
Citation: Stolbova, O.S.; Stolbov, O.V.

Modeling the Bending of a Bi-Layer

Cantilever with Shape Memory

Controlled by Magnetic Field and

Temperature. Modelling 2024, 5,

1924–1935. https://doi.org/10.3390/

modelling5040100

Academic Editors: Paolo Todisco and

Elide Nastri

Received: 1 November 2024

Revised: 2 December 2024

Accepted: 3 December 2024

Published: 5 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Modeling the Bending of a Bi-Layer Cantilever with Shape
Memory Controlled by Magnetic Field and Temperature
Olga S. Stolbova * and Oleg V. Stolbov

Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, Perm 614018, Russia;
sov@icmm.ru
* Correspondence: sos@icmm.ru

Abstract: This paper presents a model of the bending behavior of a bi-layer cantilever composed of
titanium nickelide and a magnetoactive elastomer embedded with magnetically hard particles. The
cantilever is initially subjected to an external magnetic field in its high-temperature state, followed
by cooling to a low-temperature state before the magnetic field is removed. This sequence results in
residual bending deformation. Basic relations describing the material behavior of titanium nickelide
and the magnetoactive elastomer are presented. A variational formulation for the problem under
consideration is written down. The problem is solved numerically using the finite element method.
The influence of the applied magnetic field magnitude and the thickness of the titanium nickelide
layer on the cantilever deflection magnitude is studied. The dependence of the residual cantilever
deflection on the applied magnetic field is obtained. The possibility of this structure as a controllable
gripping element for applications in robotics and micro-manipulation is demonstrated.

Keywords: shape memory alloy; magnetoactive elastomer; bi-layer cantilever; numerical modeling;
finite element method

1. Introduction

Actuators and grippers developed using functional materials have attracted signif-
icant attention in recent years due to their adaptability and ability to undergo complex
deformations. These devices play a crucial role in robotics, medical manipulators, and
microelectromechanical systems, offering the flexibility and control that traditional ma-
terials cannot provide [1–4]. Actuators made of various materials (shape memory alloys
and polymers, magnetoactive and electroactive elastomers, etc.) are activated by various
stimuli, such as thermal action, magnetic or electric fields [5–7]. Modern soft robotics
technologies based on the use of functional materials significantly expand the possibilities
of using different types of actuators and grippers [8–10].

Shape memory alloys, such as titanium nickelide, are often used to create actua-
tors capable of changing shape when heated and returning to their original state when
cooled [11,12]. Magnetoactive elastomers can alter their stiffness and shape under the
influence of a magnetic field, making them suitable for adaptive grippers; grippers made
from such materials are used for manipulating fragile objects as their softness and flexibility
reduce the risk of damage [13,14]. Control by means of temperature and magnetic influence
can be performed contactlessly. However, each of these influences has its own advantages
and disadvantages. Temperature changes in the material typically occur more slowly than
responses to magnetic fields. However, creating a magnetic field requires relatively bulky
electromagnets or a permanent magnet with a positioning mechanism.

Traditional actuators often struggle to integrate dual-stimulus control, either relying
solely on temperature or magnetic fields. The bi-layer system overcomes this limitation
by enabling independent and combined control of deformation profiles. Combining SMA
and MAE in a bi-layer configuration enables dual-stimuli actuation, where temperature
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changes affect the SMA layer and magnetic fields affect the MAE layer, offering complex
deformation capabilities compared to single-stimulus systems. To enable control of the
actuator through both temperature and magnetic fields, we consider a bi-layer cantilever
composed of a thermally activated shape memory alloy (specifically, titanium nickelide)
and a magnetoactive elastomer containing magnetically hard NdFeB particles. To optimize
the cantilever’s deflection, we apply numerical modeling that takes into account the main
mechanisms of strain accumulation in shape memory materials (alloys and polymers).

The deformation mechanism in shape memory alloys (SMAs), such as titanium nicke-
lide NiTi (Nitinol), is based on the material’s unique ability to recover its original shape
with temperature changes. This effect is achieved due to the presence of two phases in
these alloys: martensite and austenite. During cooling, a direct phase transformation from
austenite to martensite occurs, and during heating, a reverse transformation from the
martensitic state takes place. If the direct transformation occurs in an unstressed alloy, only
a very small (approximately 0.3% for titanium nickelide) macroscopic volume deformation
is observed, without shape change. However, if the direct transformation occurs under
non-zero stress, macroscopic shape deformation accumulates during cooling; its deviator
aligns with that of the applied stress, and its intensity in titanium nickelide can reach 8–10%.
Upon heating and the corresponding reverse transformation, the accumulated deformation
is removed, which is termed shape memory [15,16].

