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Abstract: This study investigates the transformative impact of smart intelligence, leveraging the
Internet of Things and edge-cloud platforms in smart urban development. Smart urban development,
by integrating diverse digital technologies, generates substantial data crucial for informed decision-
making in disaster management and effective urban well-being. The edge-cloud platform, with
its dynamic resource allocation, plays a crucial role in prioritizing tasks, reducing service delivery
latency, and ensuring critical operations receive timely computational power, thereby improving
urban services. However, the current method has struggled to meet the strict quality of service
(QoS) requirements of complex workflow applications. In this study, these shortcomings in edge-
cloud are addressed by introducing a multi-objective resource optimization (MORO) scheduler
for diverse urban setups. This scheduler, with its emphasis on granular task prioritization and
consideration of diverse makespans, costs, and energy constraints, underscores the complexity of the
task and the need for a sophisticated solution. The multi-objective makespan–energy optimization is
achieved by employing a deep reinforcement learning (DRL) model. The simulation results indicate
consistent improvements with average makespan enhancements of 31.6% and 70.09%, average cost
reductions of 62.64% and 73.24%, and average energy consumption reductions of 25.02% and 17.77%,
respectively, by MORO over-reliability enhancement strategies for workflow scheduling (RESWS) and
multi-objective priority workflow scheduling (MOPWS) for SIPHT workflow. Similarly, consistent
improvements with average makespan enhancements of 37.98% and 74.44%, average cost reductions
of 65.53% and 74.89%, and average energy consumption reductions of 29.52% and 24.73%, respectively,
by MORO over RESWS and MOPWS for CyberShake workflow, highlighting the proposed model’s
efficiency gains. These findings substantiate the model’s potential to enhance computational efficiency,
reduce costs, and improve energy conservation in real-world smart urban scenarios.

Keywords: cloud; cost; energy; optimization; task execution; time; workflows

1. Introduction

In today’s urban settings, AI is swiftly becoming a major changer, revolutionizing
how technology is utilized to improve city inhabitants’ lives. These urban landscapes
extensively use digital technology to improve infrastructure, utilities, and services. The
ability to gather and evaluate enormous amounts of data produced by many networked
systems and devices forms the basis of smart cities [1]. Traffic sensors, environmental
monitoring systems, and security cameras produce data that help municipal administration
and decision-making [2]. Advanced technologies must be used to process the data received
in an urban setting to enable responsive actions and deliver insightful information [3].
Figure 1 demonstrates the use of cloud computing in creating smart city applications by
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showing how big workflow datasets may be managed and reviewed in real time [4]. This
can be attributed to the computation’s scalable and adaptive capabilities. The authors [5,6]
provide a hybrid RNN and FFNN prediction model that learns both short- and long-term
client behavior to solve research concerns about ignoring long-term data from multiple
sessions and concentrating primarily on short-term communication in a single session,
which helps to prioritize the tasks.
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The effective operation of smart city surroundings depends on the given task priorities.
The effective application of smart city technologies—including traffic management and quick
response to environmental changes—depends on establishing priorities. Dynamic resource
allocation made possible by cloud computing guarantees that the most important jobs are
finished on time and with enough processing capability, therefore simplifying the work
prioritizing process [7]. In smart urban environments, peripheral clouds are planned to
maximize the operation of low-energy consumption, and low-cost and delay-free [8] processes.
Time-sensitive procedures such as traffic optimization, emergency response systems, and
catastrophe recovery must be carried out precisely and following the set schedule [9] if they
are to be effectively completed. Given the significant financial commitments needed for
building and maintaining a smart city, it is necessary to prioritize cost-effectiveness [10]. Since
it aligns with general environmental goals [11], energy efficiency is of great relevance.

The duties that are prioritized will affect the effectiveness of smart city environments.
Setting priorities is critical for ensuring that smart city technology is properly deployed,
including rapid responses to environmental changes and efficient traffic management. Prior-
itizing jobs is facilitated by cloud computing’s dynamic resource distribution, which ensures
that critical tasks are completed on time and with adequate processing power [7]. Perimeter
clouds are strategically deployed in smart cities to ensure that low-cost, delay-free [8] pro-
cedures are carried out as quickly as feasible. To be successful, time-sensitive procedures
such as disaster recovery, traffic optimization, and emergency response systems must be
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completed precisely and on schedule [9]. Cost-effectiveness must be prioritized because
developing and maintaining a smart city demands significant financial investments [10].
Energy efficiency is critical because it coincides with long-term environmental goals [11].

