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Abstract: Our objective in this work is to demonstrate how physics-informed neural networks,
a type of deep learning technology, can be utilized to examine the mechanical properties of a
helicopter blade. The blade is regarded as a one-dimensional prismatic cantilever beam that is
exposed to triangular loading, and comprehending its mechanical behavior is of utmost importance
in the aerospace field. PINNs utilize the physical information, including differential equations and
boundary conditions, within the loss function of the neural network to approximate the solution.
Our approach determines the overall loss by aggregating the losses from the differential equation,
boundary conditions, and data. We employed a physics-informed neural network (PINN) and an
artificial neural network (ANN) with equivalent hyperparameters to solve a fourth-order differential
equation. By comparing the performance of the PINN model against the analytical solution of
the equation and the results obtained from the ANN model, we have conclusively shown that the
PINN model exhibits superior accuracy, robustness, and computational efficiency when addressing
high-order differential equations that govern physics-based problems. In conclusion, the study
demonstrates that PINN offers a superior alternative for addressing solid mechanics problems with
applications in the aerospace industry.

Keywords: physics-informed neural network; deep neural network; artificial neural network;
computational solid mechanics; partial differential equation

1. Introduction

Solid mechanics can be described as a field within applied mechanics concerned with
analyzing how solid objects respond to different types of forces. It explores how materials
behave under various loading conditions, offering insights into their structural integrity
and performance [1]. Mechanical problems are represented using a variety of differential
equations, which take different forms depending on the nature of the problem.

In recent years, computational solid mechanics has emerged as a discipline that uses
numerical techniques to solve complex differential equations [2]. Solving these problems
analytically is challenging and time-consuming because of the intricate equations and
irregular problem domains. Over the years, various numerical techniques have been
developed, such as the finite element method (FEM) [3], finite difference method (FDM) [4],
element-free Galerkin method [5], and mesh-free methods [6]. Among these methods, FEM
is the most widely used numerical method to solve problems in the area of solid mechanics.
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In numerous cases, the problem to be solved is extensive, resulting in simulation times
ranging from hours to days or even weeks. This incurs a high computational cost. If there
is a requirement to change the parameter, the complete analysis must be conducted again
from scratch, which is quite time-consuming [7,8].

Over the past few years, artificial neural networks (ANNs) have demonstrated re-
markable performance in various fields such as image classification [9], time series fore-
casting [10], predictive analytics [11], genomics [12], and natural language processing [13],
owing to their capacity to grasp intricate patterns and relationships from data. Artifi-
cial neural networks (ANNs) can incorporate multiple hidden layers containing neurons,
granting them robust learning capabilities. This feature enables ANNs to offer an alterna-
tive method for addressing mechanics problems, diverging from conventional numerical
solvers. Artificial neural networks (ANNs) have proven effective in addressing a range of
challenges in fluid mechanics [14,15], fracture mechanics [16], and solid mechanics [17]. In
one study, Khatir et al. (2022) [18] present a method to identify crack depth in steel beams
leveraging a combination of FEM and ANNs, enhanced by the Butterfly Optimization
Algorithm. Although the artificial neural network is a powerful tool, it has its limitations,
such as experiencing diminished error reduction once the training process is finished,
leading to suboptimal output results. Bolandi et al. (2022) [19] proposed a deep learn-
ing technique using convolutional neural networks (CNNs) to predict high-resolution
stress distributions on loaded steel plates, offering a faster alternative to the traditional
finite element method (FEM) and showcasing the potential of deep learning for real-time
structural stress analysis. The study by Teng et al. (2022) [20] introduces a deep learning
approach using convolutional neural networks (CNNs) to classify the structural state of
a steel frame based on vibration signals. Le-Nguyen et al. (2022) [21] applied ANNs to
predict the compressive strength of FRCM-confined concrete columns. The study con-
ducted by Tran et al. (2022) [22] utilized three hybrid materials—gradient boosting (GB),
artificial neural network (ANN), and random forest (RF)—in combination with particle
swarm optimization (PSO) to predict the chloride content in concrete. Nonetheless, the
performance of ANNs tends to be strongest when abundant data are available. In mechan-
ics problems, data can be scarce, and ANNs do not incorporate the underlying physical
laws of the engineering problem, resulting in reduced prediction accuracy [8,23]. Thus, the
challenges associated with artificial neural networks (ANNs) motivate us to explore new
ideas and methods.

