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Abstract: Bicycle use has become more important today, but more information and planning models
are needed to implement bike lanes that encourage cycling. This study aimed to develop a method-
ology to predict the speed a cyclist can reach in an urban environment and to provide information
for planning cycling infrastructure. The methodology consisted of obtaining GPS data on longitude,
latitude, elevation, and time from a smartphone of two groups of cyclists to calculate the speeds and
slopes through a model based on a recurrent short-term memory (LSTM) type neural network. The
model was trained on 70% of the dataset, with the remaining 30% used for validation and varying
training epochs (100, 200, 300, and 600). The effectiveness of recurrent neural networks in predicting
the speed of a cyclist in an urban environment is shown with determination coefficients from 0.77 to
0.96. Average cyclist speeds ranged from 6.1 to 20.62 km/h. This provides a new methodology that
offers valuable information for various applications in urban transportation and bicycle line planning.
A limitation can be the variability in GPS device accuracy, which could affect speed measurements
and the generalizability of the findings.

Keywords: prediction; recurrent neural network; cyclist speed; urban area

1. Introduction

Currently, bicycle use has increased because of its health benefits and because it has
become the most accessible, sustainable, and environmentally friendly means of transport.
Therefore, it is essential to have adequate and safe cycling infrastructure that encourages the
use of more sustainable means of transport, like bicycles, and reduces the use of motorized
transport, especially in large cities with environmental pollution, traffic congestion, and
road accident issues.

To achieve this, studies have been conducted using smartphones, cameras, and web
platforms for data collection, transmission, processing, and analysis. These tools enable
improved cycling mobility in smart cities, optimizing cycling infrastructure and traffic
management, supporting the choice of more suitable routes, and promoting sustainable
transport [1–4]. However, when collecting information from users, it is crucial to prioritize
computer security and data privacy to build trust and ensure the successful implementation
of these technologies. Research on the vulnerability of biometric recognition to identity
theft underlines this need [5–7]. Thus, improving urban mobility aligns with the principles
of smart city development, promoting a safer and more efficient urban environment.

Therefore, constructing cycling infrastructure requires proper planning of the cycling
network in any city. Planning a cycling network is not a simple issue since factors such as
the following must be considered [8]:

• Conducting preliminary studies (surveys, traffic counts, identification of priority
routes, and accident analysis).
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• Identification of suitable roads (traffic volume, speed schemes, road functionality,
geometric surveying, opportunities for new links, and analysis of conflict points).

• Design and implementation (choice of type of cycling infrastructure, design of plans,
implementation, and supervision of the work).

• Monitoring (maintenance works and continuous improvement).

A valuable tool in planning cycling infrastructure is modeling to identify optimal
routes through speed analysis. This allows for analysis of the advantages and disadvantages
of implementation before economic resources are allocated to construction. In this sense, it
is essential to study the impact of bicycle speed on urban infrastructure and vice versa, as it
influences both the safety of cyclists and the efficiency of traffic in general, especially in
cities that seek to use bicycles as a sustainable transportation option.

Since cyclist movement influences vehicular traffic, studying the factors affecting
cyclists is also important. These factors are broad and range from infrastructure conditions
to weather conditions. For example, stress, slope, congestion, connectivity, or interaction
with motor vehicles affect movement [9,10].

In this regard, studies show that external conditions, cultural context, safety, sociode-
mographic characteristics [11], social environment, residential location, socioeconomic
level [12], the width of the bike lane, or the use of exclusive lanes [13] also influence speed.

In recent years, various studies have been conducted to determine how the use of
bicycles affects vehicular traffic and the factors that influence cyclists when choosing a
route when moving from one place to another. Also, the influence of infrastructure on
cyclist movement is how the width of the lane, the slope, or the curvature determines the
cyclist’s speed.

Ref. [14] investigated the influence of bicycle use on vehicular traffic on urban streets
in Nanjing, China. They used the cumulative curve method with video data to estimate
and analyze data periods; they then used a multiple linear regression model for vehicular
movement delays based on vehicular flow. This allowed them to find that increased bicycle
density can significantly reduce vehicle speed.