Despite the potential advantages, existing edge-cloud task scheduling offloading
optimization models [12,13] often fall short in addressing these multifaceted challenges.
Many models lack the granularity required for prioritizing tasks effectively, leading to
suboptimal resource allocation [14,15]. Moreover, the failure to consider the varying
time, cost, and energy constraints of diverse smart urban applications hinders the overall
efficiency of edge-cloud-based systems. To bridge these gaps, this work proposes a model
that reduces the time, cost, and energy associated with processing the tasks within a smart
urban workload. By considering the unique characteristics of smart urban data and the
diverse nature of tasks, the model aims to optimize edge-cloud task scheduling offloading
optimization for enhanced efficiency.

The contribution of this work is as follows. The introduction of a model designed to
minimize the time, cost, and energy associated with processing tasks within workloads. The
model introduces a novel multi-objective task resource optimization technique to analyze
data-intensive workloads with greater energy efficiency with processing time and cost. The
multi-objective optimization uses a deep reinforcement learning technique where a cost-
efficient approach for workflow execution in both edge servers and the cloud is performed.
The proposed task resource optimization between edge and cloud servers efficiently reduces
costs and provides better energy efficiency when evaluated using scientific workflows.

The manuscript is structured as follows: Section 2 provides an overview of existing
works related to workflow execution, with a specific emphasis on reducing time, cost,
and energy. Section 3 introduces the proposed model. Section 4 presents and evaluates
the proposed model’s results, highlighting its significant impact on processing time, cost,
and energy. Comparative analyses with existing models emphasize the proposed model’s
effectiveness. Section 5 concludes the work, summarizing the findings and discussing
avenues for future research.

2. Literature Survey

Our research emphasizes reducing task performance in terms of energy, money, and
time. Workflow scheduling with deep reinforcement learning (DRL) [16] was developed to
optimize workflow distribution, increase operational effectiveness, and ensure assignment
success. Furthermore, the Deep-Q-Network (DQN) was used to solve the complicated and
multivariate job scheduling problem. According to the simulations, the proposed solution
outperformed the state-of-the-art in terms of service time, failed job completion, and virtual
machine utilization. This DRL-based solution effectively addressed the hard problem of
edge computing duty scheduling.

The authors present a hybrid metaheuristic for cloud process scheduling that mini-
mizes makespan while accounting for virtual resource heterogeneity [17]. Hybrid TLBO
combines HEFT, TLBO, OBL, and genetic modifications. One method uses HEFT to gen-
erate a diverse, high-quality beginning population. Second, mixed OBL (MOBL) models
frequently use border and population history search data. Final genetic operations during
the learner stage help the algorithm avoid local optima. HTLBO’s performance is scientif-
ically evaluated. The average makespan, running time, and nonparametric statistics are
compared to HEFT and advanced hybrid metaheuristics. HTLBO enhances the population
variance while maintaining scheduling effectiveness and efficiency, as demonstrated by
significant schedule quality improvements. The authors propose policy-based reinforce-
ment learning for hyper-heuristics [18]. Hyper-heuristic agents choose the best generalized
constructive low-level heuristics for combinatorial optimization. The architecture was
assessed for travelling salespersons, capacitated vehicle routing, and bin packing. This
strategy outperforms meta- and hyper-heuristic-based algorithms on all significant chal-
lenges in all areas. The framework was tested for a tight deadline for hybrid cloud process
scheduling cost optimization. Eight agents were trained on medium-sized processes with
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two deadlines and compared to meta- and hyper-heuristic techniques for smaller and larger
workflows with unexpected deadlines. This study includes four workflow apps, three sizes,
and three deadlines.