One such approach widely accepted in the scientific community is a deep learning-
based method known as physics-informed neural networks (PINNs) introduced by Raissi
et al. [24]. PINNs represent a highly effective method for addressing problems governed
by partial differential equations (PDEs). These networks are designed to directly integrate
physical laws or constraints into their structure, enabling them to simulate and accurately
model complex systems. The foundational component of the physics-informed neural
network (PINN) framework is a multi-layer artificial neural network that is enhanced
with a physics-informed loss function. This innovative loss function integrates governing
differential equations, boundary conditions, initial conditions, and any available data to
determine the total loss accurately. The sole distinction between an artificial neural network
(ANN) and a physics-informed neural network (PINN) lies in how the loss function is
implemented and calculated [25]. Artificial neural networks (ANNs) rely solely on data for
learning, whereas physics-informed neural networks (PINNs) incorporate the governing
equations as pre-existing knowledge [26]. PINNs can be effective in scenarios where
labeled data are sparse because they utilize both the existing data as well as the inherent
physical principles described in equations. Compared to ANNs, PINNs require less data.
PINNs differ from traditional numerical methods like the finite difference method and
finite element because they are not mesh-based. Instead, they are a mesh-free method,
which allows them to handle irregular and complex geometries [24,27].

In their seminal work, Raissi et al. [24] tackled two distinct problem sets: data-driven
solution and data-driven discovery within the realm of partial differential equations. Under
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the data-driven solution framework, they addressed the Schrodinger Equation and the
Allen–Cahn equation. Meanwhile, within the data-driven discovery approach, they delved
into the Navier–Stokes equation and the Korteweg–de Vries equation. After their introduc-
tion, PINNs have been used in solving various other PDEs [28–30]. PINNs can be used
for solving supervised learning problems [31] as well as unsupervised learning tasks [32].
They can also be employed for both forward and inverse problems [33]. Due to their ability
to incorporate the governing equations of the problems, PINNs have been used in various
fields such as fluid mechanics [34,35], heat transfer [36], healthcare [37], finance [38], and
solid mechanics [39]. Several research studies have been carried out on implementing
PINNs so far. In one of the studies, Haghighat et al. (2021) [39] created a PINN structure to
anticipate the field variables (such as displacement and stress) associated with linear elastic
and non-linear problems. In another study, Zhi et al. (2023) [40] proposed a surrogate-based
physics-informed neural network (PINN) to solve representative boundary value problems
based on elliptic partial differential equations (PDEs). In their study, Rao et al. (2021) [41]
applied enforced initial and boundary conditions to simulate static and dynamic problems
using a PINN model, which gives a mixed-variable output. One of the works carried out
by J. Bai et al. (2022) [42] proposed the LSWR loss function for PINNs, which uses the
Least Squares Weighted Residual (LSWR) method, solved the 2D and 3D solid mechanics
problem, and showed that the performance of PINNs based on the LSWR loss function is
more effective and accurate compared to PINNs utilizing either collocation or energy-based
loss functions. In the study by J. Bai et al. (2023) [43], the focus was on programming
methods in executing governing equations. They solved the 1-, 2-, and 3-dimensional prob-
lems by employing collocation-based and energy-based loss functions, demonstrating the
effectiveness of PINN-based Computational Solid Mechanics. Abueidda et al. (2022) [44]
applied PINNs to solve 3-dimensional hyperelastic problems.There is a reasonable amount
of work that shows PINNs are effective in solving PDEs.

