCZM. Finally,
Section 5 summarizes the key findings and presents the conclusions of this study.

2. A Novel Adhesive Bonding Fatigue Reliability Modelling and Assessment Approach
2.1. Cyclic Cohesive Zone Model (CCZM)

The cohesive zone model, proposed by Siegmund [30], is a primary method for study-
ing adhesive performance. The assumptions for applying the CCZM are as follows: It
is assumed that the material is subjected to cyclic loading during the loading process,
and its cohesive behavior is typically described by a nonlinear relationship; it is defined
that no damage occurs at the beginning of each cycle of loading, and damage accumula-
tion begins after the damage initiation point is exceeded; the differences in the material’s
microstructure and mechanical properties are taken into account; the frequency and am-
plitude of the cyclic loading in the model are kept consistent in the analysis; under cyclic
loading, the damage evolution equation can link fatigue damage with traction force and
cumulative displacement.

The schematic diagram of the cohesive zone model is shown in Figure 2, where
segment OA represents the initial elastic phase, indicating the process of gradually reaching
the maximum traction force, and segment AB represents the damage evolution phase,
indicating the process of damage accumulation [31].
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Based on the relationship between fracture energy ϕn and failure fracture energy GIC,
the failure modes of the cohesive zone model can be determined. Here, the traction force
is represented by σ, the separation displacement is represented by δ, and K0

n is the initial
stiffness. The relationship of fracture energy in the cohesive zone model can be described
by the following equation:

ϕ =
∫

tdδ =
∫

f (δ)dδ (1)

Based on Figure 2 and the geometric significance of Equation (1), the failure fracture
energy GIC of this model can be obtained as follows:

GIC =
1
2

δ
f
nσmax (2)

where GIC is the area enclosed by the triangle OAB in Figure 2, and the critical strength σmax
and fracture energy GIC can be obtained from experimental data. If the bilinear cyclic cohe-
sive zone model is deterministic, then the critical initial displacement δ0

n and fracture failure
displacement δ

f
n are also constant values. The traction–displacement relationship of the

bilinear cyclic cohesive zone model considering fatigue damage is shown in Figure 3 [32].
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Figure 3. Traction–displacement relationship.

According to Figure 3, where D is the damage quantity, the relationship between the
traction strength σ∗ without considering damage and the traction strength σ∗ considering
damage can be obtained as follows:

σ∗ = (1 − D)σ∗ (3)

This is obtained from the relationship between traction strength and model stiffness:

σ∗ = K0
nδ∗n (4)

σ∗ = K∗
nδ∗n (5)

where K0
n is the initial stiffness and K∗

n is the stiffness after damage discounting has occurred.
By substituting Equations (4) and (5) into Equation (3), Equation (6) can be obtained
as follows:

K∗
n = (1 − D)K0

n (6)

According to Equation (6), the evolution essence of the cyclic cohesive zone model is
the process of material stiffness degradation. The damage state variable D can be defined
from Figure 3:

D =
δ

f
n
(
δ∗n − δ0

n
)

δ∗n

(
δ

f
n − δ0

n

) (7)

where δ∗n is the maximum displacement value that can be reached during the experimental
loading process, and the effective stress corresponding to δ∗n is σ∗; it can also be represented
by Tn. In Figure 3, the straight line OA segment represents the initial elastic phase, and its
slope can be described as

K0
n =

σmax

δ0
n

(8)

The ontological relationship of the bilinear cyclic cohesive zone model can be obtained
by combining Equations (3), (4), (7), and (8):

Tn =

 σmax
δmax

n
δ0

n

(
0 ≤ δmax

n ≤ δ0
n
)

σmax
δ

f
n−δmax

n

δ
f
n−δ0

n

(
δ0

n ≤ δmax
n ≤ δ

f
n

) (9)
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Here, Tn represents the effective stress corresponding to the separation displacement
of δ, where

(
0 ≤ δmax

n ≤ δ0
n
)

means that the model is in the initial elastic stage and no
damage has occurred,

(
0 ≤ δmax

n ≤ δ0
n
)

means that the model is in the stage of damage
evolution, and the evolution pattern follows the Equation (7).