Jobs with unknown requirements were assigned the required resources via intelligent
fuzzy scheduling [19]. Using a unique salp swarm application, the model discovered
and optimized fuzzy task-resource allocation norms. The current strategy enabled for the
speedier and more efficient creation of an intelligent salp-swarm-scheduler using fitness-
based-quasi-reflection (ISSS-FQR). According to the trial results, ISSS-FQR is clearly more
effective than other conventional approaches. They proposed a cyber-physical framework
for the Internet of Things (IoT) in [20] to optimize resource utilization in fog and cloud
settings while decreasing execution costs. This framework’s development was aimed
at the medical community. They introduced the multi-objective heuristic approach ant
colony optimization (MOHACO-TS) work scheduling approach. This was accomplished in
conjunction with excellent cloud work scheduling and resource optimization. With this
form of job scheduling, in this study, we planned to accomplish as much as possible in
the allowed time while making the most use of our resources. The researchers evaluated
the IoT-HCPS idea with five datasets and cutting-edge task scheduling and categorization
approaches. The IoT-HCPS study’s results outperformed those of other tactics. The bi-
objective workflow scheduling problem (Bi-OWSP) was first introduced by [21]. The
invention of Bi-OWSP was inspired by the desire to improve workflow planning while
maintaining a coherent balance. Researchers developed a strategy to increase dependability
while taking energy usage into account.

This strategy presented in [22] improves dependability while reducing energy use.
It chooses the best task–server combinations on purpose. The efficiency of Bi-OWSP was
shown through simulation testing on both actual and simulated workflow scenarios. Based
on the findings of these experiments, Bi-OWSP outperforms the current strategies for regu-
lating energy reliability. Using a task-planning system with several objectives could save
production time and energy usage [22]. A novel technique called IETIF was also proposed
in [23], which combined NSGA-III with simulation-based annealing. IETIF’s simulations
of energy consumption and makespan outperform the current status quo. Using cloud
and fog-based Internet of Things (IoT) systems, they investigated the topic of maximizing
the longevity of data-intensive job scheduling [23]. Data location aware, they devised
job-scheduling, an integer-linear programming heuristic. Similar to the mean, the test
results indicated the usefulness of the proposed strategy. We pioneered a cloud computing
workflow planning technique to keep costs low and IoT application deadlines met in [24].
Ant colony optimization (ACO) and cost-driven prediction were the foundations of the
F-ACO integrated intelligence approach. They used their F-ACO approach in real-world sit-
uations. Then, they compared their strategy to other innovative approaches. Compared to
other cloud computing IoT scheduling systems, their empirical results showed that F-ACO
worked better. The authors of [25] described a new approach to process organization based
on DRL and listed several objectives. The initial step was to use linkage to identify the most
critical jobs for each workflow. Virtual machine prioritization was determined by evalu-
ating data center power expenses. Processes were correctly assigned to virtual machines.
The task scheduler uses deep Q-network to prioritize tasks and virtual machines. They
compared their method to cat swarm optimization, heterogeneous earliest first deadline,
and ACO. Compared to cutting-edge algorithms, theirs performed better in makespan and
power consumption. Unreliable workflow execution resulted from the current method’s
incapacity to resolve energy minimization-makespan reduction trade-offs [26].

Table 1 provides a comparative study of various existing methods with proposed
approaches. The study in the table shows that testing the model considering complex
scientific applications is important. The current method leveraging deep reinforcement
learning has attained good results; however, the current methods have been studied
considering a homogenous cloud platform. Conversely, the proposed approach employs
the DRL for resource optimization in a heterogenous platform adopting an edge-cloud
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computation paradigm. The following section of this paper proposes a novel strategy for
workflow execution to address research difficulties.

Table 1. Comparative study.

Computation
Model

Optimization
Metrics

Optimization
Model Workflow Type Workflow Used Result Studied

QMTSF [13] Cloud computing
Resource
allocation and
efficiency

Reinforcement
learning Simple Simulated

workflow

Makespan and
average task
processing time

EASA [14] 5G and Cloud

Resource
utilization and
energy
consumption

Optimal Simple 5G traffic
dataset Smart city traffic

False discovery rate,
false omission rate,
prevalence
threshold, and critical
success index.

