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Abstract: We investigate the Hele-Shaw flow of fluids whose viscosity depends on pressure, i.e., piezo-
viscous fluids, near the tip of a sharp edge. In particular, we consider both cases of two-dimensional
symmetric and antisymmetric flows. To obtain the pressure field, we provide a procedure that is
based on the method of separation of variables and does not depend on a specific choice of the
expression for the pressure-dependent viscosity. Therefore, we show the existence of a general
procedure to investigate the behavior of piezo-viscous fluids in Hele-Shaw flow and its solution
near a sharp corner. The results are applied to the case of an exponential dependence of viscosity on
pressure as an example of exact solutions for the pressure field.

Keywords: Hele-Shaw flow; symmetrical and antisymmetrical flows; lubrication approximation;
pressure-dependent viscosity; piezo-viscous fluids

1. Introduction

Hele-Shaw flow refers to the flow in a narrow gap between two parallel plates. The
space between the plates can be occupied partly by the fluid and partly by internal obstacles
placed perpendicular to the flow direction. Such obstacles can have different geometry
such as cylinders with generators perpendicular to the plates [1] or sharp edges [2]. The
study on the flow between two parallel plates close together is a relevant problem, e.g., for
micro-flow and industrial applications such as injection molding of thin films [2]. In fact,
several applications in geophysical, biological, and industrial fields involves complex fluids
flowing in domains that can be approximated as an incline or two parallel plates; thus, the
modeling of such fluids is of great interest, and various works have been developed on
this topic [3–22]. In the early studies, Hele-Shaw flow was applied to Newtonian fluids,
and it is named after Henry Selby Hele-Shaw, who studied the problem in 1898 [23]. Later,
extensions of Hele-Shaw flow for non–Newtonian fluids were analyzed (see, e.g., [1,2,24–27]
and the references therein). The Hele-Shaw flows of a power law fluid around sharp corners
were analyzed, e.g., in [1,24]. Recently, more complex viscosity laws have been considered.
In ref. [26], the Hele-Shaw flow equations for both viscous and viscoplastic fluids have
been investigated through a viscometric fluidity function. The authors of [2] have extended
the analysis of Hele-Shaw flow around a sharp edge whose tip is assumed a geometric
singularity for generalized Newtonian fluids and yield stress fluids.

The purpose of this work is to present the two-dimensional Hele-Shaw flow applied
to a piezo-viscous fluid, i.e., a fluid whose viscosity depends on the pressure, in the case of
both antisymmetric (perpendicular to the edge axis of symmetry) and symmetric (directed
towards the edge and parallel to the axis of symmetry) flows.

In particular, we extend the procedure presented in [2] to the case of piezo-viscous
fluids by looking for a solution of the pressure field in an area of a sharp edge, as depicted in
Figure 1. Several studies have been developed to investigate the flow of fluids with viscosity,
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which depends on pressure, e.g., see [28–37]. The authors of [30] have studied the Falkner–
Skan boundary layer flow of a non–Newtonian fluid whose viscosity follows the Barus’ law
[28], i.e., the fluid is characterized by an exponential relationship between viscosity and
pressure. To the best of the authors’ knowledge, Hele-Shaw flow has never been extended
before to piezo-viscous fluids in the case of both antisymmetric and symmetric flows
without a specific reference to the explicit dependence of viscosity on pressure. This paper
is organized as follows. In Section 2, we provide the governing equations for piezo-viscous
fluids in a narrow gap between two parallel plates and, then, the differential equations for
the pressure field through the method of separation of variables. In Section 3, we investigate
the pressure behavior in an area of a sharp edge, in a system of polar coordinates centered at
the edge tip, for both symmetric and antisymmetric flows by considering generic pressure-
dependent viscosity. Then, we provide the exact solutions for the pressure field in the case
of an exponential dependence of viscosity on pressure. Section 4 is devoted to final remarks
and future developments.

Figure 1. Sketches of the problem geometry when the edge angle is such that the region close to the
tip is a sharp edge (re-entrant plane sector) or a hollow-shaped cavity (non re-entrant plane sector).