2.2. A Modified CCZM Considering the Effects of Environmental Stresses

The adhesive performance degradation process under effects of environmental stresses
is visually depicted in Figure 4. In this paper, the environmental degradation factor (Deg)
and size impact factor (SIF), which are used to describe the coupling of environmental and
sizes, are introduced as a methodology to quantify the extent of degradation of adhesive
structures’ fatigue life. We denote the fatigue life of the adhesive bonding under the envi-
ronmental conditions of aging time, temperature, and saline concentration as Nt, NT , NC,
respectively; L, W, and Th denote the length, width, and thickness of the bonding region,
respectively. The environmental degradation factor and the size impact factor can be
calculated as follows:

Deg =
N0 − Ni

N0
, N0 ̸= 0 (10)

SIF =
L
W

+
Th
L

, (L, W, Th > 0) (11)
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In Equation (10), N0 indicates the fatigue life of unaged adhesive specimens, and Ni
represents the fatigue life under environmental impact. Deg = 0 signifies undamaged ad-
hesive structure, while 0 < Deg ≤ 1 marks its progressive damage to failure. Considering
the complex interplay of various environmental factors on the adhesive bond of the blade,
the environmental degradation factor is articulated as follows:

Degs(x) = f (Degt, DegT , DegC) (12)

According to cyclic cohesive zone theory, after introducing the environmental degra-
dation factor and size factor, the fatigue damage model should be rewritten as

.
Dc =

|∆u|
δΣ

[
T

σmax
− C f

]
H(∆u − δ0)(1 + Degs(x) + SIF),

.
Dc ≥ 0 (13)

where
.

Dc is the volume of fatigue damage corresponding to each strain increment, ∆u
is strain increment, the current traction force T is obtained by substituting the strain
into the ontological equation, σmax is the maximum traction force under the damaged
state, δ0 is the initial damage separation displacement, H(x) is a Heaviside function, and
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H(x) =

{
0 ⇐ x < 0
1 ⇐ x ≥ 0

, H(∆u − δ0) denotes the link between current strain increment

and initial damage displacement. Only when ∆u > δ0 will fatigue cumulative damage
occur; δΣ is the fatigue damage parameter in the model, which is usually set as n times the
initial separation displacement δ0; SIF is the size effect factor; C f is another parameter in

the fatigue damage model; and
.

Dc ≥ 0 is known from Equation (13). When T
σmax

− C f < 0,
no damage occurs.

2.3. Performance Degradation Analysis-Based Adhesive Fatigue Reliability Modelling
and Assessment

Performance degradation analysis is frequently utilized for the purpose of reliability
assessment and fatigue life prediction [33,34]. In this study, the Wiener process and a
probabilistic failure model are combined to describe the performance degradation trajectory
of adhesive bonding. This approach is used to depict the degradation process of adhesive
performance, as illustrated in Figure 5.
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In this context, R(t) refers to the reliability function, F(t) is the failure function, f (t) is
the probability density function of F(t), and g(y, t0) is the performance degradation function.

The Wiener process, being a continuous-time random process, is widely used in
nonmonotonic degradation modelling and fatigue life prediction [35]. The expression of
the Wiener process is as follows:

X(t) = µt + γB(t) (14)

where X(t) is the amount of performance degradation at time t; µ is drift coefficient; γ is
diffusion coefficient; and B(t) is standard Brownian motion with B(t) ∼ N(0, t).

We assume that the degradation process of adhesive performance of the blade follows
a linear Wiener process with smooth independent increments. Thus, Equation (14) can be
modified as [36]:

X(t) = X(0) + µt + γB(t) (15)

where X(0) and X(t) are the degradation amounts at the initial degradation stage and a
certain degradation time t, respectively.

We assume that the fatigue performance of the adhesive bonding degrades following
the wiener process X(t; X(0), µ, γ) in the time interval [0, τ], and the failure threshold is w.
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Then, the corresponding probability density function and cumulative failure distribution
function can be expressed as follows [37]:

f (t) =
w − X(0)√

2πγ2t3
exp

[
− (w − X(0)− µt)2

2γ2t

]
(16)

F(t; X(0), µ, γ) = Φ(
X(0) + µt − w

γ
√

t
) + exp(

2µ(w − X(0))
γ2 )× Φ(

−w − X(0)− µt
γ
√

t
) (17)

Moreover, the reliability can be calculated:

R(t; X(0), µ, γ) = 1 − F(t; X(0), µ, γ) (18)

For the fatigue performance of adhesive bonding in offshore wind turbine blade,
Equation (15) can be modified as follows:

D(t) = D(0) + µt + γB(t), 0 ≤ t ≤ τ (19)

The corresponding probability density function f (t) and cumulative failure distribu-
tion function F(t) are

f (t) =
w − D(0)√

2πγ2t3
exp

[
− (w − D(0)− µt)2

2γ2t

]
, 0 ≤ t ≤ τ (20)

F(t) = Φ
(

D(0) + µt − w
γ
√

t

)
+ exp

(
2µ(w − D(0))

γ2

)
Φ
(
−w − D(0)− µt

γ
√

t

)
, 0 ≤ t ≤ τ (21)

Then, the reliability of adhesive bonding in offshore wind turbine blade at time t can
be calculated as follows:

D(t) = D(0) + µt + γB(t), 0 ≤ t ≤ τ (22)

3. Experimental–Numerical Simulation Analysis of Carbon Fiber/Epoxy Resin Bonded
Structure Incorporating Multienvironmental Stresses and Size Effects
3.1. Environmental Aging Tests and Fatigue Tests

In this study, the epoxy structural adhesive WD3135/3137, which is commonly used
in offshore wind turbine blades, is chosen as the adhesive. The single-lap joint specimens
are prepared by using carbon fiber reinforced polymer (CFRP) as the substrate and epoxy
resin as the spacer plate [4]. The structural configuration of the specimen is depicted in
Figure 6.
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Based on the standards GB/T 2573-2008 [38] and GB/T 16779-2008 [39], the specimens
were divided into 23 groups for environmental aging tests, as depicted in Figure 7a,b.
Environmental and dimensional factors, such as saline concentration, temperature, aging
time, and bonding dimensions, were assigned different levels, as outlined in Table 1.
Subsequently, the specimens underwent aging tests and were subsequently subjected to
tensile tests and fatigue tests (R = 0.1, f = 30Hz), as illustrated in Figure 8b. The static
tensile process and failure behaviors of the specimens were recorded (see Figure 8a,c). The
fatigue life and fracture morphology of each specimen was analyzed (Figure 9). The results
of the static tensile test are shown in Figure 10. The results of the fatigue tests are presented
in Figure 11.

Modelling 2024, 5, FOR PEER REVIEW 10 
 

 

Table 1. Stress level information of the specimens. 

Environmental Test Gradients Size Gradients 
Saline Concentration 

(g/L) 
Aging Time 

(h) 
Temperature 

( oC ) 
Bonding Length 

(mm) 
Bonding Width 

(mm) 
Bonding Thickness 

(mm) 
50 168 35 5 25 0.3 
70 288 50 7.5 25 0.5 
90 480 65 10 25 0.7 

110 720 80 12.5 25 0.9 
/ / / 15 25 1.1 

 
Figure 7. (a) The fabrication process of the adhesive samples; (b) environmental aging test. 

 
Figure 8. (a) Static test; (b) fatigue life test; (c) fatigue failure. 

Figure 7. (a) The fabrication process of the adhesive samples; (b) environmental aging test.

Table 1. Stress level information of the specimens.

Environmental Test Gradients Size Gradients

Saline Concentration
(g/L)

Aging Time
(h)

Temperature
(◦C)

Bonding Length
(mm)

Bonding Width
(mm)

Bonding Thickness
(mm)

50 168 35 5 25 0.3
70 288 50 7.5 25 0.5
90 480 65 10 25 0.7
110 720 80 12.5 25 0.9
/ / / 15 25 1.1
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lap length of the samples results in enhanced load-bearing capacity and toughness, as 
observed from various tensile displacement measurements. However, an increase in the 
thickness of the overlap leads to a gradual decrease in load-bearing capacity and a relative 
reduction in toughness, according to different tensile displacement results. Moreover, as 
can be seen from Figure 10d,e, samples with varying adhesive bond dimensions exhibit 
considerable variability in their maximum load-bearing capacity, with decreases of 
28.22% and 23.1% in carrying capacity, respectively, further demonstrating the impact of 
size effects on the mechanical properties of the samples. Significantly, the static evalua-
tions of adhesive single-lap specimens, undertaken in the presence of a variety of environ-
mental stresses and dimensional effects, establish a benchmark for their subsequent fa-
tigue assessments. 