F-ACO [24] Cloud computing Execution cost
and idle time

Ant colony
optimization with
cost-driven
heuristic

Simple workflow IoT workflow
application cost

MOPWS [25] Cloud computing Makespan and
energy Deep Q-Network

Complex
Scientific
workflow

CyberShake,
Epigenomics,
LIGO, and
Montage

Makespan, and
energy consumption

RESWS [26] Cloud computing Energy and
Reliability Heuristic Scientific

workflow
Three realistic
workflow

Energy, deadline, and
reliability

MOROWS
[Proposed] Edge-cloud Energy and

makespan

Deep
reinforcement
learning

Complex
scientific
workflow

SIPHT and
CyberShake

Makespan, processing
cost, and energy
consumption

3. Proposed Methodology

This section introduces a novel design for a multi-objective resource optimization
scheduler optimized through a deep reinforcement learning model for effectively executing
complex workflow tasks into the edge-cloud server. The offloading optimization is achieved
through a minimization function to reduce overall energy, time, and cost.

3.1. Architecture

In this section, we will discuss the architecture of the task offloading model in the edge-
cloud for the effective execution of the smart urban scientific workflow. In Figure 2, the
user initiates the smart urban workflow like SIPHT and CyberShake required for execution
inside this architecture. The smart urban workflow covers a variety of actions and requires
storage. In some cases, a smart urban workflow may also require network connectivity.
Furthermore, smart urban workflows might be cyclic or acyclic graphs. Our study focuses
on directed acyclic graphs (DAGs). In this design, the smart urban workflow is processed
within the workflow engine by the cloud resource manager, which separates it for a more
streamlined and efficient execution process. This partitioning consists of two main phases:
the planning phase, which offers the partitioning strategy, and the execution phase, which
implements the proposed partitioning approach. A thorough analysis of the workflow
partitioning strategy is offered according to the QoS and SLA manager. Furthermore, the
workflow engine of the cloud resource manager continuously monitors and assesses the
process’s progress. The workflow is then offloaded to an edge server. When an edge
server cannot complete a task, it is forwarded to the cloud for processing. A thorough
investigation of the entire process is conducted.
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3.2. Multi-Objective Resource Optimization in Edge-Cloud

In this section, this work explains how to use cloud resources efficiently on an edge-cloud
platform to analyze highly data-intensive workflows. To avoid bottlenecks in an edge-cloud
environment while still satisfying task deadlines and execution requirements, the proposed
approach is designed to schedule tasks with the least cost. In this work, an efficient task-
queuing mechanism is modeled to achieve reliability with effective load-optimization. Each
server during the task-queuing mechanism is heterogeneous, having its own unique set
of capabilities. Consider o servers represented as T1, T2, T3, . . . To which are heterogenous
in nature. Also, consider each server having a size of n1, n2, n3, . . . , no and executional
capabilities of t1, t2, t3, . . . to. Further, assume a server Tj in a heterogenous environment
having nj multiple servers which have executional capabilities of tj. Taking into account the
Poisson distribution method based on an M/M/m queuing mechanism, the arrival load α
follows an exponential distribution having a standard deviation (s) and mean average of s as
(s) 1/α. The proposed approach divides the workflow tasks into o subsets, with each subset
communicating its arrival load αj towards the Tj, where j ranges from 1 to o and α represents
the sum of α1 + α2 + α3 · · ·+ αo. Moreover, Tj keeps an infinite queue of tasks in a line for
execution, even when nj is occupied. Priority is given to those who can be served first, using
exponential randomization s along with the mean average s for scheduling purposes. For
each Tj, the nj is kept the same for all tj. Hence, the duration for execution having exponential
randomization s can be evaluated using Equation (1), as follows:

yj =
s
tj

(1)

The mean average of Equation (1) is evaluated using Equation (2), as follows:

yj =
s
tj

. (2)
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The computation of the mean average aids in obtaining an ideal estimation in meeting
workflow execution in the edge-cloud platform. In Tj, the average task execution rate can
be evaluated using the following equation:

β j =
1
yj

. (3)

Further, the resources consumed by Tj whenever busy (time utilized) is evaluated
using Equation (4), as follows:

γj =
αj

njβ j
=

αjyj

nj
=

αjs
njtj

, (4)

The estimation of resource usage during the survey aids the model in having an
assumption task in the queue. The parameter nj defines the server which is busy in Tj,
pj,l denotes the likelihood for task l which is waiting in a queue in a given Tj, then the
likelihood is evaluated using Equation (5), as follows:

pj,l =

pj,0
(njγj)

l

l! , l < nj;

pj,0
n

nj
j γl

j
l! , l ≥ nj;

(5)

