Modeling of a Fluid with Pressure-Dependent Viscosity in Hele-Shaw Flow
Abstract
:1. Introduction
2. Mathematical Background
3. Solution near the Corner Edge: General Case
- For antisymmetric flows,
- For symmetric flows,
- For antisymmetric flows,
- For symmetric flows,
Application to the Case of Viscosity Given by (14)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aronsson, G.; Janfalk, U. On Hele–Shaw flow of power-law fluids. Eur. J. Appl. Math. 1992, 3, 343–366. [Google Scholar] [CrossRef]
- Chupin, L.; Palade, L.I. Generalized Newtonian and Herschel–Bulkley yield stress fluids pressure behavior near the tip of a sharp edge in thin film flows. Phys. Lett. A 2008, 372, 6404–6411. [Google Scholar] [CrossRef]
- Allouche, M.H.; Millet, S.; Botton, V.; Henry, D.; Hadid, H.B.; Rousset, F. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids. Phys. Rev. E 2015, 92, 063010. [Google Scholar] [CrossRef] [PubMed]
- Allouche, M.H.; Botton, V.; Millet, S.; Henry, D.; Dagois-Bohy, S.; Güzel, B.; Hadid, H.B. Primary instability of a shear-thinning film flow down an incline: Experimental study. J. Fluid Mech. 2017, 821, R1. [Google Scholar] [CrossRef]
- Balmforth, N.J.; Liu, J.J. Roll waves in mud. J. Fluid Mech. 2004, 519, 33–54. [Google Scholar] [CrossRef]
- Benjamin, T.B. Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 1957, 2, 554. [Google Scholar] [CrossRef]
- Borsi, I.; Farina, A.; Fasano, A.; Rajagopal, K.R. Modelling the combined chemical and mechanical action for blood clotting. Nonlinear Phenom. Energy Dissipation Gakuto Int. Ser. Math. Sci. Appl. Gakkotosho Tokyo 2008, 29, 53–72. [Google Scholar]
- Calusi, B.; Fusi, L.; Farina, A. On a free boundary problem arising in snow avalanche dynamics. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 2015, 96, 453–465. [Google Scholar] [CrossRef]
- Calusi, B.; Farina, A.; Fusi, L.; Palade, L.I. Stability of a Regularized Casson Flow down an Incline: Comparison with the Bingham Case. Fluids 2022, 7, 380. [Google Scholar] [CrossRef]
- Calusi, B.; Fusi, L.; Farina, A. Linear stability of a Couette flow for non-monotone stress-power law models. Eur. Phys. J. Plus 2023, 138, 933. [Google Scholar] [CrossRef]
- Calusi, B.; Farina, A.; Fusi, L.; Rosso, F. Thermo-mechanical modeling of pancakelike domes on Venus. Phys. Fluids 2024, 36, 056607. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sheu, T.W.H.; Ghosh, S. Dynamics and stability of a power-law film flowing down a slippery slope. Phys. Fluids 2019, 31, 013102. [Google Scholar] [CrossRef]
- Farina, A.; Fusi, L. Viscoplastic Fluids: Mathematical Modeling and Applications. In Non-Newtonian Fluid Mechanics and Complex Flows: Levico Terme, Italy 2016; Farina, A., Mikelić, A., Rosso, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 229–298. [Google Scholar] [CrossRef]
- Gholinezhad, S.; Kantzas, A.; Bryant, S.L. Control of interfacial instabilities through variable injection rate in a radial Hele-Shaw cell: A nonlinear approach for late-time analysis. Phys. Rev. E 2023, 107, 065108. [Google Scholar] [CrossRef] [PubMed]
- Hintermüller, M.; Keil, T. Optimal control of geometric partial differential equations. In Geometric Partial Differential Equations—Part II; Elsevier: Amsterdam, The Netherlands, 2021; pp. 213–270. [Google Scholar] [CrossRef]
- Li, P.; Huang, X.; Zhao, Y.P. Active control of electro-visco-fingering in Hele-Shaw cells using Maxwell stress. iScience 2022, 25, 105204. [Google Scholar] [CrossRef] [PubMed]
- Pascal, J.P. Linear stability of fluid flow down a porous inclined plane. J. Phys. D Appl. Phys. 1999, 32, 417–422. [Google Scholar] [CrossRef]
- Petit, N. Optimal control of viscous fingering. J. Process Control 2024, 135, 103150. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Saccomandi, G.; Vergori, L. Flow of fluids with pressure- and shear-dependent viscosity down an inclined plane. J. Fluid Mech. 2012, 706, 173–189. [Google Scholar] [CrossRef]