Magnetoactive elastomers (MAEs) are composite materials consisting of a polymer
matrix and magnetic particles. MAEs filled with magnetically hard particles (such as
NdFeB) can retain residual magnetization (in the absence of a magnetic field). When
an external magnetic field is applied that is not aligned with the direction of residual
magnetization, a torque arises that tends to align the magnetization along the magnetic
field, causing macroscopic deformation of the sample. When the magnetic field is removed,
the torque ceases to act and the sample returns to its initial shape [17]. The bending of
cantilevers made from MAEs with magnetically hard particles can be effectively controlled
by a magnetic field [18–21].

In [22], modeling of the bending of a bi-metallic plate of titanium nickelide and
beryllium bronze, as well as a single-layer titanium nickelide plate, is presented. The plate
is subjected to bending shear stresses at the end and cooled within the temperature range
of the direct phase transition of the SMA. This study demonstrated that the thicknesses
of the SMA and beryllium bronze layers influence the deflection of the bi-layer plate and
determined the layer thickness ratio to achieve maximum plate deflection.

The article [23] is devoted to the development of an adaptive tuned vibration absorber,
which uses a composition based on a magnetorheological elastomer (MRE) and a shape
memory alloy (SMA). The material stiffness can be changed both by temperature (thanks to
SMA) and magnetic field (thanks to MRE), providing a wider and smoother tuning range.
The combined use of these materials allows the authors to eliminate the disadvantages
of each of them separately and achieve a smooth and effective tuning of the system for
vibration suppression.

In the present study, we model the behavior of a bi-layer cantilever composed of
titanium nickelide and a magnetoactive elastomer containing NdFeB magnetically hard
particles. An external magnetic field is applied to this cantilever in the high-temperature
state, followed by cooling to a low-temperature state with subsequent removal of the mag-
netic field. The influence of various parameters on the cantilever deflection is investigated.

2. Materials and Methods

Consider a cantilever (bi-layer plate) composed of titanium nickelide and a magne-
toactive elastomer containing magnetically hard NdFeB particles. The cross-section of
such a plate is shown in Figure 1, with titanium nickelide shaded in red and the magne-
toactive elastomer in blue. It is assumed that adhesion between the two layers is perfect
(the displacement field is continuous). The plate has a length l (dimension along the
x-axis) and a thickness h (dimension along the y-axis), with the titanium nickelide layer
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thickness denoted by hN and the magnetoactive elastomer layer thickness denoted by hε

(h = hN + hε). The plate is clamped at the left edge, while the other surfaces are free.
Initially, the titanium nickelide layer is in the austenitic (high-temperature) state, and the
magnetoactive elastomer has a residual magnetization Mr, directed along the x-axis. An
external magnetic field H0, directed along the y-axis, is applied to this sample, after which it
is cooled to the martensitic (low-temperature) state of titanium nickelide, and the magnetic
field is removed.

M

H0

x

Mr

y

l

hε
hN
h

Figure 1. Cross-section of the bi-layer plate made of titanium nickelide (red area) and MAE
(blue area).

To model the behavior of this bi-layer plate in the approximation of small deformations,
the basic relations for the titanium nickelide layer and the magnetoactive elastomer are
formulated, neglecting thermal deformations due to their minimal influence. During the
cooling process, phase transformations will induce phase strains in the titanium nickelide
that disappear upon subsequent heating. In the framework of small deformations, the
additivity of elastic and phase strains is assumed.