When l = 0, the following equation is obtained:

pj,0 =

nj−1

∑
l=0

(
njγj

)l

l!
+

(
njγj

)nj

nj!
· 1
1− γj

−1

. (6)

Equation (6) provides the likelihood of a minimum waiting period in an edge-cloud
platform considering the presence of no arrival of new workflow task l. The likelihood for
each workflow task arriving one after the other in Tj whenever Tj remains busy is evaluated
in Equation (7):

Pr,j =
pj, nj

1− γj
= pj,0

n
nj
j

nj!
·

γ
nj
j

1− γj
. (7)

Moreover, in Tj the evaluation is performed using Equation (8) for the mean workflow
tasks that are waiting in a queue or being executed, as follows:

Oj =
∞

∑
l=0

lpj,l = njγj +
γj

1− γj
Pr,j. (8)

This work only considers mean waiting to attain optimal measurement. Also, the
mean workflow task completion duration by each Tj is evaluated using Equation (9):

Uj =
Oj

αj
= yj +

Pr,j

nj
(
1− γj

)yj = yj

(
1 +

Pr,j

nj
(
1− γj

)) (9)

Equation (9) is simplified by substituting Equations (2), (4), and (7). Hence, from this,
Equation (10) is obtained:

Uj =
s
tj

1 + pj,0
n

nj−1
j

nj!
·

γ
nj
j(

1− γj
)2

. (10)

Further, the required energy for executing workflow tasks is evaluated using Equation (11):

Q = aCV2F = δtµ (11)

In Equation (11), a denotes the characteristic of workflow-task, V denotes voltage,
C denotes load capacitance, F represents clock frequencies, and t represents speed of Tj
processor. Further, δ in Equation (11) is evaluated using Equation (12):

δ =
ab2C
c2ρ+1 (12)
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In Equation (12), b and ρ are variables used for defining constants (i.e., b, ρ ̸= 0). Also,
the µ in Equation (11) is evaluated using Equation (13):

µ = 2ρ + 1. (13)

The current approaches consider both δ along with µ throughout Tj. Nonetheless, in this
work, the situation varies due to the heterogeneous environment used, resulting in varying
values of δ and µ. The two main energy categories in a heterogeneous environment are dynamic
and static energy. When the Tj does not execute any workflow tasks, then the Tj is in a static
state. Hence, energy consumption for the static state is evaluated using Equation (14):

Qj = nj

(
γjδjt

µj
j + Q∗j

)
= αjtδjt

µj−1
j + njQ∗j . (14)

Further, when the Tj executes any workflow tasks, then the Tj is in a dynamic state.
Hence, energy consumption for a dynamic state is evaluated using Equation (15):

Qj = nj

(
δjt

µj
j + Q∗j

)
. (15)

The goal of this study was to allocate resources efficiently by reducing energy and
computation duration when carrying out workflow tasks in a heterogeneous environment that
varies computational speed and energy consumption for executing different tasks. Consider,
Tj having a size of n1, n2, n3, . . . , no and the execution taking place in a dynamic state having
requirement s with arrival load α and load distribution defined as α1, α2, . . . , αo. To achieve the
best efficiency, the minimization function is defined as follows:

minU(α1, α2, . . . , αo) (16)

A constraint is imposed on Equation (16) as follows:

G(α1, α2, . . . , αo) = α, (17)

where
G(α1, α2, . . . , αo) = α1 + α2 + . . . + αo, (18)

and γj < 1, ∀ 1 ≤ j ≤ o. Consider Tj having a size of n1, n2, n3, . . . , no and the execution
taking place in a dynamic state having requirement s with arrival load α and load distribu-
tion defined as α1, α2, . . . , αo. To reduce energy consumption, the minimization function is
defined as follows:

minQ(α1, α2, . . . , αo) (19)

A constraint is imposed on Equation (19) as follows:

G(α1, α2, . . . , αo) = α, (20)

where
G(α1, α2, . . . , αo) = α1 + α2 + . . . + αo, (21)

and γj < 1, ∀ 1 ≤ j ≤ o. The cost of executing workflow tasks on Tj can be evaluated by
inversing Equation (9):

C =
1

Uj
(22)

Nevertheless, this work considers two states, i.e., dynamic and static, hence the energy
factor Qj has to be considered. Hence, the cost function can be redefined as Equation (23):