2. Mathematical Background

We consider a fluid with pressure-dependent viscosity, f ∗(p∗), characterized by the
following constitutive relation:

S∗ = 2 f ∗(p∗)A∗
1 , (1)

where S∗ is the Cauchy extra-stress tensor and A∗
1 is the (traceless) first Rivlin–Eriksen

tensor, as follows:

A∗
1 =

1
2

[
∇u∗ + (∇u∗)T

]
, (2)

with u∗ being the velocity field. The general forms of governing equations are
ρ∗
(

∂u∗

∂t∗
+ u∗ · ∇u∗

)
= −∇p∗ + divS∗,

divu∗ = 0,

(3)

where ρ∗ is the constant fluid density. We consider the velocity field of the form

u∗(x∗, y∗, z∗) = u∗(x∗, y∗, z∗)e∗x + v∗(x∗, y∗, z∗)e∗y + w∗(x∗, y∗, z∗)e∗z , (4)

and the gap between the horizontal x∗Oy∗ plane and any of the two boundary planes to be
denoted as |z∗| = H∗/2. The schematic diagram is displayed in Figure 2.



Modelling 2024, 5 1492

Figure 2. Schematic diagram of the three-dimensional flow domain geometry.

We consider the following boundary conditions:

u∗ = 0, for z∗ = ±H∗

2
, (5)

i.e., the no wall slip condition, and, due to the flow domain symmetry,

∂u∗

∂z∗
=

∂v∗

∂z∗
= 0, for z∗ = 0, (6)

i.e., we focus only on the upper half subdomain z∗ ∈ [0, H∗/2]. For Hele-Shaw flows, the
fluid film thickness is negligible compared to the domain x∗ − y∗ of other dimensions.
Since the flow is chiefly confined to the x∗ and y∗ directions, it is usually assumed that w∗

is negligible compared to u∗ and v∗.
We introduce the following dimensionless quantities:

x =
x∗

L∗ , y =
y∗

L∗ , z =
z∗

H∗ , u =
u∗

U∗
re f

, v =
v∗

U∗
re f

, w =
w∗

ϵU∗
re f

,

t =
U∗

re f

L∗ t∗, p =
p∗ − p∗0

p∗c
, S =

S∗
S∗

c
, f (p) =

f ∗(p∗)
µ∗

0
,

(7)

with
ϵ =

H∗

L∗ ≪ 1, (8)

p∗c =
µ∗

0U∗
re f L∗

H∗2 , S∗
c =

µ∗
0U∗

re f

H∗ , (9)

where U∗
re f is the reference velocity, p∗c is the characteristic pressure, µ∗

0 is the fluid viscosity
evaluated at the reference pressure p∗0 , and L∗ is the domain length in the x∗ and y∗

directions. Introducing the Reynolds number as

Re =
ρ∗U∗

re f H∗

µ∗
0

, (10)

as well as using (4) and adimensionalization (7), system (3) rewrites the equation as follows:
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

ϵRe

(
u

∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
= − ∂p

∂x
+

{
2ϵ2 ∂

∂x

(
f (p)

∂u
∂x

)
+ ϵ2 ∂

∂y

[
f (p)

(
∂v
∂x

+
∂u
∂y

)]
+

∂

∂z

[
f (p)

(
ϵ2 ∂w

∂x
+

∂u
∂z

)]}
,

ϵRe

(
u

∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

)
= − ∂p

∂y
+ ϵ2 ∂

∂x

[
f (p)

(
∂v
∂x

+
∂u
∂y

)]
+2ϵ2 ∂

∂y

(
f (p)

∂v
∂y

)
+

∂

∂z

[
f (p)

(
∂v
∂z

+ ϵ2 ∂w
∂x

)]
,

ϵ2Re

(
u

∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
= − ∂p

∂z
+

∂

∂x

[
f (p)

(
ϵ

∂u
∂z

+ ϵ3 ∂w
∂x

)]
+

∂

∂y

[
f (p)

(
ϵ

∂v
∂z

+ ϵ3 ∂w
∂y

)]
+ 2ϵ

∂

∂z

(
f (p)

∂w
∂z

)
.