Ref. [15] compared speeds between cyclists and vehicles in Montreal, Canada, in traffic
assignment zones (TAZ), finding that bicycle use can compete with cars in dense areas, and
the speed difference between both modes decreases during peak hours. Ref. [16] applied
first- and last-mile studies and found that cyclists prefer more extended travel to a train
station if this means not transferring; that is, they prefer comfort over speed.

In environments with little interaction with vehicles, it has been studied that gender,
age, type of bicycle, lane width, and lateral position of the bicycle influence free-flow speed,
suggesting design speeds of 25 km/h for lanes less than 3.5 m wide and 30 km/h for wider
lanes [17]. On the other hand, [18] found that painted bike lanes increase cyclist speed
since they allow cyclists to move an average of 31 cm away from the sidewalk compared to
streets without painted lanes.

Studies like [19] have found that speed is influenced by reflective vests or the cyclists’
experience on e-bikes. Ref. [20] used variables such as the cyclist’s weight, wind speed, and
slope to determine speed on electric bikes. Other studies consider safety, slope, and surface
conditions as variables affecting cyclists’ movement performance [21] or using segregated
bike lanes and bike paths [22]. It should not be overlooked that route choice also influences
cyclists’ behavior, their interactions with drivers [23], and mental and physical comfort [24].

Regarding infrastructure, various authors have found that cyclist speeds are influenced
by the width of the path, traffic conditions, type of bicycle, and cyclist characteristics [25];
the level of traffic, speed limits, the presence of heavy vehicles, and the number of intersec-
tions also influence [26].

Some studies have focused on measuring speed variations of regular and non-regular
cyclists using the STRAVA app [27]. Studies related to GPS data collection focus on obtain-
ing the quality of service experienced by cyclists when using the infrastructure [28] or using
georeferenced data to represent the level of comfort and safety in cyclist environments [29],
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estimate the annual average daily volume on rural roads [30], or study accidents on urban
roads [31].

Among the studies with GPS data, [32] is the only one focused on predicting the speed
of bicycles based on slope and horizontal curvature using a Markov model. This suggests
that the design characteristics of the bike paths influence cyclist speed. To date, no studies
have been found that involve other techniques, such as neural networks, for estimating a
cyclist’s speed in an urban environment.

Ref. [33] conducted a study in Davis, California, and estimated that the average speeds
of cyclists in bicycle lanes range from 17.7 km/h to 20.1 km/h. Ref. [34] found average
speeds between 20.3 and 24.9 km/h with students at the University of Michigan. In
Sweden, [35] studied the 85th percentile free flow speed of bicycles, which is between 16
and 28 km/h. The free flow speed in Canada was 25 km/h [36]. In China, the average
speeds varied from 10 to 16 km/h [37]. Another study in China estimated average speeds
between 12 and 16.3 km/h [38].

Since cycling infrastructure is a crucial factor in the choice of cycling route, it deter-
mines the speed of movement of an average cyclist. This study aims to develop a method-
ology to estimate cyclist speed based on slope, longitude, latitude, elevation, and GPS time,
measured from the smartphones of two groups of cyclists in the urban area of Querétaro, us-
ing recurrent neural networks. Finally, it provides a new methodology that offers valuable
information for various transportation and urban cycling planning applications.

2. Materials and Methods

The method utilized in this study involved the implementation of a long short-
term memory (LSTM) recurrent neural network (RNN) in forecasting cyclist speed for
two reasons: firstly, due to the scarcity of studies related to cyclist speed forecasting,
with only Markov models and linear regression being employed [39]; secondly, because
in recent years, neural networks have demonstrated high performance in forecasting
complex systems.

2.1. Experiment Design

This study was conducted in Queretaro, Mexico, through the publication of a call for
various cycling groups. They were invited to participate in pre-established routes to identify
their selected routes and their achieved speeds. They were informed that the gathered
information would be used for this study. Cyclists interested in participating register
through a form designed in Google Forms to gather information from the participants, with
prior authorization, such as a cycling group, age, gender, height, weight, and frequency of
bicycle use. Each cyclist installed an app on their smartphone to collect GPS information.