Figure 9. (a) Cross-sectional failure diagram of the bonding layer of an unaged specimen; (b) Section
failure diagram of the bonding layer after aging the specimen for 24 h; (c) Section failure diagram
of the bonding layer after aging the specimen for 48 h; (d) Section failure diagram of the bonding
layer after aging the specimen for 96 h; (e) Section failure diagram of the bonding layer after aging
the specimen for 168 h; (f) Section failure diagram of the bonding layer after aging the specimen for
288 h; (g) Section failure diagram of the bonding layer after aging the specimen for 480 h; (h) Section
failure diagram of the bonding layer after aging the specimen for 720 h.
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As can be seen from Figure 9, the surface of the adhesive layer of the unaged specimen
(Figure 8a) is almost smooth. With the increase in aging time, the adhesive layer is gradually
eroded by the saltwater solution (Figure 9a–h), and delamination failure begins to occur.
As the erosion area gradually expands, the specimen transitions from mixed failure to
interfacial failure, and, ultimately, adhesive failure occurs.

Figure 10a–c demonstrate that specimens exposed to environmental aging exhibit
substantial adhesive damage. With the progression of salt concentration, aging temperature,
and aging duration, there is a notable decline in the load-bearing capability of the samples,
amounting to 17.24%, 27.24%, and 36.21%, respectively. An increase in the overlap length
of the samples results in enhanced load-bearing capacity and toughness, as observed from
various tensile displacement measurements. However, an increase in the thickness of the
overlap leads to a gradual decrease in load-bearing capacity and a relative reduction in
toughness, according to different tensile displacement results. Moreover, as can be seen
from Figure 10d,e, samples with varying adhesive bond dimensions exhibit considerable
variability in their maximum load-bearing capacity, with decreases of 28.22% and 23.1%
in carrying capacity, respectively, further demonstrating the impact of size effects on the
mechanical properties of the samples. Significantly, the static evaluations of adhesive
single-lap specimens, undertaken in the presence of a variety of environmental stresses and
dimensional effects, establish a benchmark for their subsequent fatigue assessments.

Figure 11 delineates the patterns of fatigue life deterioration under a multitude of
environmental and dimensional parameters. It is manifest that an escalation in saline
concentration, temperature, and the duration of aging is directly associated with a reduction
in the endurance of the material against fatigue. However, the degradation tendency
ultimately reaches a stabilization point, resulting in a transition from mixed failure to
interface failure. Notably, the impact of temperature on the fatigue life of adhesive bonding
is particularly significant. In specimens tested at T = 80 ◦C, a significant decrease in
fatigue life of 99.57% was observed. This finding highlights the high sensitivity of adhesive
bonding to temperature factors. The primary cause of this sensitivity is attributed to an
increase in temperature, which amplifies thermal expansion and moisture absorption at
the bonding interface, consequently leading to a reduction in bonding strength. Moreover,
when exposed to specific salt concentration C = 50 g/L and 70 g/L, it was observed that
the fatigue life degradation increased by 96.78% and 97.70% as the temperature rose, with
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a corresponding increase of 0.92%. These findings indicate that the cumulative impact of
multiple environmental stresses amplifies the damage accumulation in adhesive bonding,
ultimately resulting in fatigue failure. In general, there is a positive correlation between
bonding dimensions and fatigue life. More specifically, as can be seen in Figure 11d, for each
increase in bonding length (ranging from 5 mm to 15 mm), the fatigue life demonstrates
an associated increase of 28%. Conversely, Figure 11e indicates that as the bond thickness
varies from 0.3 mm to 1.1 mm, there is a gradual 11% decrease in the fatigue life of the
specimens.

3.2. Fatigue Numerical Simulation Analysis

This study aims to investigate the variations in internal stresses within the adhesive
joint and the fatigue failure process under cyclic loading. To this end, a three-dimensional
model of the bonding joint is created using the ABAQUS software (2021 version), which
employs a CCZM, as depicted in Figure 12. In this figure, the adhesive layer is represented
by the cohesive element (COH3D8), characterized by its bilinear shear separation properties.
This representation facilitates the investigation of fatigue damage and failure modes within
the adhesive layer when subjected to shear.
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Figure 12. (a) Schematic diagram of the constraint conditions applied to the 3D model; (b) Visualiza-
tion cloud map of the undeformed specimen; (c) Visualization cloud map of specimen deformation
with cohesive force elements in the adhesive layer.