Beams are the structural elements designed to support loads that are perpendicular to
the axis, and are used in various industries such as aerospace, automotive, construction, etc.
In our paper, we are focusing on utilizing PINNs for a particular beam with its application
in aerospace engineering. Over the years, there have been many studies utilizing PINNs to
solve beam-related problems. The work by Kapoor et al. (2023) [45] used PINNs to simulate
complex beam systems, solving both forward and inverse problems. The study by Faroughi
et al. (2023) [46] investigates the use of mixed formulation PINNs to solve the problem of a
non-uniform beam resting on an elastic foundation under arbitrary external loads. They
used several different beam structures under various types of complicated boundary and
foundation conditions to show the application of the proposed method. Another study
by Liu et al. (2024) [47] presents a physics-informed neural network that incorporates
modal transformation equations for improved performance with minimal data. A modified
Kalman filter reduces noise sensitivity. The framework’s effectiveness and the benefits
of the KF-UI algorithm are demonstrated through experiments on a cantilever beam and
a wing structure. Bazmara et al. (2023) [48] present a physics-informed neural network
framework for analyzing the non-linear buckling behavior of a 3D functionally graded
(FG) porous, slender beam on a Winkler–Pasternak foundation. Trinh et al. (2024) [49]
present a PINN model for analyzing functionally graded thin-walled beams with doubly
symmetric I- and channel-sections. The approach, based on energy methods, is used to
predict vertical displacements and angles of twist in these beams. Verma et al. (2024) [50]
use PINNs to simulate the behavior of a cantilever beam subjected to a uniform loading.
Moreover, Mouratidou et al. (2024) [51] present a computational method for solving 2D
elasticity problems in solid mechanics using an ensemble of PINNs. It addresses strain–
displacement relations, equilibrium equations, and isotropic constitutive relations under
various boundary conditions. There is extensive research demonstrating the effectiveness
of PINNs in solving beam problems.

In our study, we analyze the mechanical characteristics (such as deflection, etc.) of a
helicopter blade treated as a prismatic (constant EI) cantilever beam subjected to triangular
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loading. When a lateral force is applied over a beam, the beam’s longitudinal axis undergoes
deformation, resulting in a curvature known as the deflection curve [1]. Understanding
these mechanical behaviors is essential in designing helicopter blades, ensuring optimal
flight performance and safety.

While it is well-documented that classical methods like the finite element method
(FEM) are computationally expensive and time-consuming [7,8], a similar issue arises with
PINNs if there are any changes in the initial parameters of the partial differential equation
or boundary conditions that would require retraining the PINNs. However, the recent ad-
vantages of parametric training provide a promising solution [52]. In the paper by Choo et
al. (2024) [52] the limitations of traditional PINNs are highlighted, and these involve repeti-
tive and time-consuming training. To solve this, the authors propose a novel method called
parameterized physics-informed neural networks. Other work by Anton et al. (2024) [53]
uses parametric PINNs for constitutive model calibration from full-field displacement
data, offering fast, near real-time evaluations. Other methods also came into the picture in
recent years called neural operators [54] that map between infinite-dimensional function
spaces. Different neural operators such as the Fourier Neural Operator (FNO) [55,56],
Physics-Informed Neural Operator (PINO) [57,58], etc. Instead of learning a single solution,
neural operators learn an operator that can map any input function (e.g., parameters or
initial/boundary conditions) to its corresponding output. However, these aspects are
beyond the current scope of this research and present opportunities for future work. Cur-
rently, this research is dedicated to investigating the capabilities of physics-informed neural
networks (PINNs) within beam mechanics, emphasizing their applicability and significance
in aerospace design and analysis.

This paper is organized as follows: Section 2 thoroughly explains the theory and
architecture of ANNs and PINNs. Section 3 gives a brief overview of the problem to be
solved and defines the governing equation, boundary conditions, and the formulation of
the loss function for PINN. Section 4 presents a detailed exploration of the training process
and a brief overview of the results obtained. Ultimately, the study is concluded in Section 5.

2. Physics-Informed Neural Network

This section provides a detailed exploration of artificial neural networks (ANNs)
and physics-informed neural networks (PINNs), focusing on their theoretical frame-
works and methodologies and how they are used to address challenges in computational
solid mechanics.

2.1. Artificial Neural Network

Inspired by the biological neurons present in the human brain [59], the artificial neural
network is a computational model that aims to replicate the functions of neurons, allowing
them to learn patterns and relationships from the data inputs and make a decision or
prediction based on the acquired knowledge [60].