Sixteen origin points and sixteen destination points known to the cyclists were defined,
and the shortest routes between these points were found. From the total number of
routes found, journeys in the ranges of 2–3, 4–5, 6–7, and 8–9 km were selected, and
40 origin–destination pairs were generated (10 per range), which were published for the
participants’ knowledge.

Each route was sought to start and end in parking lots, parks, and centers for reference
and accessible locations, as shown in Figure 1b. Each participant was asked to choose four
routes (one route in each range) to be completed before going to work or heading home
and without a companion from their cycling group to avoid any influence on the measured
travel speeds.

Participants were asked to record their routes in the STRAVA app or any other app
that would record the path of their choice. Subsequently, each participant shared their
route information on the Strava website for later download. As shown in Figure 1a, some
of the routes chosen by the participants do not align with the cycling infrastructure in
Querétaro, which highlights the importance of having models that support the planning of
cycling infrastructure.
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Figure 1. Comparison between the current cycling infrastructure and the travel preferences of
cyclists in the urban area of Querétaro. (a) shows the current classification and connectivity of the
infrastructure. (b) represents the GPS routes the cyclists choose for trips between the different origins
and proposed destinations.

2.2. Data Normalization

To input the data into the artificial neural network (ANN), it was essential to ensure a
uniform representation of slope and speed, as these variables were not directly obtained
from the GPS (Global Positioning System). Data normalization is essential preprocessing
when using artificial neural networks because it reduces variability and improves model
efficiency during training [40].

The slope was calculated by dividing the elevation difference by the horizontal dis-
tance between two consecutive GPS points, using the formula slope = ∆ elevation/∆
distance. Similarly, speed was calculated as the distance traveled between two points
divided by the time elapsed: speed = ∆ distance/∆ time. This normalization process
allows the ANN to interpret the inputs consistently, regardless of scale variations among
different measurements.

For this study, a Min–Max normalization technique was applied, scaling the values
between 0 and 1 to ensure compatibility across various GPS sources in different smartphone
types and minimizing issues with outliers. The formula for scaling is as follows:

Xscaled =
X − Xmin

Xmax − Xmin

where:
Xscaled is the speed value scaled.
X is the GPS speed value.
Xmin is the minimum value of speed.
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Xmax is the maximum value of the speed in the dataset.
Each cyclist’s data were obtained in gpx format directly from their smartphone, and

routes with missing time data or incorrect georeferenced values were discarded to maintain
data quality. Additionally, the autocorrelation of the time series was calculated to under-
stand the data distribution over time and to identify potential seasonal or trend patterns in
the data.

2.3. Design of the Recurrent Neural Network

Recurrent neural networks (RNN) are a type of artificial neural network specialized
for analyzing data sequence patterns and can also be applied to time series data. These
networks have connections that form cycles, allowing them to retain information from
previous states. This ability makes them ideal for tasks where the context or the order of
data is crucial, such as in natural language processing or in the prediction of time series.

Figure 2 shows a typical LSTM network with four layers of interacting neural networks
and details the structures of the hidden layer, forget gate, input gate, output gate, and
memory block. Recurrent neural networks (RNNs) require historical information (previous
states) to predict future states and can be estimated with one or more input variables. In
LSTM networks, information flow passes from the cell state through the entire chain (with
some minor linear interactions), and the information flows unchanged (Figure 2a).

The LSTM network, with its unique architecture, can dynamically add or remove
information in the cell state through specialized components known as gates. These gates,
each consisting of an artificial neural network layer with its respective activation function,
play a pivotal role in controlling the neuron’s state. The first of these gates, the forget gate,
selectively removes information from the cell state, providing a clear understanding of the
network’s architecture (Figure 2b) [41].
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Figure 2. Repetitive module of the LSTM-type neural network with four layers. (a) Information flow,
(b) forget gate, (c) information added, (d) update information, and (e) output data [42].

The forget gate decides which information will be retained from the cell state. The
next gate, called the input gate, decides which values should be updated. It does this by
considering the current input and the previous output. Together with a hidden layer (with
a hyperbolic tangent function as the activation function), it creates new values that are
candidates to be added to the current state. Updating the cell state is a key operation in the
LSTM network (Figure 2c).

