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Abstract: This paper investigates the production of nanoparticles via detonation. To extract valuable
knowledge regarding this route, a phenomenological model of the process is developed and simulated.
This framework integrates the mathematical description of the detonation with a model represent-
ing the particulate phenomena. The detonation process is simulated using a combination of a
thermochemical code to determine the Chapman–Jouguet (C-J) conditions, coupled with an
approximate spatially homogeneous model that describes the radial expansion of the detonation
matrix. The conditions at the C-J point serve as initial conditions for the detonation dynamic model.
The Mie–Grüneisen Equation of State (EoS) is used, with the “cold curve” represented by the
Jones–Wilkins–Lee Equation of State. The particulate phenomena, representing the formation
of metallic oxide nanoparticles from liquid droplets, are described by a Population Balance Equa-
tion (PBE) that accounts for the coalescence and coagulation mechanisms. The variables associated
with detonation dynamics interact with the kernels of both phenomena. The numerical approach
employed to handle the PBE relies on spatial discretization based on a fixed-pivot scheme. The
dynamic solution of the models representing both processes is evolved with time using a Differential-
Algebraic Equation (DAE) implicit solver. The strategy is applied to simulate the production of
alumina nanoparticles from Ammonium Nitrate Fuel Oil aluminized emulsions. The results show
good agreement with the literature and experience-based knowledge, demonstrating the tool’s
potential in advancing understanding of the detonation route.

Keywords: nanoparticle production; detonation modeling; Chapman–Jouguet conditions;
Mie–Grüneisen equation of state; population balance equation; alumina nanoparticles

1. Introduction

The definition of the nanometric scale remains a topic of debate within the field of
nanotechnology. Nonetheless, it is generally accepted that the nanometric scale ranges
from 1 nm to 100 nm [1]. Within this range, it has been shown that material properties
are influenced not only by their chemical composition but also by their size and shape.
Over recent decades, it has been observed that properties such as optical, electrical, mag-
netic, hardness, toughness, and melting point of nanomaterials differ significantly from
those of macroscopic solids [2].
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In recent years, the use of nanoparticle-based materials has gained traction across
various fields, including medicine [3,4], energy [5,6], military applications [7], and elec-
tronics [8], among others. Notably, there has been increased interest in the synthesis of
nanoparticles and the development of control strategies to enhance quality and reproducibil-
ity. Despite progress, gaps in knowledge regarding the characterization and production
of nanometric materials still exist. However, significant efforts in this area have largely
met the goals for technological advancement and optimization, resulting in the market
availability of materials that meet high expectations. Advances in processing methods and
characterization techniques have enabled the controlled production of nanoparticles with
diameters ranging from 1 nm to 10 nm, exhibiting consistent crystal structures and high
levels of monodispersity [9].

Currently, research on nanoparticle synthesis processes is primarily focused on two broad
areas: (i) gas-phase synthesis and (ii) sol-gel processing. Each of these areas encompasses
several process routes that differ in terms of the technological devices required, degree of
control achieved, and overall efficiency.

Sol-gel processing methods are based on wet chemical synthesis and include
production strategies such as gelation, precipitation, and hydrothermal treatment [10].
These methods start with a chemical solution (sol phase), which acts as a precursor and
transitions into a network (gel phase) of either discrete particles or polymeric entities [11].
Commonly used precursors include metal alkoxides and metal chlorides. The sol-gel
approach offers several advantages, including economic benefits and the ability to fine-tune
the chemical composition of the products due to its low-temperature requirements. This
method is widely employed in ceramics processing and manufacturing, particularly for
producing very thin films of metal oxides. The materials obtained through sol-gel pro-
cessing find applications in various fields, including optics, electronics, energy systems,
(bio)sensors, medicine, and separation technology [12,13].