(11)

By assuming that Re = O(1) and neglecting a higher order than ϵ, system (11) reduces to

∂p
∂x

=
∂

∂z

(
f (p)

∂u
∂z

)
,

∂p
∂y

=
∂

∂z

(
f (p)

∂v
∂z

)
,

∂p
∂z

= 0,

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0.

(12)

Remark 1. We consider the following explicit form for the dimensional viscosity f ∗(p∗) as proposed
by Barus in [28], namely

f ∗(p∗) = µ∗
0eδ∗(p∗−p∗0), p∗ = p∗(x∗, y∗, z∗), (13)

where µ∗
0 is the viscosity at the reference pressure p∗0 and δ∗ is the pressure coefficient. Then, by

considering adimensionalization (7), we have

f (p) = eδp, where δ = δ∗p∗c =
δ∗µ∗

0U∗
re f L∗

H∗2 , (14)

which is a positive and increasing function of pressure [38,39], and δ is a “material” and a geometri-
cal parameter proportional to the pressure coefficient δ∗. The classical Newtonian case is recovered
for δ∗ → 0. Figure 3 shows the schematic representation of f (p) for classical Newtonian fluid and
piezo-viscous fluids with viscosity given by (14).

System (12) is to be coupled with boundary conditions (6), which take the following
forms in a dimensionless formulation:

u = 0, for z = ±1
2

, (15)

and
∂u
∂z

=
∂v
∂z

= 0, for z = 0. (16)

System (12) entails
p = p(x, y), (17)
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and, thus, Equation (12)1,2 become
∂p
∂x

= f (p)
∂2u
∂z2 ,

∂p
∂y

= f (p)
∂2v
∂z2 ,

(18)

which, recalling conditions (15) and (16), lead to
u(x, y, z) =

1
f (p(x, y))

∂p(x, y)
∂x

(
z2

2
− 1

8

)
,

v(x, y, z) =
1

f (p(x, y))
∂p(x, y)

∂y

(
z2

2
− 1

8

)
,

(19)

i.e., the velocity field is symmetric about z = 0 and has a parabolic profile with respect to z.
Moreover, following [2], we can write the flow fluxes qu and qv as

qu(x, y) = 2
∫ 1/2

0
u(x, y, z)dz = − 1

12 f (p)
∂p
∂x

, (20)

qv(x, y) = 2
∫ 1/2

0
v(x, y, z)dz = − 1

12 f (p)
∂p
∂y

. (21)

The flow fluxes in Equations (20) and (21) must satisfy

∂qu

∂x
+

∂qv

∂y
= 0, (22)

leading to a close equation for pressure, namely

∂

∂x

[
g( f (p))

∂p
∂x

]
+

∂

∂y

[
g( f (p))

∂p
∂y

]
= div[g( f (p))∇p] = 0, (23)

where
g( f (p)) =

1
12 f (p)

. (24)

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

Figure 3. Plot of f (p) as a function of p for classical Newtonian fluid (blue line) and piezo−viscous
fluids given by (14) for different values of δ.
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Remark 2. The classical Newtonian case is retrieved when f ∗(p∗) = µ∗
0 = constant in a

dimensional formulation, as follows:

g∗( f ∗(p∗)) =
H∗3

12µ∗
0

, (25)

and, thus, Equation (23) reduces to the well-known Reynolds equation, i.e.,

div

[
H∗3

12µ∗
0
∇p∗

]
= 0, (26)

which is essentially Equation (23) with f (p) = 1.

We rewrite (23) as

div
[
∇
∫ p(x,y)

0
g( f (s))ds

]
= div

[
∇
∫ p(x,y)

0

ds
f (s)

]
= ∆

[∫ p(x,y)

0

ds
f (s)

]
= ∆F(x, y) = 0, (27)

which can be solved using the method of separation of variables.