Once the new values are created (and the decision to add them or not has been made),
the operations (Figure 2d) are performed to update the previous cell state as the new one.
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Finally, the output data, culminating in the LSTM network’s intricate operations, are
not just based on the updated cell state. It undergoes a crucial filtering process through a
sigmoid layer, which intelligently decides what part of the information passes to the next
layer, illuminating the network’s decision-making process (Figure 2e) [41].

The neural network was developed using the Python programming language version
3.9, one of the most widely used softwares for training artificial neural networks. The
Scikit-learn and Keras libraries were imported to facilitate the construction of the LSTM.

2.4. Prediction Based on a Single Variable

The previous speed was input for the single variable case to estimate the current speed.
Since RNNs require historical data, scenarios were designed considering intervals of 5, 10,
15, and 20 previous records (in seconds), allowing the models to learn from different time
horizons. These intervals were considered to evaluate the forecast’s confidence level in
the long term. Finally, it was decided to design a neural network with three hidden layers
called the “base network”, in which the number of neurons in the hidden layers was varied
to measure the forecast’s performance. The hyperparameters used in this study for the
neural network models include:

1. Batch Size. This parameter determines the number of training samples to be used in
one iteration of the model training. Variations in batch size were tested to evaluate
their impact on model performance (16 or 32).

2. Twenty neurons in each hidden layer. The neural network architecture includes
hidden layers, and the number of neurons in these layers can significantly affect the
model’s ability to learn complex patterns. Different configurations were explored to
find the optimal setup.

3. Historical data. The model utilized 20 s of historical data for training, which were
critical in predicting cyclist speeds based on previous records of slope and speed.

4. Dropout. A dropout rate of 0.2 was used to prevent overfitting by randomly setting a
fraction of the input units to 0 during training.

5. ‘Adam’ optimizer. It was employed to train the model; it is known for its efficiency
and effectiveness in handling sparse gradients.

6. Mean squared error loss. The mean squared error (MSE) was used as the loss func-
tion to measure the average of the squares of the errors between predicted and
actual values.

Finally, as part of the scenarios, evaluating the data behavior as a time series to
determine trend and seasonality patterns through autocorrelation diagrams was considered.
Since predicting a cyclist’s speed is desired, this article focuses on generating a recurrent
neural network model that allows predicting the speed of an average cyclist with data from
other cyclists.

2.5. Prediction Based on Two Variables

In the case of the two-variable model, slope and speed were used as input data, and
speed was used as the output or prediction data. For the evaluation of the RNN with
two variables, it was decided to use 20 previous records of slope and speed to evaluate the
forecast performance compared to the evaluation with one variable. The structure of this
network was the same as that of a single variable.

2.6. Model Validation

The model validation process consists of evaluating the estimated results from data
other than those used in the methodology to prove that it leads to the expected result. As
mentioned above, 30% of the data were used for validation. Some statistical parameters
were used to analyze the results obtained, such as the coefficient of determination (R2),
whose value must be near one. Additionally, the mean absolute error (MAE), the root mean
square error (RMSE), the mean absolute percentage error (MAPE), and the mean squared
error (MSE) were calculated; these values must be near zero [43].
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3. Results
3.1. Cyclist Response

Out of all the cyclist groups in Querétaro, two cycling groups called “Saca la Bici” and
“Libre a Bordo” responded, from which 135 cyclists were registered. Finally, 35 cyclists
completed the four full routes with GPS information.

Table 1 shows the statistical data collected from the cyclists from two sources: a Google
form and data collected from the Strava app. It can be seen that the average follows a trend
to move on asphalt, on flat terrain with a slope close to 1% at 14.53 km/h in the urban area
of Querétaro. Despite encountering obstacles along the way, on average, 88% of the trip
remains in motion.

Table 1. Cyclist variables during study rides.