To incorporate the analysis of environmental stress effects and size effects into fatigue
failure analysis, the fatigue simulation of adhesive bonding is conducted by integrating the
multienvironment degradation factor (Deg) and size impact factor (SIF) into the CCZM in
ABAQUS using the USDFLD subroutine. The adhesive bonding failure process follows
three stages: initial crack formation, crack propagation, and complete failure. The initial
conditions for adhesive layer destruction and the criteria for complete failure are defined
based on the second-order nominal stress criterion and the second-order energy criterion,
respectively. Based on test data obtained in Section 3.1, the initial parameters of the cyclic
cohesive zone model are set as δΣ = 100, C f = 0.1. The fatigue damage process of the speci-
men is depicted in Figure 13. Here, S is stress, SDV1 is the fatigue damage accumulation of
the adhesive layer, and SDV5 is the equivalent strain. SDV1 = 0 indicates that the bonding
area is undamaged, while SDV1 = 1 represents complete failure occurring. The fatigue
failure of adhesive bonding begins at the edges of the overlap region and progressively ex-
tends towards the center. When the remaining bonded region becomes insufficient to meet
the demanded fatigue strength, the adhesive bonded specimen fractures. This phenomenon
corresponds to the failure observed in fatigue tests conducted on adhesive joints.
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a specimen life of 777,788 cycles; (h) (Failure stress map of the specimen).

The fatigue simulation results are obtained and presented in Tables 2 and 3. For
further analysis, comparisons with experimental test results are depicted in Figure 14.
Observations from Figure 14 indicate that the simulation results, which take into account
environmental and size factors, closely match the test outcomes. The fitting degree for
the curve is determined to be 0.9886. Consequently, the fatigue analysis methodology
introduced in this study demonstrates its suitability for assessing the fatigue reliability of
adhesive bonding in offshore wind turbine blades.

Table 2. Fatigue life of bonding joints under different environmental stresses.

Number
Environmental Factors

Fatigue Life (Cycles) Deg SIF
C (g/L) T (◦C) t (h)

1 / / / 588,754 0 0.54
2 50 35 168 434,940 0.9261 0.54
3 90 65 288 40,127 0.9318 0.54

. . . . . . . . . . . . . . . . . . . . .
12 90 80 480 2265 0.9962 0.54
13 50 35 720 77,788 0.8679 0.54

Table 3. Fatigue life of bonding joints with different bonding dimensions.

Number
Size Factors

Fatigue Life (Cycles) Deg SIF
L (mm) W (mm) Th (mm)

1 5 25 0.5 23,302 0.3655 0.267
2 7.5 25 0.5 25,224 0.4246 0.367

. . . . . . . . . . . . . . . . . . . . .
5 15 25 0.5 82,802 0.7325 0.667
6 12.5 25 0.3 54,044 0.2446 0.524
7 12.5 25 0.5 53,856 0.2896 0.54

. . . . . . . . . . . . . . . . . . . . .
10 12.5 25 1.1 47,812 0.7344 0.588
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4. Fatigue Reliability Modelling and Assessment of Adhesive Bonding Incorporating
Multiple Environmental Stresses and Size Effects
4.1. Fatigue Performance Degradation Analysis

Expanding upon the findings detailed in Section 3.2, this research delves into the
fatigue fracture characteristics of adhesively bonded joints, taking into account a spectrum
of environmental influences and the implications of scale. To better characterize and model
the failure behavior, we gathered fatigue accumulation damage data for the bonding joints
across a range of environmental and dimensional conditions, as illustrated in Figure 15.
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Figure 15. (a) Fatigue damage accumulation in relation to salt concentration; (b) fatigue damage
accumulation in relation to temperature; (c) fatigue damage accumulation in relation to aging time;
(d) fatigue damage accumulation in relation to bonding length; (e) fatigue damage accumulation in
relation to bonding width.