3. Solution near the Corner Edge: General Case

In the region neighboring the edge (singularity) peak with a tip angle (constant in
time) equal to 2α, looking for a solution via the separation of variables, i.e.,

F(r, θ) =
∫ p(r,θ)

0

ds
f (s)

= R(r)Θ(θ), (28)

we express Equation (23) in polar coordinates (r, θ), with their axis centered at the edge
peak, namely

∂

∂r

[
r

∂

∂r
(R(r)Θ(θ))

]
+

1
r

∂2

∂θ2 (R(r)Θ(θ)) = 0, (r, θ) ∈ R+ × [− α, α]. (29)

Therefore, by denoting the “separation constant” by m2, Equation (29) entails
r
R

d
dr

(
r

dR(r)
dr

)
= m2,

d2Θ(θ)

dθ2
1

Θ(θ)
= −m2.

(30)

Following [24], since the dependence of viscosity on the shear rate γ̇ is linear (i.e., the
power law index, n, is equal to 1 in [24]), the problem is to find the smallest eigenvalue that
satisfies the condition

m > mc =
1 − n
n + 1

= 0. (31)

Thus, system (30) leads to the following general solution for F(r, θ):

F(r, θ) =
(
C1rm + C2r−m)[A cos(mθ) + B sin(mθ)], m > 0. (32)

Following [2,24] and recalling (28), we rewrite the boundary conditions as

• For antisymmetric flows,

Θ′(α) = 0, and Θ(0) = 0, (33)
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• For symmetric flows,
Θ′(α) = 0, and Θ′(0) = 0, (34)

and we require that for r = 0, the solution is bounded, i.e., R(r) = C1rm. Therefore, the
solution is

• For antisymmetric flows,

F(r, θ) = rma sin(maθ), ma =
kπ

2α
, (35)

• For symmetric flows,

F(r, θ) = rms cos(msθ), ms =
kπ

α
, (36)

where the smallest eigenvalues ma and ms are obtained for k = 1, and we set the constants
of integration (C1, A, B) equal to (1, 0, 1) for antisymmetric flows and (C1, A, B) equal to
(1, 1, 0) for symmetric flows. As the expression of the dependence of viscosity on pressure
is given, we can obtain the pressure field through (28), i.e., by solving with respect to p(r, θ),
as follows:

F(r, θ) =
∫ p(r,θ)

0

ds
f (s)

. (37)

Application to the Case of Viscosity Given by (14)

In this Subsection, we analyze the case of pressure-dependent viscosity given by (14),
showing that (37) has an exact solution. If the viscosity is given by (14), one gets

• For antisymmetric flows,

p(r, θ) = − ln |1 − rma δ sin(maθ)|
δ

, ma =
π

2α
, (38)

• For symmetric flows,

p(r, θ) = − ln |1 − rms δ cos(msθ)|
δ

, ms =
π

α
, (39)

For the classical Newtonian case, i.e., when the viscosity is given by (14) with δ → 0, we
retrieve

• For antisymmetric flows,

p(r, θ) = rma sin(maθ) ma =
π

2α
, (40)

• For symmetric flows,

p(r, θ) = rms cos(msθ), ms =
π

α
, (41)

as in [24].
The solution of the pressure field and the corresponding evolution of pressure-

dependent viscosity for both antisymmetric and symmetric flows when α = π/3, 3π/4 and
for different values of δ are depicted in Figures 4–7. In particular, we see that the pressure
field p and the viscosity f (p) increase as δ increases in both geometries (non re-entrant and
re-entrant angles) and for both type of flows (antisymmetric and symmetric).

The components of the fluxes qu and qv for antisymmetric and symmetric flows
decrease as δ increases when α = π/3 and α = 3π/4, as shown in Figures 8 and 9,
respectively. The classical Newtonian case corresponds to δ → 0. The flow towards the
non re-entrant angle α = π/3 is depicted in Figure 8. In particular, the results highlight
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that (qu, qv) is decreasing near the corner in the case of antisymmetric and symmetric flows.
On the other hand, Figure 9 shows the increase in (qu, qv) near the corner in the case of
antisymmetric and symmetric flows when α = 3π/4. Moreover, the flow is distributed
unevenly near the bend when the flow is antisymmetric in both geometries, i.e., for both
α = π/3 and α = 3π/4. The behavior of both flows is different when non re-entrant
or re-entrant angles are considered for a given δ. However, in both geometries (non re-
entrant and re-entrant angles), the components of the fluxes qu and qv in both cases of
antisymmetric and symmetric flows decrease as δ increases.