Variable Max Min Mean

Age (y) 65 18 34.3
Height (m) 1.8 1.53 1.7
Weight (kg) 90 55 72.04

Frequency (days/week) 7 1 3.92
Speed (km/h) 20.7 6.8 14.53

Slope (%) 5.1 −1.2 1.15
Percentage of the route on asphalt (%) 100 5 78.29

Percentage of climb in the route (%) 71.9 0 31.2
Percentage of downhill in the route (%) 28.9 0 6.95

Percentage of flat terrain in the route (%) 98.3 15.7 58.52
Motion relationship 1 0.59 0.88

3.2. Normalized Data

The point records were downloaded every second from the GPS devices and the Strava
app in gpx format, and a database was finally generated with 35,194 records containing
data on longitude, latitude, altitude, and time within the urban area of Querétaro during
June, July, and August 2021. Once the data were collected, the Geographic Information
System (GIS), Qgis, was used to calculate the distances between consecutive GPS records
(∆d), the time difference (∆t), and the altitude difference (∆A) to calculate the speed and
slope between two continuous records.

Figure 3 partially shows the cyclists’ behaviors. As can be seen, there is no regular
pattern of behavior in the cyclist’s speed; this makes it more challenging to estimate the
speed forecast since, during the rides, cyclists brake for pedestrian crossings, traffic lights,
or directional turns.
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Figure 4 shows the autocorrelation calculation of cyclist speeds, aiming to find any
seasonal or trend pattern. However, the correlation coefficients could be higher, which
makes it very difficult to forecast speed with time series techniques such as autoregressive
models, ARIMA models, or SARIMA.
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3.3. Forecast with One Variable

The LSTM-type RNN was designed to train with 70% of the data and the remaining
30% for validation. The initial calculations of the cyclist speed, where the network learns
the behavior of the same cyclist, showed correlation coefficients ranging from 0.55 to 0.74
(Figure 5).

As mentioned, the research objective was to generate a methodology for estimating
a cyclist’s speed in an urban area; therefore, this methodology was validated with data
from other cyclists to analyze their behavior. Due to the uncertainty about the network
performance, random tests were performed on the cyclist data, varying the number of
training epochs. These variations were 100, 200, 300, and 600 epochs. The coefficient of
determination improved (from 0.43 to 0.67) in some cases but decreased in others, so it was
decided to perform the first approaches with 100 epochs.
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3.4. Validation

Table 2 shows that the LSTM-type base network can reliably predict with little his-
torical data ranging from 5 to 20 s. The results showed that the historical time data did
not significantly influence the model’s prediction. The same happened with the batch
size and the number of hidden neurons; the variation did not significantly affect the
model estimation.

Table 2. Comparison of the performance of the network to predict the cyclist’s speed, varying the
batch size and the number of neurons in the hidden layers.

Previous Data Neurons in the Hidden Layer Batch Size MAE MSE RMSE MAPE R2

5 10 16 2.35 10.25 3.20 0.21 0.69
10 10 16 2.41 10.66 3.26 0.20 0.68
15 10 16 2.25 9.71 3.12 0.21 0.70
20 10 16 2.32 10.00 3.16 0.22 0.70
5 10 32 2.28 9.89 3.14 0.21 0.70
10 10 32 2.44 10.80 3.29 0.22 0.67
15 10 32 2.43 10.68 3.27 0.22 0.68
20 10 32 2.51 11.34 3.37 0.21 0.66
5 20 16 2.22 9.46 3.08 0.21 0.71
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Table 2. Cont.

Previous Data Neurons in the Hidden Layer Batch Size MAE MSE RMSE MAPE R2

10 20 16 2.60 12.06 3.47 0.21 0.63
15 20 16 2.45 10.81 3.29 0.23 0.67
20 20 16 2.56 11.54 3.40 0.23 0.65
5 20 32 2.31 9.93 3.15 0.21 0.70
10 20 32 2.38 10.60 3.26 0.20 0.68
15 20 32 2.30 9.93 3.15 0.21 0.70
20 20 32 2.29 9.96 3.16 0.20 0.70
60 20 32 2.57 11.44 3.38 0.22 0.65
60 50 32 2.62 12.33 3.51 0.22 0.62

The results showed acceptable long-term predictions when the models were applied
to data from other cyclists, as can be seen in the determination coefficient matrix in Figure 6,
which shows ten models trained and applied to ten different routes. The matrix shows an
average determination coefficient of 0.82, suggesting that the models estimated with one
variable can represent the behavior of various cyclists, provided that there are 20 historical
speed data points on the roads.
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3.5. Forecast with Two Variables

The same scheme as the one-variable model was followed to obtain results with the
two-variable model (70% of the data for training and 30% for validation). The results
showed that the determination coefficients ranged from 0.77 to 0.96. Figure 7 shows the
prediction result.