Figure 15 illustrates the cumulative fatigue damage progression in bonding joints
influenced by environmental and size factors. The research findings reveal substantial
variations in the rate of fatigue damage accumulation within adhesive bonds, which are
significantly influenced by environmental stresses and the effects of size. Specifically, as
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can be seen from Figure 15a–c, when the saline concentration exceeds threshold 70 g/L and
the temperature surpasses threshold 65 ◦C, the specimens exhibit a 75% increase in the rate
of fatigue damage accumulation, which significantly increases further after an aging time
of 168 h. From the damage cumulative trajectory in Figure 15d,e, it is evident that bonding
joints with bonding lengths ranging from 5 mm to 15 mm exhibit a relatively rapid rate of
fatigue damage accumulation, and this rate increases by 27.5% for joints with an overlap
length of less than 12.5 mm. The fatigue damage accumulation rate of specimens with
different bonding thicknesses is relatively slow, exhibiting an increasing trend from 0.3 mm
to 1.1 mm, and the fatigue damage accumulation rate of specimens with overlap thicknesses
greater than 0.7 mm increased by 6.25%. According to fatigue damage cumulative theory,
the more fatigue damage accumulates, the lower the fatigue strength of the structure and
the shorter the fatigue life [40]. Therefore, the accumulated fatigue damage can be used as
an indicator to characterize the degradation of fatigue performance [41–43]. From Figure 15,
it can be observed that the cumulative fatigue damage of the bonding joint increases
monotonically. Thus, the Wiener process can be used to model the fatigue performance
degradation trajectory.

4.2. Fatigue Reliability Modelling and Assessment Based on Fatigue Performance
Degradation Analysis

Based on Section 4.1’s fatigue damage data (Figure 15), the adhesive’s fatigue perfor-
mance degradation is modelled by a nonlinear Wiener process {D(t; µ, γ), t ≥ 0}, with µ
as the drift coefficient and γ as the diffusion coefficient. The µ and γ estimates for each
degradation dataset are determined by maximum likelihood estimation method, detailed in
Tables 4 and 5. The range of the fatigue damage cumulative amount D is [0, 1]. According
to the concept of first arrival time, fatigue failure will occur in the bonding joint when
the cumulative degradation reaches 1 for the first time. The corresponding time will be
considered as its fatigue life [44,45]. The reliability of the bonding joint under various
environmental stresses and bond sizes are calculated from Equation (23), with results
plotted in Figure 16.

Table 4. Wiener process parameters estimation for bonding joints considering environmental factors.

Number
Model Parameters

µ γ2

1 7.125536 × 10−7 2.075582 × 10−9

2 9.589038 × 10−7 2.792616 × 10−9

3 2.377422 × 10−6 7.276249 × 10−9

. . . . . . . . .
12 7.718361 × 10−6 3.040484 × 10−8

13 5.527738 × 10−6 1.864005 × 10−8

Table 5. Wiener process parameters estimation for bonding joints considering size factors.

Number
Model Parameters

µ γ2

1 2.035398 × 10−5 7.950124 × 10−7

2 3.166352 × 10−5 1.058724 × 10−6

. . . . . . . . .
5 6.487835 × 10−6 6.738933 × 10−8

6 6.314948 × 10−6 4.980836 × 10−8

7 6.554756 × 10−6 5.366307 × 10−8

. . . . . . . . .
10 8.255034 × 10−6 2.029376 × 10−7



Modelling 2024, 5 1131

Modelling 2024, 5, FOR PEER REVIEW 17 
 

 

12 7.718361 × 10-6 3.040484 × 10-8 
13 5.527738 × 10-6 1.864005 × 10-8 

Table 5. Wiener process parameters estimation for bonding joints considering size factors. 

Number 
Model Parameters 

μ  2γ  
1 2.035398 × 10-5 7.950124 × 10-7 
2 3.166352 × 10-5 1.058724 × 10-6 

… … … 
5 6.487835 × 10-6 6.738933 × 10-8 
6 6.314948 × 10-6 4.980836 × 10-8 
7 6.554756 × 10-6 5.366307 × 10-8 

… … … 
10 8.255034 × 10-6 2.029376 × 10-7 

 
Figure 16. (a) Reliability curves in relation to salt concentration; (b) reliability curves in relation to 
temperature; (c) reliability curves in relation to aging time; (d) reliability curves in relation to bond-
ing length; (e) reliability curves in relation to bonding width. 