2.1. Basic Relations for Titanium Nickelide

To describe the phase transition in shape memory alloys (SMAs), a scalar internal
variable φM is introduced, representing the volume fraction of the martensitic phase in the
material. This variable ranges from 0 in the fully austenitic (high-temperature) state to 1 in
the fully martensitic (low-temperature) state. For a forward phase transition (austenite to
martensite), the inequality dφM > 0 is valid, while for the reverse transition (martensite
to austenite), dφM < 0 is satisfied. The phase transition diagram (the dependence of the
martensitic phase fraction φM on temperature Θ) is approximated by the following relation
(see, e.g., [22]):

φM(ξ) =


0, ξ ≤ 0,

0.5 (1 − cos(π ξ)), 0 < ξ < 1,
1, ξ ≥ 1,

(1)

where

ξ =
Mσ

s − Θ
Ms − M f

, Mσ
f ≤ Θ ≤ Mσ

s (dφM > 0);

ξ = 1 +
Aσ

s − Θ
A f − As

, Aσ
s ≤ Θ ≤ Aσ

f (dφM < 0).

Here, Ms, M f , As, and A f are the start and finish temperatures of the forward and reverse
martensitic transformations in the stress-free material, while Mσ

s , Mσ
f , Aσ

s , and Aσ
f are the

start and finish temperatures of these transformations in the stressed material. Note that
forward and reverse phase transitions occur at different temperatures: the temperature
range Ms → M f corresponds to the austenite-to-martensite transition, while As → A f
corresponds to the martensite-to-austenite transition.
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For a stressed material, the critical transition temperatures are given by the following
linear dependence on the stress intensity σi:

Mσ
s = Ms + κ σi, Mσ

f = M f + κ σi,

Aσ
s = As + κ σi, Aσ

f = A f + κ σi, (2)

where κ is a material constant.
According to [24], the equations describing the evolution of phase strains are written

as follows:

dePh = (β g + c0 S + a0 ePh) dφM, dφM > 0, (3)

dePh =

(
a0 e (0)

Ph

exp (a0 φ
(0)
M )− 1

+ a0 ePh

)
dφM, dφM < 0. (4)

Here, β, c0, and a0 are material parameters; g is the unit tensor; dePh and ePh are the phase
strain increment and current phase strain; φ

(0)
M and e (0)

Ph are the martensitic phase parameter
and phase strain values at the initial point of the reverse transformation process; and S is
the deviator of the stress tensor T.

The elastic behavior of titanium nickelide is described by Hooke’s law [25,26]:

T = λN(φM) I1(eE) g + 2 GN(φM) eE, (5)

where λN(φM) and GN(φM) are the Lamé parameter and the shear modulus of titanium
nickelide (their values change during the phase transition); eE = e − ePh is the elastic strain
tensor; e is the total strain tensor; and I1(eE) is the first invariant of eE.

The dependencies of the elastic properties of the material (Young’s modulus EN(φM)
and shear modulus GN(φM)) on the martensitic phase fraction φM are defined by the
following relations:

1
EN(φM)

=
φM
EM

+
1 − φM

EA
,

1
GN(φM)

=
φM
GM

+
1 − φM

GA
,

where EM and GM are the values of Young’s modulus and shear modulus for the martensitic
state, and EA and GA are the same values for the austenitic state. Hence, we obtain that

λN(φM) =
EN(φM)− 2 GN(φM)

3 GN(φM)− EN(φM)
GN(φM).

2.2. Basic Relations for Magnetoactive Elastomer

The elastic behavior of the magnetoactive elastomer is also described by Hooke’s law:

T = λε I1(e) g + 2 Gε e, (6)

where λε and Gε are the Lamé parameter and the shear modulus of the magnetoactive
elastomer, and the elastic strains are equal to the total strains (eE = e).

In the material under a magnetic field, a mass moment Lmag = µ0 Mr × H arises,
where µ0 is the magnetic constant. To simplify the model and avoid solving the magne-
tostatic problem, we set H = H0, so Lmag = µ0 Mr × H0. We assume that the residual
magnetization is uniform, constant, and directed along the cantilever axis, since small
magnetic fields are considered and NdFeB particles have large anisotropy.



Modelling 2024, 5 1928

2.3. Variational Formulation of the Problem

For the numerical solution of the boundary value problem, we present its variational
formulation in the Lagrangian form, where the variable quantity is the displacement u. To
account for geometric nonlinearity, the strain tensor is defined as follows:

e =
1
2
(
∇u + (∇u)T +∇u · (∇u)T).