Sj = QjUj. (23)

The average cost S for different Tj, i.e., T1, T2, . . . , To can be evaluated using Equation (24):

S(α1, α2, . . . , αo) =
α1

α
S1 +

α2

α
S2 + . . . +

αo

α
So (24)
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Equation (24) can be reformulated by substituting Equation (23) in Equation (24); from
this, Equation (25) is achieved:

S(α1, α2, . . . , αo)
= α1

α Q1U1 +
α2
α Q2U2

+ . . . + αo
α QoUo

(25)

In the proposed work, the constraints in Equations (16) and (19) were minimized
using Equations (17), (18), (20), and (21) through the usage deep reinforcement learning
model [25] for the efficient scheduling of workflow tasks and achieving better performance
and reducing cost. Further, if the edge server fails to execute the task or more tasks are
in the edge server, in this situation, the workflow will be executed at the edge/cloud
computational platform and vice versa.

3.3. Algorithm

The step-by-step working of proposed multi-objective workflow scheduler is given in
Algorithm 1. The line 2, the queue is initialized to null; the line 3, the smart urban workflow
arrival load is initialized; in line 4, following the arrival of the new workflow, the non-executed
scheduling decision is stopped. Lines 5 and 6 define how the server information is collected,
and the smart urban workflow’s start time is computed. In lines 7 to 9, the incoming workflow
load is added to the queue. In lines 9 and 10, the task that is ready to be executed is obtained
and arranged in increasing order according to its priority level with respect to its start time. In
line 11, the complete workflow in D will be looking for resource to be scheduled. In line 12,
the server is set to null and in line 13, using the deep reinforcement learning model [25],
the computational node that meets the makespan and energy constraint is added into the
server as in line 15. In lines 16 and 21, if the selected computational node is free, the task is
executed, and if not, it is offloaded and scheduled in the cloud platform till all the tasks in D
are executed. In line 22, finally, compute the overall makespan, energy, and cost of processing
the smart urban workflow in the edge-cloud platform.

In reliability enhancement strategies for workflow scheduling (RESWS) algorithm, the
model is scheduled employing a heuristic approach to optimize energy reliability constraint;
thus, the optimal performance is not guaranteed considering multi-level dependencies,
thus, resulting in higher makespan and energy consumption and the other existing methods
namely multi-objective priority workflow scheduling (MOPWS) algorithm employs DRL to
perform scheduling considering multi-level heterogeneous dependencies. The parameters,
such as energy and makespan, have been optimized employing DRL; however, the model
extended to a heterogeneous platform yields poor results. However, in the proposed model,
the same energy makespan metrics are designed considering the heterogenous platform,
and DRL is employed to select the computational node to execute between the edge and the
cloud; the optimization process significantly aided in reducing energy and cost-leveraging
edge-cloud paradigm; Finally, the work introduced a novel cost metrics considering both
energy makespan with multi-level scheduling constraint. This shows why the proposed
MORO algorithm attains much improved results than the current MOPWS and RESWS
algorithms considering smart urban scientific workflows in the edge-cloud platform.
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Algorithm 1. Multi-objective resource optimization workflow scheduler

1. Start
2. Queue← ∅;
3. ∀ smart urban workflow load arrival αj do
4. Stop the non-executed scheduling decisions;
5. Collect the information and update to available computational servers;
6. Compute start time for every task of smart-urban workflow;
7. Add complete task of workflow load αj into Queue;
8. While Queue composed of unscheduled tasks do
9. D ← obtain task from Queue that are ready;
10. Arrange D in increasing order with starting time;
11. ∀ workflow task ∈ D do
12. CServer ← ∅;
13. CServers← all servers satisfying makespan constraint of Equation (16) and energy
constraint of Equation (19) is obtained by employing deep reinforcement learning model;
14. ∀ Computaional node ∈ CServers do
15. If Computaional node == f ree
16. Schedule the task in edge-platform;
17. Else
18. Schedule the task in cloud-platform;
19. End ∀
20. End ∀
21. End ∀
22. Compute the overall makespan using Equation (10), the processing energy

consumption using Equation (15), and the cost using Equation (23);
23. Stop.