Moreover, taking the experience analyzed in the one-variable model, it was decided to
use the two-variable model with 20 s of historical data for training. As in the one-variable
model, the batch size, the number of hidden neurons, and historical data are insignificant.
In that case, they also should not significantly influence the two-variable model, and this
can be seen in Figure 8, where it can be observed that for the two-variable model, the
determination coefficients improve in all cases. Finally, Figure 9 compares the forecast of
the model with one variable and the model with two variables, showing the improvement
in the prediction fit when using two input variables.
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Variations were also made in the historical data, batch size, and the number of hidden
neurons to validate the model with two variables, finding no significant variation in the
forecast results, as shown in Table 3.
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Table 3. Comparison of the performance of the network to predict the cyclist’s speed, with
two variables varying the batch size and the number of neurons in the hidden layers.

Previous Data Neurons in the Hidden Layer Batch Size MAE MSE RMSE MAPE R2

5 10 16 2.56 10.75 3.28 0.76 0.69
10 10 16 2.46 10.26 3.20 0.64 0.70
15 10 16 2.45 10.15 3.19 0.71 0.70
20 10 16 2.57 10.60 3.26 0.84 0.69
5 10 32 2.50 10.52 3.24 0.69 0.69
10 10 32 2.52 10.64 3.26 0.67 0.69
15 10 32 2.55 10.90 3.30 0.90 0.68
20 10 32 2.51 10.54 3.25 0.76 0.69
5 20 16 2.38 10.12 3.18 0.68 0.70
10 20 16 2.37 9.77 3.13 0.62 0.71
15 20 16 2.45 10.37 3.22 0.76 0.70
20 20 16 2.48 10.36 3.22 0.73 0.70
5 20 32 2.37 10.32 3.21 0.59 0.70
10 20 32 2.42 10.08 3.17 0.70 0.70
15 20 32 2.41 10.13 3.18 0.74 0.70
20 20 32 2.44 10.41 3.23 0.80 0.70
60 20 32 2.59 10.98 3.31 0.89 0.69
60 50 32 2.42 10.47 3.24 0.70 0.70
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The results show that the estimated models can predict the speeds of several cyclists
on different routes. These findings are consistent with the research of [32]. However, our
study differs because it involves learning a neural network, which allows us to forecast
more accurately and with only 20 s of historical data, as shown in Figure 10.

 

Figure 10. Using quantile classification, estimated speeds on different avenues in Querétaro are based
on slope and the trained recurrent neural network.

The average speed cyclists observe on selected roads varies from 6.1 to 20.62 km/h,
which is similar to the results presented by [27,33,35–38].

On average, women appear to choose routes with higher flat slopes (69.99% compared
to 54.02% for men), which could explain why women have higher average speeds than
men. The routes women select have smaller upward slopes than those chosen by men
(22.59% vs. 40.14%), which could also explain why women achieve higher average speeds.

Despite these significant findings, it is essential to recognize some limitations of this
study, such as the accuracy of the GPS devices, which could influence the generalizability
of the results presented here. As well as, external conditions, such as weather and traffic,
were not accounted for, which can significantly influence cycling speed.

Given the increasing emphasis on cycling as a sustainable mode of transportation,
understanding and predicting cyclist behavior can help urban planning and infrastructure
development. Hence, the rationale behind this research was to develop a methodology
for accurately estimating cyclist speeds using minimal historical data in urban settings.
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Using LSTM-type RNNs offers a sophisticated approach to modeling temporal patterns in
speed data, enabling important traffic management and safety predictions. The findings
contribute to the existing literature and present practical applications for improving urban
mobility strategies.

4. Discussion

As can be seen, the trends in the predictions are the same when one or two variables
are used with this methodology, so considering a single variable would be more convenient
if it wants to have a lower computational cost.