The artificial neural network (ANN) architecture, illustrated in Figure 1, comprises
several network layers, including an input layer, hidden layer(s), and an output layer.
Depending on the requirements of the problem, each neural network layer can contain
multiple neurons or nodes. Data or information is inputted into the neural network via the
input layer and then moves forward through the network, passing through the adjacent
layers, which are connected to each other via weights, biases, and activation functions [26].
Typically, an L-layer artificial neural network can be mathematically expressed as [43,61]:

ϕ(0) = x, (1)

ϕ(l) = w(l) · ϕ(l−1) + b(l), for l = 1, 2, . . . , L − 1, (2)

ϕ(l+1) = α(ϕ(l)), (3)

v = ϕ(L) = w(L−1) · ϕ(L−1) + b(L−1). (4)
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where x is the input vector which is fed into the input layer ϕ(0) = x; adjacent layers in the
neural network are denoted as ϕ(l) and ϕ(l+1). The activation function is represented by α,
and the final output of the artificial neural network (ANN) is denoted by v.

Figure 1. Artificial neural network architecture.

A neural network tries to establish a relationship between the input data (x) and
output data (y) by learning an underlying function ( f ). This relationship is defined by a
function v = f (x, θ), where θ refers to the learnable parameters of the network [62]. The
network works to optimize these parameters by reducing a loss function:

LNN =
1
N

N

∑
i=1

|v − v∗|2 (5)

where N is the number of data points; it measures the difference between the network’s
predictions v and the actual values v∗. The neural network can effectively model the desired
function by adjusting its parameters during the training process. Finally, the prediction or
result is delivered through the output layer.

2.2. Physics-Informed Neural Networks (PINNs)

Physics-informed neural networks (PINNs), as proposed by Raissi et al. [24], offer
a novel approach to solving problems governed by partial differential equations (PDEs).
This technique seamlessly integrates the core principles and equations of physics into the
training process of artificial neural networks (ANNs).

The general representation of a governing equation for a physical process is given
by [8]:

∂u
∂t

= D(u) + P(u). (6)

Here, D denotes the non-linear differential operator, P represents the linear differential
operator, and u stands for the unknown solution being analyzed, which satisfies the
differential equation. The differential equation loss, LDE, is as follows:

LDE =
1

NDE

NDE

∑
i=1

∣∣∣∣∂u(xn, tn)

∂t
−Du(xn, tn)−Pu(xn, tn)

∣∣∣∣2, (7)
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where (xn, tn) denotes the collocation points where differential equation loss is calculated
and NDE gives the total number of these collocation points. Additionally, the boundary and
initial condition loss is given as:

LBC =
1

NBC

NBC

∑
i=1

|B(u(xb, tb))|2 (8)

Lin =
1

Nin

Nin

∑
i=1

|(u(xi, 0)− ui(xi, 0))|2 (9)

where (xb, tb) are the boundary points, NBC is the total number of boundary points, and B is
the boundary operator corresponding to Dritchlet, Robin, periodic or Neumann boundary
conditions [63]. Moreover, (xi, 0) are the initial points where the initial loss is calculated, N
is the total number of initial points, and ui is the defined initial condition for the problem.
Additionally, the data loss is defined as:

Ldata =
1

Ndata

Ndata

∑
i=1

|u(xd, td)− ues(xd, td)|2 (10)

where (xd, td) are the data points for training the ANN, Ndata are the total number of these
data points, and ues is the exact solution of the problem.

In the PINN approach, the aim is to effectively approximate the solution u of a given
problem using a neural network. To achieve this, the network optimizes its parameters,
which include weights and biases, by minimizing a defined loss function. This loss function
is designed to ensure that the network accurately represents the underlying physics of
the problem while also fitting the available data. In this study, our focus is solely on the
differential equation loss (LDE), boundary loss (LBC), and data loss (Ldata). Therefore, the
total loss is defined as follows:

Ltotal = LDE + LBC + LData, (11)

The architecture utilized in this study, as illustrated in Figure 2, centers around the
artificial neural network (ANN) as its primary component. This ANN comprises inter-
connected layers of artificial neurons, responsible for processing input data denoted as x
and propagating information throughout the network to generate an output prediction,
denoted as u. Subsequently, the output u is employed to compute derivative terms, which
are obtained analytically through automatic differentiation methods [64]. These derivatives
are then utilized to calculate the boundary and differential equation loss. The data loss
is also directly computed based on the output u. Finally, the total loss, which requires
minimization for practical training, is determined by considering all these factors.