Numerous sol-gel methods are well-documented in the literature, including sonochem-
ical processing, cavitation processing, microemulsion processing, and high-energy ball
milling. Sonochemical processing involves the production of nanoparticles through rapid
changes in temperature and pressure within a closed chamber, triggered by sonochemical
reactions. These sudden fluctuations arise from acoustic cavitation, which creates transient
localized hot zones [14]. Cavitation processing, on the other hand, consists of a two-step
procedure. First, gas bubbles are created and released within the sol-gel solution. The
second step involves rapidly pressurizing the mixture in a supercritical drying chamber,
where cavitation disturbances and temperature ramps are applied [15]. The bubbles act
as nucleation sites and influence the physical mechanisms involved. Both the pressure
and retention time in the cavitation chamber are adjustable parameters that control the
particle size distribution (PSD). Microemulsion-based methods have been employed for
synthesizing a variety of nanoparticles, including metallic [16], semiconductor [17,18],
superconductor [19], silica [20], barium sulfate [21], and magnetic nanoparticles. The use
of cosurfactants in these processes reduces the interfacial tension, allowing microemul-
sions to form spontaneously without significant mechanical agitation. This technique is
advantageous for large-scale production due to lower hardware costs [22]. Finally, high-
energy ball milling is utilized for producing magnetic [23], catalytic [24], and structural [25]
nanoparticles. Although it is a widely available commercial technology, it is considered less
desirable due to contamination issues and its high energy consumption. Additionally, it is
a top-down processing route with drawbacks such as low surface area, highly polydisperse
size distributions, and partially amorphous powders [26].

Despite the significance of sol-gel methods, many advancements in crystalline materi-
als development rely on nanoparticles produced through evaporation and condensation
processes, which involve successive nucleation and growth phenomena in a subatmospheric
inert-gas environment [27–29]. At the industrial scale, micro- and nanoparticle synthesis
is predominantly carried out using various methods [30], with gas-phase synthesis being
particularly prevalent for producing metallic and alloy nanopowders [31]. According to
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Rosner [32], gas-phase synthesis—utilizing gaseous, liquid, or even solid fuels—can offer
significant economic advantages over sol-gel methods and other techniques (see also Zhao
et al. [33]).

Recent developments have demonstrated that aerosol processing techniques are increas-
ingly effective for improving nanoparticle production yields [34,35]. These techniques enhance
the quality and cleanliness of the resulting powders through atomization, achieving higher
conversion yields and particle size distributions within the nanometric range. Established
synthesis techniques in the literature include the following: (i) combustion flame [36–38],
(ii) plasma [39–42], (iii) laser ablation [43–46], (iv) chemical vapor deposition [47–49], (v) spray
pyrolysis [50–53], (vi) electrospray [54–56], (vii) plasma spray [57–59], and (viii) detona-
tion [60–63]. Comprehensive, up-to-date reviews on methods for synthesizing nanoparticles
are available in Jamkhande et al. [64], Ndolomingo et al. [65], Pareek et al. [66].

In spite of the existence of several approaches for gas-phase synthesis-based routes,
they all share the fundamental aspects of particle formation mechanisms:

1. Atomization of metallic species;
2. Oxidation of atomic entities in the gaseous phase;
3. Condensation of molecular critical aggregates;
4. Growth of the early formed aggregates.

The quality and application characteristics of nano-sized particles are strongly influ-
enced by their size distribution and morphology [67,68]. In gas-phase reactors, the final
characteristics of the particles are primarily determined by fluid mechanics and particulate
dynamics within the initial milliseconds of the synthesis process. During this brief period,
three dominant sequential mechanisms occur. First, the chemical reaction of precursors gen-
erates product monomers (clusters) by either nucleation or direct inception. These newly
formed nuclei then grow as precursor molecules react on their surface [69,70]. Dispersed
in a fluid phase, these entities move randomly due to Brownian motion, colliding and
growing through coagulation driven by adhesive forces or chemical bonds characteristic of
small particles [71,72].

In “hot-spot” zones of the reactors, the characteristic time of the coalescence mech-
anism is sufficiently short to reduce particle aggregation and promote the formation of
spherical particles through sintering processes [73,74]. Each of these mechanisms signifi-
cantly influences particle formation, growth, and final morphology, allowing for control of
product quality through the careful selection of process set-points. However, due to the
complex sequence of steps involved, which are challenging to describe mathematically,
and the difficulty in monitoring process dynamics in these environments, establishing a
direct relationship between process set-points (e.g., temperature, pressure, reactant state,
and reactor geometry) and product characteristics is often problematic [2,75]. Moreover,
gas-to-particle production routes can lead to challenges in preparing high-quality bulk
materials when hard agglomerates form. The synthesis of multicomponent materials, such
as phosphors and superconductors, is particularly difficult due to variations in chemical
reaction rates, vapor pressures, nucleation, and growth rates during particle formation,
commonly resulting in non-uniform compositions [76].