- Falsaperla, P.; Giacobbe, A.; Mulone, G. Stability of the Plane Bingham–Poiseuille Flow in an Inclined Channel. Fluids 2020, 5, 141. [Google Scholar] [CrossRef]
- Fernández-Nieto, E.D.; Noble, P.; Vila, J.P. Shallow Water equations for Non-Newtonian fluids. J. Non-Newton. Fluid Mech. 2010, 165, 712–732. [Google Scholar] [CrossRef]
- Fusi, L. Channel flow of viscoplastic fluids with pressure-dependent rheological parameters. Phys. Fluids 2018, 30, 073102. [Google Scholar] [CrossRef]
- Hele-Shaw, H.S. The Flow of Water. Nature 1898, 58, 34–36. [Google Scholar] [CrossRef]
- Hassager, O.; Lauridsen, T.L. Singular behavior of power–law fluids in Hele–Shaw flow. J. Non-Newton. Fluid Mech. 1988, 29, 337–346. [Google Scholar] [CrossRef]
- Hieber, C.; Shen, S. A finite-element/finite-difference simulation of the injection-molding filling process. J.-Non-Newton. Fluid Mech. 1980, 7, 1–32. [Google Scholar] [CrossRef]
- Huilgol, R. On the derivation of the symmetric and asymmetric Hele–Shaw flow equations for viscous and viscoplastic fluids using the viscometric fluidity function. J. Non-Newton. Fluid Mech. 2006, 138, 209–213. [Google Scholar] [CrossRef]
- Ouyang, Y.; Md Basir, M.F.; Naganthran, K.; Pop, I. Unsteady magnetohydrodynamic tri-hybrid nanofluid flow past a moving wedge with viscous dissipation and Joule heating. Phys. Fluids 2024, 36, 062009. [Google Scholar] [CrossRef]
- Barus, C. Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. 1893, s3–45, 87–96. [Google Scholar] [CrossRef]
- Bridgman, P. The Physics of High Pressure; The Macmillan Compan: New York, NY, USA, 1931. [Google Scholar]
- Fusi, L.; Tozzi, R. Falkner–Skan boundary layer flow of a fluid with pressure-dependent viscosity past a stretching wedge with suction or injection. Int. J. Non-Linear Mech. 2024, 163, 104746. [Google Scholar] [CrossRef]
- Klettner, C.; Dang, T.; Smith, F. On the flow past ellipses in a Hele-Shaw cell. J. Fluid Mech. 2023, 971, A12. [Google Scholar] [CrossRef]
- Kondic, L.; Palffy-Muhoray, P.; Shelley, M.J. Models of non-Newtonian Hele-Shaw flow. Phys. Rev. E 1996, 54, R4536–R4539. [Google Scholar] [CrossRef]
- Nassehi, V. Generalized Hele-Shaw models for non-Newtonian, nonisothermal flow in thin curved layers. IMA J. Manag. Math. 1996, 7, 71–88. [Google Scholar] [CrossRef]
- Rajagopal, K.R. On Implicit Constitutive Theories. Appl. Math. 2003, 48, 279–319. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Saccomandi, G.; Vergori, L. Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity. Z. Angew. Math. Phys. 2009, 60, 739–755. [Google Scholar] [CrossRef]
- Rajagopal, K.; Saccomandi, G.; Vergori, L. On the Oberbeck–Boussinesq approximation for fluids with pressure dependent viscosities. Nonlinear Anal. Real World Appl. 2009, 10, 1139–1150. [Google Scholar] [CrossRef]
- Saccomandi, G.; Vergori, L. Piezo-viscous flows over an inclined surface. Q. Appl. Math. 2010, 68, 747–763. [Google Scholar] [CrossRef]
- Hron, J.; Málek, J.; Rajagopal, K.R. Simple flows of fluids with pressure–dependent viscosities. Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 2001, 457, 1603–1622. [Google Scholar] [CrossRef]
- Rajagopal, K.; Saccomandi, G.; Vergori, L. Unsteady flows of fluids with pressure dependent viscosity. J. Math. Anal. Appl. 2013, 404, 362–372. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calusi, B.; Palade, L.I. Modeling of a Fluid with Pressure-Dependent Viscosity in Hele-Shaw Flow. Modelling 2024, 5, 1490-1504. https://doi.org/10.3390/modelling5040077
Calusi B, Palade LI. Modeling of a Fluid with Pressure-Dependent Viscosity in Hele-Shaw Flow. Modelling. 2024; 5(4):1490-1504. https://doi.org/10.3390/modelling5040077
Chicago/Turabian StyleCalusi, Benedetta, and Liviu Iulian Palade. 2024. "Modeling of a Fluid with Pressure-Dependent Viscosity in Hele-Shaw Flow" Modelling 5, no. 4: 1490-1504. https://doi.org/10.3390/modelling5040077
APA StyleCalusi, B., & Palade, L. I. (2024). Modeling of a Fluid with Pressure-Dependent Viscosity in Hele-Shaw Flow. Modelling, 5(4), 1490-1504. https://doi.org/10.3390/modelling5040077