Figure 2. Physics-informed neural network architecture.

3. PINN for One-Dimensional Solid Mechanics Problem

In this section, we will discuss the problem that physics-informed neural networks
(PINNs) aim to solve. We will explain the differential and exact equations, as well as the
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boundary conditions that govern the problem. Furthermore, we elaborate on the formulation
of the loss function integrated into PINNs for addressing this particular problem.

3.1. Problem Definition

In this demonstration, we present the implementation of a physics-informed neural
network designed for solving a beam mechanics problem. We considered the helicopter
blade as a cantilever beam which is fixed at point A, and B is the free end, subjected to
triangular loading, as illustrated in Figure 3.

Figure 3. Cantilever beam with triangular loading.

The load intensity along the beam’s length L is defined by the equation:

q =
qo(L − x)

L
. (12)

Here, qo represents the maximum load applied at the fixed end, L denotes the length of the
beam, and x signifies the position along the beam’s length.

3.2. Governing Equations

For a prismatic cantilever beam, the governing fourth-order differential equation
according to Euler–Bernoulli theory is given by [1]:

EI
d4v
dx4 = −q, (13)

EI
d4v
dx4 = − qo(L − x)

L
. (14)

Here, E represents Young’s Modulus, I denotes the Moment of Inertia of the beam, and q
stands for the load intensity. Upon integrating Equation (14) once, we obtain the expression
for shear force (V) within the beam:

V = EI
d3v
dx3 =

qo(L − x)2

2L
+ C1. (15)

As we know, at the free end of the beam, i.e., at point B, that x = L the shear force is zero.
From this boundary condition, we have the following relation:

d3v
dx3

∣∣∣∣
x=L

= 0.
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By using this condition and using Equation (15), we obtain C1 = 0. Therefore, the shear
force is given by,

V = EI
d3v
dx3 =

qo(L − x)2

2L
. (16)

Integrating Equation (14) twice yields the subsequent equation for the bending moment M
of the beam:

EI
d2v
dx2 =

−qo(L − x)3

6L
+ C2. (17)

At the free end, located at x=L, the bending moment is zero. This condition translates into
the boundary condition:

d2v
dx2

∣∣∣∣
x=L

= 0. (18)

By using the above boundary condition and Equation (17), we obtain C2 = 0; therefore, the
bending moment M is

M = EI
d2v
dx2 =

−qo(L − x)3

6L
. (19)

Continuing with the integration of Equation (14) for the third time, we derive the equation
representing the slope.

EI
dv
dx

=
qo(L − x)4

24L
+ C3, (20)

and as the fixed support slope is zero, so

dv
dx

∣∣∣∣
x=0

= 0, (21)

which gives us

C3 =
−qoL3

24
. (22)

After substituting the value of C3 into Equation (20) and simplifying, we obtain the equation
defining the slope as follows:

dv
dx

= − qox
24LEI

(4L3 − 6L2x + 4Lx2 − x3). (23)

Integrating Equation (14) four times yields the equation for deflection, which can be
expressed as follows:

EIv =
−qo(L − x)5

120L
+ C3x + C4. (24)

At the root of the beam, the deflection is zero; which gives the following boundary condition:

v|x=0 = 0. (25)

By using the above boundary condition, we obtain the value of,

C4 =
qoL4

120
. (26)

Upon substituting the values of C3 and C4 and performing some simplifications, we obtain
the exact equation that describes the deflection of the beam.

v = − qox2

120LEI
(10L3 − 10L2x + 5Lx2 − x3). (27)
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3.3. Loss-Defined

In the preceding section, we derived the governing differential equation and the
boundary conditions, laying the foundation for constructing the loss function for the
physics-informed neural network. The governing differential equation and boundary
conditions are as follows:

EI
d4v
dx4 = − qo(L − x)

L
, (28)

v(0) = 0, (29)

v′(0) = 0, (30)

v′′(L) = 0, (31)

v′′′(L) = 0. (32)

PINN is trained to approximate the solution to the differential equation over the
boundary and collocation points, denoted as:

vPINN ≈ v, (33)

Using Equations (28)–(32), we formulate our boundary loss and physics-based loss, which
enable learning of the neural network parameters by minimizing the total loss defined
as [25]:

Ltotal = LDE + LBC + LData, (34)

where LDE represents the differential equation loss:

LDE =
1

NDE

NDE

∑
i=1

|EI
d4vPINN(xn)

dx4 +
qo(L − x)

L
|2. (35)

In this expression, xn denotes collocation points along the length of the beam for which
LDE is calculated, and NDE represents the total number of collocation points.