The detonation synthesis route, commonly used for producing nanodiamonds [77–79]
and nanopowders [80–82], has recently been recognized as a promising approach for nanopar-
ticle production [83]. This method involves placing an explosive matrix in a hermetically
sealed chamber filled with oxygen-containing gases. The detonation reaction is initiated
by a mechanical shock, which induces a sudden pressure increase that travels through the
explosive matrix. Metallic components, used as precursors, are supplied in the form of an
emulsion with the detonant matrix, whose primary role is to provide the energy needed for
metal vaporization [84].

Nanoparticle generation using this technique follows a sequence of stages similar to
those identified in general gas-to-particle routes. First, the detonation of the explosive
matrix releases a large amount of energy, vaporizing both reaction products and inert
materials, either partially or completely. At this stage, the vaporized metal undergoes
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oxidation reactions, producing corresponding metal-oxide molecules. As aggregation and
condensation of these metastable aggregates occur, the first stable liquid entities form and
collide, driven by gas expansion and Brownian motion. Finally, in the last stage of the
process, the nuclei grow mainly due to the coalescence of colliding particles until they
solidify as the system temperature declines.

Despite the apparent simplicity of this process, as seen in systems such as the produc-
tion of alumina nanoparticles (using metallic aluminum emulsified in detonation matrices),
knowledge gaps regarding the mechanisms and phenomena involved are commonly re-
ported in the literature. These gaps can affect the ability to control the final product
quality [60].

The detonation route offers significant advantages over other gas-to-particle ap-
proaches. The substantial energy released during detonation, combined with the ex-
ceptionally fast reaction kinetics, results in steep increases in pressure and temperature.
This maximizes the efficiency of species atomization. Consequently, the detonation route
provides higher vaporization rates and higher saturation ratios of atomic species compared
to other methods. This can be understood through the Kelvin–Gibbs relation [85]:

dc =
4σVm

kBT ln(S)
(1)

where dc is the critical diameter of stable entities, Vm = M
NA

is the molecular volume,

S = P∗
Ps

is the saturation ratio, P∗ is the vapor pressure at temperature T, Ps is the saturation
pressure at the same temperature, σ is the surface tension, kB is the Boltzmann constant,
M is the molecular weight, and NA is the Avogadro number. Given that the pressure and
temperature points reached via detonation are higher than those in other gas-to-particle
routes, the saturation ratio is also maximized. Consequently, the diameter of stable nuclei
is smaller than that produced by any other technique.

However, this conclusion is theoretical. Despite numerous references using the Kelvin–
Gibbs relation for prediction purposes (e.g., Friedlander [85], Sindhu et al. [86]), its ap-
plication in real systems requires caution due to the scales and environmental conditions
involved. It is commonly reported in the literature that this relation, based on thermody-
namic principles, may fail for systems where particles form from very few molecules with
non-rigid state transitions [85,87].

The higher saturation ratio achieved, combined with the short duration of the solidi-
fication time window, results in small, monodisperse particles, which can fall below the
nanometric range [88]. This process also offers high production efficiency. Furthermore,
the quasi-homogeneity of thermodynamic conditions in the detonation chamber during
both the reaction and formation phases leads to low variability and a monodisperse PSD.
Additionally, the rate of temperature decrease can potentially be controlled to influence
particle growth [89]. Compared with other synthesis methods, detonation is a relatively
ideal energy source because it can not only pulverize the powders effectively but also
control granule growth within the limited time interval of the detonation reaction zone [90].