4. Results and Discussion

In the execution of this work, both the existing model MOPWS [25], RESWS [26],
and the proposed model were run on an identical system configuration. The proposed
work considered two latest models, namely MOPWS and RESWS, for comparison, because
the MOPWS optimize both energy and makespan using a deep reinforcement learning
model, and performance is studied in terms of energy and overall makespan and on the
other side, the work RESWS optimized energy reliability constrained. Finally, both models
considered complex DAG scientific workflows for validating the model. The proposed
model, similar to [24], has additionally considered cost parameters to validate the perfor-
mance of all three models. The system utilized an Intel Core i7 processor, 16 GB of RAM,
a Windows 11 Operating System, and a 500 GB SSD. The edge-cloud environment was
established with a CloudSimSDN simulator [27]. Both models were developed using an
object-oriented programming language. Both tools play crucial roles in the simulation
process, enabling the evaluation and analysis of system performance, resource utilization,
and other parameters in their respective domains. The results were evaluated regard-
ing processing time, cost, and energy. The SIPHT workflow [28,29], derived from the
bioinformatics project at Harvard, serves the purpose of automating the exploration for
untranslated ribonucleic acids (RNAs), small RNAs (sRNAs) associated with bacterial
replicons within the NCBI database. A sample graphical representation of the SIPHT
workflow is given in Figure 3. This workflow is pivotal in genomics and molecular biology,
contributing to understanding genetic regulatory mechanisms in bacterial systems. An
effective analysis, i.e., faster execution with minimal cost, plays an important role in effec-
tive epidemic management in urban environments. Further, the experiment is conducted
on CyberShake workflow [28,30]. The CyberShake workflow is specifically designed for
seismic risk assessment, employed by the Southern California Earthquake Centre, and
serves as a crucial tool for characterizing earthquake hazards in each region. A sample
graphical representation of the CyberShake workflow is given in Figure 4.
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Figure 4. CyberShake workflow.

4.1. Makespan Performance

Figure 5 presents the makespan, measured in seconds, for SIPHT workflows with sizes
of 30, 60, and 100 tasks for RESWS, MOPWS, and MOROWS models. The makespan of
all three models is measured using Equation (10). The existing model demonstrates more
makespan for different workflows than the proposed MOROWS model.
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For the SIPHT workflow, the proposed MOROWS model reduced the average makespan
by 31.6% and 37.98% over RESWS and MOPWS, respectively. This reduction in makespan
indicates improved efficiency and performance in the proposed model, which may have
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practical implications for applications requiring timely data processing within the SIPHT
framework. Figure 6 presents the makespan, measured in seconds, for CyberShake work-
flows, with sizes of 30, 60, and 100 tasks for RESWS, MOPWS, and MOROWS models. The
existing model demonstrates more makespan for different workflows than the proposed
MOROWS model. For the CyberShake workflow, the proposed MOROWS model reduced
the average makespan by 70.09% and 74.44% over RESWS and MOPWS, respectively. This
reduction in makespan indicates improved efficiency and performance in the proposed
model, which may have practical implications for applications requiring timely data pro-
cessing within the CyberShake framework. The DRL-based optimization presented in
MOPWS attained a slightly poorer makespan result than RESWS. However, the energy-
makespan model presented in MOPWS failed to work for a heterogeneous computational
platform. On the other side, the significant makespan reduction result attained by MO-
ROWS for both SIPHT and CyberShake workflow is due to optimization performed to
minimize Equation (16) keeping the constraints of Equations (17) and (18) through deep
reinforcement learning model.
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4.2. Processing Cost

Figure 7 presents the makespan, measured in dollars (USD) using Equation (23), for
SIPHT workflows, with sizes of 30, 60, and 100 tasks for RESWS, MOPWS, and MOROWS
models. The cost of all three models is measured using Equation (23). The existing
model demonstrates more cost for different workflows than the proposed MOROWS
model. For the SIPHT workflow, the proposed MOROWS model reduced average cost
by 62.64% and 65.53% over RESWS and MOPWS, respectively. Figure 8 presents the cost,
measured in dollars (USD), for CyberShake workflows, with sizes of 30, 60, and 100 tasks
for RESWS, MOPWS, and MOROWS models. The existing model demonstrates more
cost for different workflows than the proposed MOROWS model. For the CyberShake
workflow, the proposed MOROWS model reduced average cost by 73.24% and 74.89%
over RESWS and MOPWS, respectively. This cost reduction indicates improved efficiency
and wide applicability in realistic deployments. The DRL-based optimization presented in
MOPWS attained slightly poorer cost results than RESWS. However, the energy-makespan
model presented in MOPWS failed to work for a heterogeneous computational platform.
On the other side, the significant makespan reduction result attained by MOROWS for
both SIPHT and CyberShake workflow is due to optimization performed to minimize
Equations (16) and (19) together, keeping constraints of Equations (17), (18), (20), and (21)
through the deep reinforcement learning model.
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Figure 8. Processing cost required for executing CyberShake workflows using existing and
proposed models.