To account for the rotation of the remanent magnetization vector Mr during bending of the
plate, we introduce the rotation tensor R as follows:

R = g +
1
2
(
(∇u)T −∇u

)
,

so that the magnetization after bending equals R · Mr.
Let ΩN and Ωε represent the regions occupied by titanium nickelide and the magne-

toactive elastomer, respectively. The variational equation is written as follows:

∫
ΩN

(
2 GN(φM) (e − ePh) ·· δe + λN(φM) I1(e − ePh) ·· I1(δe)

)
dVN+∫

Ωε

(
2 Gε e ·· δe + λε I1(e) ·· I1(δe)

)
dVε −

∫
Ωε

µ0 δR · Mr · H0 dVε. (7)

This equation can be rewritten in dimensionless form:

∫
ΩN

(
2 GN(φM) (e − ePh) ·· δe + λN(φM) I1(e − ePh) ·· I1(δe)

)
dVN+∫

Ωε

(
2 e ·· δe + λε I1(e) ·· I1(δe)

)
dVε −

∫
Ωε

δR · Mr · H0 dVε, (8)

where the following dimensionless quantities are introduced:

GN(φM) = GN(φM)/Gε, λN(φM) = λN(φM)/Gε, λε = λε/Gε,

Mr =
√

µ0/Gε Mr, H0 =
√

µ0/Gε H0,

dVN = dVN/h3, dVε = dVε/h3.

2.4. Numerical Solution

The problem was solved numerically by the finite element method, implemented using
an open computing platform for solving partial differential equations FEniCS [27]. The
mesh covering the computational domain (the fragments of which are shown in Figure 2)
consists of triangular elements and is generated automatically with specified parameters
(with refinement near the titanium nickelide region—the lower part of the sample) using
the gmsh package [28]. A linear approximation of the displacement vector u was used.

Figure 2. Fragments of the finite element mesh (left and right ends) with thickening in the titanium
nickelide region.
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To solve the variational problem (8), it is necessary to know the phase strains ePh.
Since Equations (3) and (4) are written for the increment of phase strains, the problem
is solved using the step-by-step loading method: the entire cooling or heating process is
divided into a series of small temperature steps, and at each step, the increment of the
martensitic phase fraction and the phase strain increment are calculated. The total phase
strains at each step are computed as the sum of the accumulated phase strains and the
phase strain increment. The nonlinear variational equation (due to geometric nonlinearity)
was solved by Newton’s method using the FEniCS computing platform.

3. Results

For numerical simulation, the following parameter values were used for titanium
nickelide (NiTi):

• Elastic moduli in the austenitic and martensitic states EA = EA/Gε = 8.4 · 104,
EM = EM/Gε = 2.8 · 104, and Poisson’s ratio ν = 0.3;

• Temperatures for the start and finish of direct and reverse martensitic transformations
Ms = 313 K, M f = 293 K, As = 323 K, and A f = 343 K (in our calculations, we
do not account for the dependence of the critical transformation temperatures on
material stresses);

• Material parameters associated with phase strain accumulation β = 1.17 · 10−3,
a0 = 0.718, c0 = c0, and Gε = 0.283 · 10−3;

Further, we use the following parameter values for the magnetoactive elastomer:

• The Lamé parameter λε = λε/Gε = 100;
• Residual magnetization Mr =

√
µ0/Gε Mr = 0.275.

For numerical calculations, the plate length was set to be 10 times its thickness
(l = 10 h).

Figure 3 shows the loading diagram of the bi-layer plate: during the first k steps, the
magnetic field increases from H0 = 0 to H0 = 0.1 at a constant temperature Θ = 313 K,
corresponding to the austenitic state of titanium nickelide; over the next k steps, the
temperature decreases to Θ = 293 K, corresponding to the martensitic state of titanium
nickelide, under a constant magnetic field of H0 = 0.1. Over the final k steps, the magnetic
field is reduced to H0 = 0 at a constant temperature of Θ = 293 K. Thus, the plate remains
in the martensitic state with accumulated strains from the phase transition, while the
external magnetic field is absent.

0.0

0.1

H
0

0 20 40 60 80

300

310

Θ
,

K

k

Figure 3. Loading diagram: dependence of magnetic field and temperature on step number k.