Despite the theoretical suitability of the detonation route for industrial nanoparticle
production, its application has not been entirely successful due to issues with process
reliability, reproducibility, and control over the final product characteristics, especially
when using heterogeneous solid emulsions. Several authors attribute these drawbacks to
the heterogeneity of the explosive matrix, which leads to the formation of local “hot-spots”
where energy release preferentially occurs, resulting in unequal rates of atomization and
local temperature gradients [91]. Additionally, the wide range of operating conditions, a
major advantage of the detonation route over other gas-to-particle approaches, has not been
fully exploited, limiting precise control over the process. The complexity of the reaction
network leading to metallic oxides behind the shock front is not fully understood, and the
mechanisms that achieve the desired product properties may be disrupted [92].
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This knowledge gap between theory and industrial application hinders the
reproducibility and control required for the detonation-based route to become a dominant
industrial approach. Extracting knowledge from laboratory experiments is economically
demanding and requires advanced technology and safety measures. Therefore, using
phenomenological models combined with numerical algorithms, commonly employed by
the Process Systems Engineering (PSE) community, can provide valuable insights.

This paper focuses on using first-principles-based models to describe the detonation
process combined with Population Balance Equations to represent particulate phenomena.
This approach aims to improve the understanding of the most relevant system variables,
their influence on particle growth, and the ability to optimize both product and process.
The literature on using PSE concepts to address nanoparticle generation and growth via
detonation is scarce. To our knowledge, this is the first paper explicitly considering the
influence of detonation features on particle size distribution (PSD).

While the conceptual basis developed here is intended to be applicable to any detona-
tion system and precursor material, special attention is given to the formation of alumina
nanoparticles from aluminum, with the detonant matrix being an Ammonium Nitrate Fuel
Oil (ANFO) mixture composed of 59.41 % NH4NO3, 30.10 % Al, 6.97 % H2O, 3.5 % Fuel,
and 0.02 % Air (mol/mol fraction).

The paper includes five additional sections. Section 2 focuses on the theoretical
basis and conceptualization of the detonation process, which is subsequently used to
structure the model representing the behavior of intensive properties. Section 3 presents
the mathematical model used to describe the phenomena affecting particle generation and
growth, along with the numerical algorithms employed to handle the resulting Population
Balance Equations (PBEs). Section 4 analyzes the simulation results obtained for the
production of alumina nanoparticles. Finally, Section 5 summarizes the relevant conclusions
regarding the use of the detonation-based route for producing metallic oxide nanoparticles.

2. Detonation Model

This section addresses the modeling of the detonation phenomenon used to transition
metallic particles emulsified in an explosive matrix to the gas phase. A simplified conceptu-
alization is proposed, and a dynamic model is derived to simulate the behavior of extensive
properties interacting with particulate phenomena. The conceptual framework relies on
axial homogeneity assumptions, coupled with radial homogeneity for all variables except
radial expansion velocity, which is treated using a volume averaging method.

2.1. Process Conceptualization

This subsection presents the basic features related to the conceptualization of the
detonation of an emulsion matrix comprising a detonator material and metallic particles in
a sealed chamber, along with the assumptions used in model development. As mentioned
in Section 1, the main goal is to enhance understanding of the key phenomena involved in
nanoparticle production via detonation and to extract trends regarding process suitability
that can be extrapolated to gas-to-phase routes. Since particulate process dynamics are
crucial to achieving this goal and are directly influenced by the properties of the media,
particularly the dependence of particle phenomena on the temperature and pressure of the
explosive matrix—an accurate representation of the dominant features of the detonation
is required.

The literature indicates that detonation process modeling can be approached with
varying levels of detail [93,94], depending on the spatial and temporal scales used for
phenomena representation and the phenomena included. More detailed models provide
enhanced descriptions of dynamic features and better integrate different scales of phe-
nomena but often result in significant numerical challenges. In this study, a simplified
model is employed to capture the prevailing dynamics of detonation, with particular
emphasis on understanding how extensive properties influence particulate phenomena.
Given the current limited understanding of the interaction between the detonation process
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and particulate phenomena, a basic representation of detonation is used to identify the
most significant factors in nanoparticle formation and growth. In future work, if increased
complexity is needed to enhance the predictive capability of the model for PSD of the final
product, the model will be refined accordingly.