4.3. Processing Energy Consumption

Figure 9 presents the energy consumption, measured in watt hours, for SIPHT work-
flows, with sizes of 30, 60, and 100 tasks for RESWS, MOPWS, and MOROWS models.
The energy consumption of all three models is measured using Equation (15). The exist-
ing model demonstrates energy consumption for different workflows compared to the
proposed MOROWS model. For the SIPHT workflow, the proposed MOROWS model
reduced average energy consumption by 25.02% and 29.52% over RESWS and MOPWS,
respectively. This reduction in makespan indicates improved efficiency and performance
in the proposed model, which may have practical implications for applications requiring
timely data processing within the SIPHT framework. The provided Figure 10 presents
the makespan, measured in seconds, for CyberShake workflows, with sizes of 30, 60, and
100 tasks for RESWS, MOPWS, and MOROWS models. The existing model demonstrates
more makespan for different workflows compared to the proposed MOROWS model. For
the CyberShake workflow, the proposed MOROWS model reduced the average makespan
by 17.77% and 24.73% over RESWS and MOPWS, respectively. This energy reduction
indicates improved efficiency and performance in the proposed model, which may have
practical implications for applications requiring timely data processing within the Cyber-
Shake framework. The DRL-based optimization presented in MOPWS attained slightly



Modelling 2024, 5 1311

poorer energy results than RESWS. However, the energy makespan model presented in
MOPWS failed to work for a heterogeneous computational platform. On the other side, the
significant makespan reduction result attained by MOROWS for both SIPHT and Cyber-
Shake workflow is due to an optimization performed to minimize Equation (19), keeping the
constraints of Equation (20), Equation (21) through the deep reinforcement learning model.
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Figure 9. Processing energy required for executing SIPHT workflows using existing and proposed
models.
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proposed models.

5. Conclusions

Existing cloud scheduling methods often fail to address smart city concerns. Many
models lack granularity for job prioritization, resulting in inefficient resource allocation.
Additionally, neglecting to handle time, cost, and energy restrictions affects cloud-based
system efficiency. A technique to reduce processing time, cost, and energy in smart urban
operations is proposed in this research to close these gaps. The findings are compared to ex-
isting models for processing time, cost, and energy. SIPHT and CyberShake, two significant
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smart urban workflows, are used to test the approach. The suggested model consistently
outperforms the present model across workflow sizes. The proposed paradigm improves
processing time, cost, and energy use. Simulation results show an average makespan en-
hancements of 31.6% and 70.09%, average cost reductions of 62.64% and 73.24%, and aver-
age energy consumption reductions of 25.02% and 17.77%, respectively, by MOROWS over
reliability enhancement strategies for workflow scheduling (RESWS) and multi-objective
priority workflow scheduling (MOPWS) for SIPHT workflow. Similarly, consistent im-
provements with average makespan enhancements of 37.98% and 74.44%, average cost
reductions of 65.53% and 74.89%, and average energy consumption reductions of 29.52%
and 24.73%, respectively, by MOROWS over RESWS and MOPWS for CyberShake work-
flows. The simulation results show that using the approach in smart urban scenarios can
improve computing efficiency, cut costs, and conserve energy. Testing on more workflows
and optimizing the job offloading mechanism would improve model performance. Thus,
the future work will consider validating the proposed job offloading mechanism consider-
ing other scientific workflows like I/O and memory intensive Inspiral workflow, which is
used for analyzing blackholes and neutron stars; CPU-intensive Montage workflow, which
is used for performing a task like an image mosaicking of millions of images collected
from space. Alongside these, we would consider optimizing the offloading task using
parameters like SLA violation and reliability.
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