As for the noundary loss LBC, it can be expressed as:

LBC =
1

NBC

NBC

∑
i=1

, (LB1 + LB2 + LB3 + LB4), (36)

LB1 = |vPINN(xb = 0)− 0|2, (37)

LB2 = |v′PINN(xb = 0)− 0|2, (38)

LB3 = |v′′PINN(xb = L)− 0|2, (39)

LB4 = |v′′′PINN(xb = L)− 0|2. (40)

where xb denotes the boundary points and NBC denotes the number of boundary points
for the beam. LB1, LB2, LB3, and LB4 correspond to the boundary conditions defined in
Equations (30)–(32), with L representing the length of the beam.

The data loss, LData, measures the deviation or difference between predicted values
from the exact values and is defined as:

LData =
1

NData

NData

∑
i=1

|vPINN(xn)− v∗(xn)|2, (41)

where NData are the total number of collocation points on the beam used for calculating
data loss, xn denotes the collocation points along the length of the beam, and vPINN is the
predicted or approximated solution and v∗ is the exact solution.

Thus, to train the PINN model and learn the neural network parameters, the total loss
(Ltotal) is minimized as much as possible. By minimizing this total loss, we fine-tune the
model to make more accurate predictions, essentially improving its performance.
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4. Results and Discussion

We considered a one-dimensional cantilever beam of length L = 1 m, subjected to a
maximum load at point A, q0 = 1.0 N as shown in Figure 3. For the simplification of the
problem, we assume the value of Young’s modulus, E = 1.0 Pa, and Moment of Inertia,
I = 1.0 Kgm2.

In this study, we analyzed 51 collocation points spaced at intervals of 0.02 m along the
length of the beam as shown in Figure 4. At the boundary points, we selected two positions:
one at the fixed end (x = 0) and another at the free end (x = L) as shown in Figure 4. Thus,
we have NDe = Ndata = 51 and NBC = 2, with collocation points xn ranging from 0 to 1
with increments of 0.02 and the boundary points xb ϵ [0.00, 1.00].

Figure 4. Points over the length of beam.

We trained the PINN model for 300 epochs at a learning rate of α = 0.001, employing
ADAM [65] as the optimizer. The model consists of an architecture with one input layer,
five hidden layers, and one output layer, with each hidden layer containing 50 neurons. For
the activation function, we implemented the tanh function [66] as shown in Equation (42).

Tanh(x) =
ex − e−x

ex + e−x , (42)

We also trained an artificial neural network (ANN) with an identical network ar-
chitecture for comparison purposes. This includes the same number of epochs, learning
rate, optimizer, and the tanh activation function, allowing for a direct comparison be-
tween the PINN model and the ANN. Both the models were developed from scratch using
PyTorch [67] version 2.2.1. We have summarized all the details of our models in Table 1.

Table 1. Neural network configuration.

Parameters Values

Epochs 300
Learning Rate 0.001

Optimizer Adam
Input Layer 1

Hidden Layers 5
Output Layer 1

Number of Neurons 50
Activation Function Tanh

The ANN model underwent training using the configuration outlined in Table 1. Upon
completion of 300 epochs of training, a loss curve for the model was generated, visually
represented in Figure 5. This curve serves as a valuable tool for assessing the model’s
convergence and performance throughout the training process.
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Figure 5. Loss curve for the ANN model.

Additionally, after training the PINN model for 300 epochs, we acquired the loss
curve, depicted in Figure 6. This graph illustrates the convergence of various components,
including PDE loss, boundary loss, data loss, and the overall total Loss.

Figure 6. Loss curve for the PINN model.