-0.28
621

-0.25
254

-0.218
87

-0.1851
9

-0.15
152

-0.11
785

-0.11785
-0.084

179
-0.084179-0.05050

8
-0.050508

-0.016836 -0.016836

0.016836 0.016836

0.050508
0.050508

0.084179
0.084179

0.11785

0.11785

0.15152 0.18519

0.21887

0.25254

0.28621

0.31988

0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.2
6754

-0.23
235

-0.197
16

-0.1619
7

-0.12
678

-0.09
1591

-0.091591-0.0564
01

-0.056401
-0.02121

-0.02121

0.01398 0.01398

0.049171
0.049171

0.084361
0.084361

0.11955

0.11955

0.15474 0.18993

0.22512

0.26031

0.2955

0.33069

0.36588

0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

0.86
716

0.884
54

0.9019
2

0.919290.93
667

0.954
05

0.954050.97143
0.97143

0.98881
0.98881

1.0062 1.0062

1.0236
1.0236

1.0409
1.0409

1.0583

1.0583

1.0757

1.0757

1.0931 1.1105

1.1278

1.1452

1.1626

1.18

1.1974

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

0.77
728

0.815
76

0.854240.892
72

0.892720.9312
1

0.93121
0.96969

0.96969

1.0082 1.0082

1.0467
1.0467

1.0851
1.0851

1.1236

1.1236

1.1621

1.1621

1.2006
1.2391

1.2775

1.316

1.3545

1.393

1.4315

1.47

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

0

0.5

1

1.5

2

-0.2
9153

-0.25
75

-0.223
47

-0.189
44

-0.1554
1

-0.12
138

-0.087
354

-0.087354-0.05332
4

-0.053324
-0.019295

-0.019295

0.014734 0.014734

0.048763
0.048763

0.082793
0.082793

0.11682

0.11682

0.15085 0.18488

0.21891

0.25294

0.28697

0.321

0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 4. Plots of the pressure field (left) and of the viscosity given by (14) (right) in Cartesian
coordinates for δ → 0 (i.e. classical Newtonian fluid) and for δ = 0.5, 1 (i.e. piezo−viscous fluid) in
the case of antisymmetric flows when α = π/3.