Figure 4 shows the following configurations of the plate: 1—initial configuration,
2—after application of the magnetic field, 3—after cooling under a constant magnetic field,
and 4—after removal of the magnetic field (this configuration is determined by phase
strains arising in titanium nickelide during the direct phase transition upon cooling). The
color shows the distribution of the displacement vector component uy = uy/h. These
configurations were obtained for a titanium nickelide layer thickness of hN = 0.1.
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u y

Figure 4. Configurations of the bi-layer plate: 1—initial configuration, 2—after application of
the magnetic field, 3—after cooling under a constant magnetic field, and 4—after removal of the
magnetic field.

When a magnetic field is applied along the y axis, the residual magnetization vector in
the magnetoactive elastomer aligns with this field, causing the plate to bend and resulting
in stress throughout the plate (in both the magnetoactive elastomer and titanium nickelide).
Figure 5a shows the stress intensity distribution in the left part of the sample (maximum
stresses occur closer to the fixed area). The phase strains arising in the titanium nickelide
layer during cooling are proportional to the stresses. Figure 5b shows the axial component
distribution of the phase strain tensor in the left part of the sample, with a maximum strain
value of 1.6%. These strains determine the plate’s bend magnitude after the magnetic field
is removed. Note that if the plate is heated to a temperature at which titanium nickelide
is in the austenitic state, the phase strains will completely disappear during the reverse
phase transition and the sample will return to the initial configuration (configuration 1 in
Figure 4).

σ i

(a)

(ePh )xx

(b)

Figure 5. Stress intensity distribution (a) and phase strain distribution (b) in the left part of the sample.

It is evident that the plate’s deflection magnitude (displacement of the right end
u end

y = u end
y /h of the cantilever) will depend on the thickness of the titanium nickelide

layer hN = hN/h. Figure 6 shows the dependence of the deflection magnitude u end
y on
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step number k, corresponding to Figure 3, at various values of titanium nickelide layer
thickness hN .

0 20 40 60 80

0

1

2

3

4

5

hN=0.06

hN=0.08

hN=0.1

hN=0.12

hN=0.14

u endy

k

Figure 6. Dependence of the displacement of the right end of the cantilever on step number k for
different values of the thickness of the titanium nickelide layer.

Figure 6 shows that the maximum deflection after plate cooling and after removal of
the external magnetic field occurs at different titanium nickelide layer thicknesses hN , and
these dependencies are generally non-monotonic. Figure 7 shows curves (deflection in the
magnetic field—blue curve; deflection after the magnetic field is removed—red curve) from
which one can find the values of hN corresponding to maximum deflection in the magnetic
field H0 = 0.1. For this field, the maximum free end displacement magnitude is u end

y = 5.5
at a titanium nickelide layer thickness of hN = 0.088 in the magnetic field and u end

y = 4.6
at a titanium nickelide layer thickness of hN = 0.106 after the magnetic field is turned off.
Thus, the thickness of the titanium nickelide layer can be selected to achieve the required
residual plate deflection.

0.06 0.08 0.10 0.12 0.14

3.0

3.5

4.0

4.5

5.0

5.5

field on

residual bend

u endy

hN

Figure 7. Dependence of the plate deflection magnitude on the thickness of the titanium nicke-
lide layer.

The deflection magnitude of the bi-layer plate will depend not only on the thickness of
the titanium nickelide layer but also on the magnitude of the magnetic field applied during
the plate’s bending. Figure 8 shows the dependence of the deflection magnitude (deflection
in the magnetic field—blue curve; deflection after the magnetic field is removed—red curve)
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on the magnitude of the applied magnetic field at a titanium nickelide layer thickness of
hN = 0.1. From this figure, it can be seen that an increase in the magnetic field leads to
an increase in the deflection, and this dependence is nonlinear. Using these dependencies,
the magnetic field magnitude necessary to achieve a specified residual plate deflection
can be determined. The difference between the displacement of the cantilever’s free end
before and after the magnetic field is removed also increases with an increase in the applied
magnetic field.

0.00 0.02 0.04 0.06 0.08 0.10

0

1

2

3

4

5
field on

residual bend

u endy

H0

Figure 8. Dependence of the plate deflection magnitude on the applied magnetic field.

To check the convergence of the numerical method, we present a convergence plot for
a series of numerical calculations with different numbers of mesh nodes. Figure 9 shows
the dependence of the displacement vector norm ∥u∥ =

(∫
Ω u · u dV

)1/2 on the number of
mesh nodes Nnodes. This displacement is at the end point of the process under consideration
(after removing the magnetic field). The ratio of the element sizes in the upper and lower
parts remained 1 to 10. It is evident from the figure that with an increase in the number of
nodes, the numerical solution reaches a constant value, which shows the convergence of
the method.