Upon examining Figure 16, it can be inferred that there is a corresponding decrease 
in the periods at which the reliability of the blade specimens is 1 as the saline concentra-
tion, temperature, and aging time increase. Notably, adhesive joint reliability significantly 
declines when salt concentration is above 70 g/L, temperature exceeds 65 C。 , and aging 
time surpasses 168 h. Particularly at temperature 85 C。 , the joint reliability drops mark-
edly. Moreover, as the bonding length decreases and the bonding thickness increases, the 
period at which the reliability of the blade specimens is 1 will also decrease. Bonding joints 
with length 5 mm 7.5 mm,  and thickness 1.1 mm  experience a rapid decline in reliability 
and fatigue life, highlighting a pronounced size effect. This result highlights the critical 
necessity of integrating environmental stresses and dimensional factors into the design 
and fabrication processes of wind turbine blades. Such considerations are paramount to 
ensuring their safety and reliability throughout operation [46]. 

Figure 16. (a) Reliability curves in relation to salt concentration; (b) reliability curves in relation to
temperature; (c) reliability curves in relation to aging time; (d) reliability curves in relation to bonding
length; (e) reliability curves in relation to bonding width.

Upon examining Figure 16, it can be inferred that there is a corresponding decrease in
the periods at which the reliability of the blade specimens is 1 as the saline concentration,
temperature, and aging time increase. Notably, adhesive joint reliability significantly
declines when salt concentration is above 70 g/L, temperature exceeds 65 ◦C, and aging
time surpasses 168 h. Particularly at temperature 85 ◦C, the joint reliability drops markedly.
Moreover, as the bonding length decreases and the bonding thickness increases, the period
at which the reliability of the blade specimens is 1 will also decrease. Bonding joints
with length 5 mm, 7.5 mm and thickness 1.1 mm experience a rapid decline in reliability
and fatigue life, highlighting a pronounced size effect. This result highlights the critical
necessity of integrating environmental stresses and dimensional factors into the design
and fabrication processes of wind turbine blades. Such considerations are paramount to
ensuring their safety and reliability throughout operation [46].

In the process of fatigue reliability modelling for blade adhesive structures, it was
found that the CCZM still has certain limitations. The determination of the cyclic cohesive
zone model parameters usually requires a large number of experiments and analysis work;
in numerical simulation, CCZM may face convergence issues, which require the use of
specific numerical techniques to solve; the CCZM needs to be closely combined with
experimental data to ensure the accuracy of the model parameters and the effectiveness of
the model prediction.

5. Conclusions

The research on the environmental durability and size effects of CFRP/epoxy adhesive
structures forms the fundamental basis for ensuring the reliable operation of offshore
wind turbine systems throughout their entire service life. This paper introduces a fatigue
reliability modelling and assessment method based on performance degradation analysis.
The conclusions of the research are as follows:

(1) Multienvironmental aging tests exposed pronounced size effects in the adhesive
structures of various dimensions when subjected to multienvironmental stress. The
damage accumulation in specimens escalated by 75% as a result of these stresses.
Moreover, with the compounding influence of size effects, this figure escalated further
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to 85%, precipitating a shift in the failure mode for CFRP/epoxy adhesive joints from
mixed to interfacial.

(2) This paper introduces environmental degradation factors and size factors into the
CCZM, taking into account the coupled effects of multienvironmental stresses and size
effects on carbon fiber/epoxy adhesive structures. The proposed numerical simulation
method can effectively simulate the fatigue life of blade adhesive structures, with a
simulation error within 10%.

(3) To address the characteristics of adhesive fatigue joint performance degradation, this
paper employed a nonlinear Wiener process to describe the degradation process.
Consequently, a fatigue reliability model for bonding joints was established, consider-
ing the impact of multiple environmental stresses and size effects. The reliability of
bonding joints was assessed accordingly.

(4) This paper introduces environmental degradation coefficients and size effect factors
into the CCZM, effectively assessing the fatigue damage in wind turbine blade ad-
hesive samples due to multienvironmental stresses and size effects. Although the
assumptions of the proposed model have certain limitations, it still provides a theoret-
ical method for the reliability research of adhesive structures in wind turbine blades.
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