Upon completing its training, the PINN model can accurately predict/approximate
the deflection, slope, bending moment, and shear force along the length of a beam as
shown in Figures 7 and 8. This detailed analysis enables a precise evaluation of the beam’s
mechanical response.

Additionally, we have calculated the Mean Squared Error (MSE) values between the
predicted and the exact solution for both the models as shown in Table 2. It is calculated
as the average of the squared errors as shown in Equation (43). It serves as a metric to
evaluate the precision of a predictive model.

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (43)

where n is the number of data points, ŷi is the predicted value, and yi is the actual/exact
solution. A lower MSE value signifies enhanced performance, denoting that the predictions
generated by the model are in closer approximation to the exact values.
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As observed from Table 2, it is evident that the PINN model exhibits superior perfor-
mance in approximating the solution of the differential equation when compared to the
ANN model. Now, we delve into the outcomes achieved, presenting a comparative analysis
of the results derived from PINN and ANN. This comparison is visually represented in
Figures 7 and 8.

As illustrated in Figure 7, the deflection curve predicted by the PINN overlaps with
the exact deflection curve (obtained from the exact deflection equation, Equation (27)),
demonstrating a high degree of accuracy. Conversely, the deflection curve derived from
the ANN exhibits a noticeable deviation from the exact solution. In our method, we are
giving the data points (i.e., collocation points generated along the length of the beam) as
input to the neural network in both models, which tries to map a function between the data
points and the deflection over the beam, but the difference arises in the implementation
of the loss function. In PINNs, we include scientific or physical principles with the fitting
of available data within the loss function framework, thereby ensuring a more holistic
model. Conversely, in the ANN, the loss function’s formulation is exclusively based on
empirical data without integrating physical laws or constraints. The differential equation
for deflection (Equation (14)) of the cantilever beam is of the fourth order, which we are
approximating through PINNs and ANNs. Additionally, the loss curve for both models, as
depicted in Figures 5 and 6, demonstrates good convergence. However, the complex nature
of the governing equation, with its high order and non-linearity, poses challenges for the
ANN model in accurately approximating the solution. As a result, the model exhibits a
deviation from the exact deflection curve.

Additionally, we have predicted the slope, bending moment, and shear force experi-
enced by the beam along its length under triangular loading. The comparative analysis
among the curves representing the exact solution, PINN solution, and the solution obtained
through ANN is illustrated in Figure 8. As observed in Figure 8, the solution derived from
the PINN perfectly matches the exact solution. Conversely, the solution obtained through
ANN exhibits significant deviations. The calculation of slope, bending moment, and shear
force is achieved through the differentiation of the output provided by the neural network
in both models.

Figure 7. Comparing the solutions from PINN and ANN for predicting deflection.
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(a)

(b)

(c)

Figure 8. Comparing the solutions from PINN and ANN for predicting slope (a), bending moment
(b), and shear force (c).

Table 2. Comparison of MSE values between the exact and predicted solution for ANN and PINN model.

ANN PINN

Deflection 3.070 × 10−7 3.060 × 10−9

Slope 4.500 × 10−5 2.935 × 10−8

Bending Moment 0.002 5.517 × 10−8

Shear Force 0.049 1.127 × 10−7
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The slope is calculated as the first derivative of the deflection equation (Equation (27)).
In Figure 8a, the PINN solution aligns with the exact solution, while the ANN solution
does not achieve this level of accuracy. We aim to establish a function that maps the data
points to the deflection of the curve using both PINN and ANN models. The output from
the neural networks of both models is differentiated for the first time to determine the slope
of the cantilever beam. However, the result from the PINN model is significantly better
than the ANN models.

The bending moment of the cantilever beam is determined by taking the second
derivative of the deflection equation (Equation (27)). The comparison in Figure 8b shows
that the PINN solution closely aligns with the exact solution, while the ANN solution does
not. Here, the output from the neural network of both models is differentiated two times to
obtain the bending moment of the cantilever beam under triangular loading. However, the
PINN solution demonstrates superior performance compared to the ANN solution.

By taking the third derivative of the bending equation (Equation (27)), we can de-
termine the shear force in the cantilever beam under triangular loading. As shown in
Figure 8c, the PINN solution closely matches the exact solution, while the predicted solu-
tion by the ANN does not. Here also, the output from the neural network of both models
is differentiated three times, which gives us the shear force. Once again, the predicted
solution from the PINN model outperforms the ANN solution.