Modelling 2024, 5 1498

0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

0.92509

0.92509

0.93716

0.93716

0.94923

0.94923

0.9613

0.9613

0.97337

0.97337

0.98544

0.98544

0.99751

0.99751

0.99
751

0.99751

1.
00
96

1.0096

1.
02
16

1.0216

1.
03
37

1.0337

1.0458

1
.0
5
7
8

1
.0
6
9
9

1
.0
8
2

1
.0
9
4
1

1
.1
0
6
1

0.9

0.95

1

1.05

1.1

0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

-0.070284

-0.070284

-0.05841

-0.05841

-0.046535

-0.046535

-0.03466

-0.03466

-0.022786

-0.022786

-0.010911

-0.010911

0.0
009

636

0.0009636

0.0009636

0.
01
28
38

0.012838

0.
02
47
13

0.024713

0.036588

0
.0
4
8
4
6
2

0
.0
6
0
3
3
7

0
.0
7
2
2
1
2

0
.0
8
4
0
8
6

-0.1

-0.05

0

0.05

0.1

0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

-0.073914

-0.073914

-0.062081

-0.062081

-0.050247

-0.050247

-0.038413

-0.038413

-0.026579

-0.026579

-0.014746

-0.014746

-0.0029118

-0.0
029

118

0.
00
89
21
9

0.0089219

0.
02
07
56

0.020756

0.
03
25
89

0
.0
4
4
4
2
3

0
.0
5
6
2
5
7

0
.0
6
8
0
9
1

0
.0
7
9
9
2
4

0
.0
9
1
7
5
8

-0.1

-0.05

0

0.05

0.1

0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

-0.065882

-0.065882

-0.054059

-0.054059

-0.042235

-0.042235

-0.030411

-0.030411

-0.018588

-0.018588

-0.0067642

-0.0067
642 0.0

050
594

0
.0
0
5
0
5
9
4

0.
01
68
83

0.016883

0.
02
87
07

0.028707

0.04053

0
.0
5
2
3
5
4

0
.0
6
4
1
7
7

0
.0
7
6
0
0
1

0
.0
8
7
8
2
4

-0.1

-0.05

0

0.05

0.1

0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

0.95907

0.95907

0.96504

0.96504

0.971

0.971

0.97696

0.97696

0.98293

0.98293

0.98889

0.98889

0.99486

0.99486

1.0
008

1.0008

1.0008

1.
00
68

1.0068

1.
01
28

1.0128

1.
01
87

1
.0
2
4
7

1
.0
3
0
6

1
.0
3
6
6

1
.0
4
2
6

1
.0
4
8
5

0.96

0.98

1

1.02

1.04

1.06

0 0.1 0.2 0.3 0.4

-0.4

-0.2

0

0.2

0.4

0

0.5

1

1.5

2

Figure 5. Plots of the pressure field (left) and of the viscosity given by (14) (right) in Cartesian
coordinates for δ → 0 (i.e. classical Newtonian fluid) and for δ = 0.5, 1 (i.e. piezo−viscous fluid) in
the case of symmetric flows when α = π/3.
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Figure 6. Plots of the pressure field (left) and of the viscosity given by (14) (right) in Cartesian
coordinates for δ → 0 (i.e. classical Newtonian fluid) and for δ = 0.5, 1 (i.e. piezo−viscous fluid) in
the case of antisymmetric flows when α = 3π/4.
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Figure 7. Plots of the pressure field (left) and of viscosity given by (14) (right) in Cartesian coordinates
for δ → 0 (i.e. classical Newtonian fluid) and for δ = 0.5, 1 (i.e. piezo−viscous fluid) in the case of
symmetric flows when α = 3π/4.
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magnification is reported from the maximum to the minimum value.
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4. Conclusions

In this work, we investigated the Hele-Shaw flow of fluids whose viscosity depends on
pressure, i.e., piezo-viscous fluids. In particular, we analyzed the case of both antisymmetric
(perpendicular to the edge axis of symmetry) and symmetric (directed towards the edge and
parallel to its axis of symmetry) flows. We proceeded similarly to [2], and we provided a
procedure based on the method of separation of variables to obtain the solution of the pressure
field without the dependence on a specific relation between viscosity and pressure.
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We report results for the case of an exponential dependence of viscosity on pressure
(Barus’ law [28]) as an example of exact solutions for the pressure field. In this case, we
present the solutions for the pressure field (p), the viscosity ( f (p)), and fluxes (qu and qv)
by varying the numerical value of the “material” and geometrical parameter δ, which is
related to the pressure coefficient δ∗. Moreover, we analyze such solutions in the area
of both non re-entrant (α = π/3) and re-entrant angles (α = 3π/4). The solution of the
classical Newtonian fluid was recovered when δ → 0, as in [24]. In particular, our work
provides a method to model the behavior of a fluid with pressure-dependent viscosity in
Hele-Shaw flows.

Important future extensions of the present work encompass the active control of Hele-
Shaw cells by considering the moving fluid interface and the influence of adjustments in
gap thickness and inlet pressure. A strategy for controlling the fingering pattern is the
use of non–Newtonian fluids as the displaced and/or displacing fluids [14]. The interest
in viscous fingering in Hele-Shaw cells is increasing, and the viscous fingering control
method is quite attractive for applications regarding interfacial instabilities. In fact, recently,
new theoretical, numerical, and experimental studies have been performed regarding the
problem of optimally filling a Hele-Shaw cell (e.g., see [14–16,18]).

Therefore, knowledge about fluid characteristics such as the dependence of viscosity
upon temperature and/or on the shear rate γ̇ will be beneficial to better understand
geophysical phenomena or to optimize industrial manufacturing.
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