Moreover, the decision to use a simplified model for the detonation process also
stemmed from the need to ensure numerical tractability. More advanced models, such as
two-dimensional models accounting for time and axial dimension heterogeneity [95] and
three-dimensional models [93], although offering greater predictive accuracy, would signifi-
cantly increase both the complexity of the model and the computational resources required.
This is particularly true when integrating with particulate-based phenomena descriptions.

The model developed for representing detonation phenomena is based on phenomeno-
logical conservation laws for mass, energy, and momentum. However, before delving into
the specifics of the model, it is essential to clarify some fundamental concepts related to
detonation theory. One of the foundational mathematical descriptions of detonation is
the classic Chapman–Jouguet theory. For a comprehensive analysis of the C-J theory and
its mathematical and physical aspects, readers are referred to Fickett and William [96]
and Davidson [97]. The C-J theory describes detonation as an instantaneous transition
of the particles in the detonation matrix from their initial state to the product state as a
mechanically induced wave propagates through the material. The Equation of State for the
products differs from that of the reactants, and the internal energy of the products includes
the heat released during the reaction. The detonation reactions, characterized by rapid
combustion transformations, are exothermic and release a substantial amount of energy.
The shock wave at the reaction front adheres to “jump conditions” similar to those used
to describe other non-reactive shocks. The core assumption of the C-J theory is that the
reaction occurs so rapidly that it can be considered instantaneous.

From a steady-state perspective, the behavior of detonation products is represented
by a curve connecting thermodynamic equilibrium points, depicting the sequence of
states reachable from the shock transition departing from the reactants’ state. These
curves, which model the equilibrium loci of the products, are commonly referred to as
Hugoniot curves. Relationships among Hugoniot curves, isotherms, and isentropes can
be established. Depending on the monitored variables, Hugoniot curves exhibit different
characteristics. Each material is defined by a family of Hugoniot curves, which can be
obtained through laboratory tests. By combining Hugoniot curves with thermodynamic
data, one can characterize the entropy and temperature changes occurring at the shock.
The same considerations apply to isotherms and isentropes. In the detonation literature,
straight lines connecting two states on a Hugoniot curve (or isotherm or isentrope) are
known as Rayleigh lines.

In analyzing the detonation of a generic solid matrix using the (p, v̄) plane, one can
observe that the process begins with a sudden shock that initiates the reaction, trans-
forming the reactants from an initial state (p0, v̄0) into gaseous reaction products in equi-
librium at (p1, v̄1). Here, pi denotes the system’s pressure in state i, and v̄i represents
the corresponding molar volume.

In detonation systems, despite the sequential solid–liquid–gas transformations, signif-
icant pressure increases from state 0 to state 1 are observed, with pressure values on the
order of a few GPa reported in the literature, coupled with reductions in molar volume.
Subsequently, the gas products expand along a Hugoniot curve. The state immediately
behind the detonation shock lies at the tangency of the Hugoniot curve with the Rayleigh
line, defined by (p1, v̄1). When the Hugoniot and Rayleigh curves meet tangentially at a
single point, this point is called the Chapman–Jouguet (C-J) point, denoted as (pCJ , v̄CJ).
Figure 1 illustrates this sequence of state transitions.

In this work, we address the dynamics of the gaseous matrix expansion starting from
the Chapman–Jouguet (C-J) point. This assumption implies that the C-J point serves as
the initial time for the dynamic simulation. Consequently, it is assumed that the entire
explosive matrix has already reacted, with the detonation wave having reached the end
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of the solid matrix, and the products are in the gaseous phase. The transition from the
initial state of reactants to the C-J point is mathematically resolved using the steady-state
“jump conditions” of the Chapman–Jouguet theory, combined with a thermochemical code
to estimate the reaction heat. For this purpose, the THOR platform, a thermochemical code
for predicting detonation product properties, is employed [98]. Therefore, the dynamic
model presented in the following section describes the evolution of system properties after
complete detonation of the explosive matrix, based on conservation laws. This assumption
also eliminates the need for an Equation of State (EoS) for the explosive material in its
solid state.

v̄

p

(p0, v̄0)

(p1, v̄1)

(p2, v̄2)

R
ay
le
ig
h
lin
e

Hugoniot curve

Dynamic model

v̄0v̄1 v̄2

p0

p1

Figure 1. Schematic representation of transformations in the p − v̄ plane.