Applying an LSTM-type RNN leverages deep learning capabilities, allowing for
effective modeling of temporal patterns in cyclist speed data and a robust model design.
Using different training epochs (100, 200, 300, and 600) shows a thorough approach to
optimizing model performance, allowing to balance training time and accuracy. Hence,
the results indicated that variations in batch size and the number of hidden neurons did
not significantly impact predictions, suggesting the model’s robustness to changes in
these hyperparameters.

Furthermore, the models showed predictive solid performance, with determination
coefficients ranging from 0.55 to 0.74 for one-variable forecasts and 0.77 to 0.96 for two-
variable forecasts, indicating effective speed estimation due to the slope is a variable that
directly affects speed, which coincides with the study by [39] for real-world studies. On
the other hand, the ability to predict cyclist speeds using only 5 to 20 s of historical data
suggests the model’s efficiency and practical applicability in real-time scenarios. Previous
speed states have been shown to influence their future state, as shown by [32], although
they incorporate an advanced Markov model.

This model estimates speed based on the slope and enables the continuity of
cyclists’ routes through infrastructure connectivity, as suggested by [9,10]. It also antici-
pates the impact on vehicle speeds when cyclists’ speed is shared with that of cars.

Although several studies have been conducted to determine the factors that affect or
influence cycling speed, these have mainly focused on sociodemographic or socioeconomic
characteristics [11,12]. Others have focused on determining how bicycle use affects, inter-
acts, or influences vehicular traffic [14]. However, they sought to determine how the slope
influences cycling speed to know the route choice a cyclist makes when traveling from one
place to another. This will allow for better planning of the cycling infrastructure since, with
this knowledge, they can select paths or roads with characteristics similar to those used by
cyclists to build cycle paths, particularly in the city of Queretaro.

In this study, data were taken from cyclists’ smartphone GPS, processed, and neural
networks were applied to estimate cyclists’ speeds on any route. This processing could
be performed in real time using edge computing in navigation aids or safety alerts, as
well as cloud computing that can handle large volumes of data from multiple cyclists,
making it suitable for training neural network-based models, taking advantage of its
computational power.

Unfortunately, implementing edge computing may require an initial investment in
local hardware and software capable of running neural network models, which can be
a barrier for some organizations. On the other hand, cloud services with a pay-per-use
system can be cheaper to process large datasets without a significant initial investment.

Several factors must be considered to evaluate the cost–benefit of edge computing
versus cloud computing when estimating cyclist speed using neural networks, such as the
need for real-time processing, the volume and complexity of data, the training of complex
models, infrastructure and resources, and long-term goals.

5. Conclusions

The study aimed to design a model to predict a cyclist’s speed in an urban environment
using recurrent neural networks. Historical data on slope and speed significantly influenced
the prediction, more so than the one-variable model, since the speed forecasts from the one-
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variable model are different from the speeds of the model with two variables. Therefore,
the slope has a significant influence on speed prediction.

The average coefficient of determination for one variable was 0.825. Using the same
data and network configuration, the slope variable (combined with speed) increased to
0.921 in the forecast.

The mean absolute error decreased from 3.11 to 2.27 km/h from the one-variable to
the two-variable model, which was considered acceptable for the forecast.

The number of hidden layers and neurons did not significantly influence the speed
model’s prediction. Nor did the optimizer or dropout.

Using smartphones for GPS data collection was sufficient for estimating speeds. In
96% of the cases, a model estimated for one cyclist could be applied to predict the speed of
another cyclist even if the route was different.

The findings of this study contribute to understanding how RNNs can be used to
predict a cyclist’s speed and their potential application in urban bicycle lane planning.
Further, the methodology was validated using data from various cyclists, enhancing the
reliability and generalizability of the findings beyond individual behavior.

This study proposes a new way of predicting a cyclist’s speed in an urban environment
that would be difficult to model with traditional time series models such as autoregressive
(AR), ARIMA, and SARIMA models.

This research can help urban planning and infrastructure development, improving
cycling environments, and promoting cycling as a sustainable transportation option.

The low correlation coefficients in the results suggest that other variables, such as
age or fatigue from traveled distances, should be considered in future work to estimate
new models.

Future work should focus on applying the model to an urban network to broaden the
effect of estimating the speed of average cyclists. This would consider the slope on the
roads and generate maps of cyclist travel time based on the current slope and the speed
and slope in previous states.
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