0 5000 10000 15000 20000

7.6

7.8

8.0

8.2

‖u‖

Nnodes

Figure 9. Dependence of the displacement vector norm on the number of mesh nodes.

4. Discussion

This study models the behavior of a cantilever (a bi-layer plate) composed of titanium
nickelide (NiTi) and a magnetoactive elastomer containing magnetically hard NdFeB parti-
cles. The preliminary deflection is set as follows: in the high-temperature state (austenitic)
for titanium nickelide, an external magnetic field is applied perpendicular to the cantilever
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axis (and the residual magnetization vector in the MAE layer); then, the sample is cooled in
such a way that a direct phase transition occurs in the titanium nickelide layer, after which
the magnetic field is removed in the low-temperature state. It should be noted that titanium
nickelide is in the martensitic state at room temperature. By switching the magnetic field
on and off, the position of the cantilever’s free end can be controlled.

The influence of the applied magnetic field magnitude and the thickness of the titanium
nickelide layer on the cantilever deflection was investigated. The optimal NiTi layer
thickness, which maximizes deflection (both before and after magnetic field removal), was
identified. The dependence of the residual cantilever deflection on the lied magnetic field
was obtained.

In order to understand whether it is possible to bend a real sample with a magnetic
field, it is necessary to estimate the concentration of magnetically hard particles. For
this, let us set Gε = 1 MPa, which corresponds to realistic values for existing magne-
toactive elastomers (MREs). Then, Mr = 0.275

√
Gε/µ0 ≈ 245 kA/m. Given that the

saturation magnetization of NdFeB particles is about 800 kA/m, this results in an ap-
proximate volume concentration of 30%. The dimensional value of the magnetic field is
H0 = 0.1

√
Gε/µ0 ≈ 90 kA/m, which corresponds to moderate laboratory field strengths.

The results of this study make it possible to calculate the bi-layer cantilever’s operation
as an actuator, which can, for example, perform object gripping upon application of a
magnetic field (when using two cantilevers). The required magnetic field strength to
achieve a specified deflection can be determined (a preliminary deflection of the grip
is created by applying a magnetic field in a high-temperature state, cooling to a low-
temperature state, and then turning off the magnetic field), and the working displacement
of the grip, defined by the difference in free-end movement before and after magnetic field
removal, can be calculated. Figure 10 shows the working mechanism of such a gripper,
consisting of a pair of bi-layer cantilevers with inner MAE layers and outer NiTi layers.
In Figure 10a, the elements’ position in the absence of a magnetic field is shown, while
Figure 10b illustrates the position when the magnetic field is applied.

Mr

Mr

Mr

Mr

H0

(a) (b)

Figure 10. Working scheme of the gripper: element position in the absence of a magnetic field (a) and
element position in a magnetic field (b).

Let us estimate the force that the gripper can implement when a magnetic field is
applied. Here, we will not solve the contact problem in its full formulation; instead, after
obtaining the preliminary deflection of the cantilever, we will assume that the boundary of
the gripped object of length lc coincides with the boundary of the cantilever and is located
on the right edge (in the numerical calculation, displacements in the contact area are fixed).
After applying the magnetic field, we integrate the stresses over the contact area and find
the force. For lc = h = 0.5 cm and H0 = 90 kA/m, we obtain a force F = 1.25 N.

We also note that the cantilever could be a critical component in the following:

• Soft robotics: acts as a flexible gripper for fragile objects with variable stiffness, allow-
ing for adaptive control.
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• Medical devices: supports minimally invasive instruments that require precise manip-
ulation in confined spaces, such as endoscopic actuators.

• Variable stiffness actuators: uses dual-stimulus control for complex programmable
deformation profiles.

These examples highlight the versatility and practical relevance of the research.
The model presented in this study is relatively simple, yet it effectively describes the

operation of the bi-layer cantilever. In the future, this model will be extended by defining
constitutive relations within the framework of finite deformations. Additionally, a contact
problem will be formulated and solved to simulate the operation of a gripper using a
bi-layer cantilever as its element.
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