From the above results in predicting deflection, slope, bending moment, and shear
force, it is clear that the PINN approach performs much better as compared to the ANNs
because PINNs incorporate physical constraints into their loss function, giving them an
advantage over conventional ANNs. Unlike PINNs, ANNs depend exclusively on the
dataset provided and thus encounter challenges in accurately predicting the solution.

The predicted solution given by the ANN model, in comparison to the deflection curve
(Figure 7), deviated less as compared to the slope curve, bending moment curve, and shear
force curve (Figure 8). The deviation in the deflection curve is less because we are directly
mapping a function between the data points (as input) and deflection (i.e., exact solution)
over the length of the beam (as output) in ANN. However, there are still errors in predicting
the deflection curve, and the ANN model fails to accurately predict the deflection due to
the complex and non-linear nature of the equation. When differentiating the ANN’s output
(i.e., predicted deflection) to calculate the slope, bending moment, and shear force, any
initial errors in the predicted deflection are amplified. This amplification occurs because
differentiation inherently magnifies errors with increasing order of derivative. This means
that as the order of the derivative increases, the error also increases, posing a challenge for
the accurate prediction of slope (first order), bending moment (second order), and shear
force (third order), as illustrated in Table 2. Moreover, the lack of physical information (such
as boundary condition and differential equation) in the ANN’s loss function adds to the
compounded inaccuracies in these derived quantities. However, with PINN, such issues
do not occur. The PINN model accurately predicts deflection, slope, bending moment, and
shear force.

In traditional methods like the finite element method (FEM), achieving higher accuracy
comes at the cost of increased computational expense, as more refined grids are required
to improve results [52,68]. The need for finer grids leads to greater computational costs. To
address these limitations, researchers have turned to machine learning approaches [25,69].
Physics-informed neural networks (PINNs) offer an innovative approach to solving partial
differential equations (PDEs) with reduced computational time compared to FEM. The
key advantage of this shift lies in the time invested in training the model, which allows
machine learning algorithms to potentially outperform traditional FEMs in engineering
problem solving [70]. Thus, PINNs provide a solid and effective framework for solving
computational mechanics problems governed by differential equations.
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5. Conclusions

In this study, we have demonstrated the application of physics-informed neural
networks (PINNs) to computational mechanics problems, particularly with applications in
the aerospace sector. We considered the helicopter blade as a cantilever beam subjected
to triangular loading. We employ PINNs to approximate or predict the deflection of the
cantilever beam. Additionally, we leverage PINNs to estimate the corresponding slope,
bending moment, and shear force, providing a comprehensive analysis of the beam’s
mechanical behavior. We have successfully trained a PINN model and, for comparison,
have also trained an ANN model using identical parameters such as epochs of 300, learning
rate of 0.001, optimizer as ADAM, and five hidden layers with 50 neurons in each layer.
The outcomes derived from the PINN model demonstrate a high degree of accuracy, as
the predicted solution aligns precisely with the exact or analytical solution. Conversely,
the solution predicted by the ANN model exhibits a noticeable deviation from the exact
solution. The results obtained from PINNs achieved very low MSE values as compared to
the ANN results as shown in Table 2. This comparative analysis highlights the improved
effectiveness of the PINN framework in capturing the fundamental physical principles that
govern the differential equation, resulting in more precise and dependable approximations.

It can be concluded that physics-informed neural networks (PINNs) offer an efficient
and precise approach for solving computational mechanics challenges, with significant
applications in the aerospace sector. In the field of aerospace engineering, the simulation
of systems operating under complex conditions through conventional solvers incurs sig-
nificant computational expenses. As an alternative, physics-informed neural networks
(PINNs) offer solutions that are not only more accurate but also markedly more efficient
and robust.

For future work, we plan to extend the application of PINNs to solve a broader
range of computational mechanics problems within the aerospace sector. This will include
tackling more complex geometries and incorporating dynamic loading conditions. Overall,
our findings underscore the transformative potential of PINNs in aerospace applications,
paving the way for more efficient and accurate simulations that can significantly advance
the field.
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