The Chapman–Jouguet theory treats the C-J point as the singular point where thermo-
dynamic equilibrium is achieved behind the reaction front, despite the detonation front
being modeled as a mathematical/physical discontinuity. Another assumption arising from
the C-J theory is that the detonation front moves across the solid matrix with nearly flat
spatial geometry. Behind the rarefaction wave following the detonation front, the gaseous
products expand isentropically, driven by the pressure gradient between the system and
its surroundings (air at atmospheric pressure). In our model, the detonation matrix is
cylindrical, and expansion is considered to occur only in the radial direction, with changes
in the x-dimension being neglected. Thus, the expansion system is modeled as a front
with radial displacement, where the pressure in the chamber drives the radial expansion
velocity. This front is associated with large pressure gradients, as the pressure inside the
expanding cylinder reaches very high values while the surrounding medium remains at
atmospheric pressure. The physical description of this gas expansion process results in
a moving boundary problem, which is numerically challenging [99,100]. In this study,
the dynamics of the moving front and continuity conditions are not explicitly addressed.
Instead, the radial position of the boundary, denoted as the outer layer, is determined
based on the radial velocity, and pressure dynamics are described using the momentum
conservation law combined with the EoS.

Another crucial aspect of the dynamic model is the characterization of the expansion
velocity. The system is conceptually represented as a series of cylinders with infinitesimal
thickness, each considered independent of the others (see Figure 2). For a given cylinder,
its properties and their variations over time do not affect adjacent cylinders. Therefore,
pressure dynamics in one cylinder do not influence neighboring cylinders, an assumption
that results from neglecting axial expansion. All cylindrical elements are assumed to
exhibit similar behavior, transitioning through the same thermodynamic states as the
detonation front progresses axially along the explosive but with a time lag proportional
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to the detonation velocity. Since the cylinders are characterized by similar dynamics,
the properties within the detonation matrix are well represented by the dynamics of a
generic infinitesimal thickness cylinder, which is considered the basic volumetric entity for
modeling. Moreover, successive thermodynamic equilibriums are assumed to be achieved
instantaneously using an EoS to model the system’s thermodynamic variables.

Additionally, the dynamics of properties within each infinitesimal cylinder, except
for radial velocity, are considered independent of the radial position. Thus, variables
representing the dynamics in each cylinder (pressure, density, and specific internal energy)
are global. To prevent inner layers from surpassing outer layers due to higher radial
velocities, the cylinder is conceptualized as a series of concentric rings, each expanding
at a velocity proportional to the outermost ring. This approach prevents particles in in-
ner concentric rings from overtaking those in outer rings with higher radial velocities
(see Figure 2). The model describes the radial velocity expansion of the outer ring,
which is then used to compute a volumetric-weighted velocity for the entire cylinder.
This consideration is particularly important for calculating the kinetic energy term.

Figure 2. Conceptual model of the system, consisting of a set of infinitely thin, mutually
independent cylinders.

In summary, the dynamic model assumes both axial and radial homogeneity for ex-
tensive properties, with the exception of the radial velocity of expansion. The system is
conceptualized as a series of infinitesimally thin cylinders, each with uniform extensive
properties. These cylinders are composed of infinite concentric rings that expand in a coor-
dinated manner, maintaining consistent relative radial positions throughout the expansion.

2.2. Phenomenological Model

Most studies in the literature that develop phenomenological models for simulating
detonation dynamics tend to overlook the radial expansion velocity of the products after
reaching the C-J point [101]. However, for the goals of this work, accurately characterizing
the expansion velocity is crucial, as it influences the dynamic evolution of system properties
and the period of particle coalescence. Intuitively, the dynamic model for the radial
expansion velocity depends on the differences between conditions inside the cylinder
defined by the outer ring and the surrounding medium. To our knowledge, there are
two main methodologies for determining this radial expansion velocity:

• Simulation of the detonation phenomenon post-C-J point using heterogeneous
three-dimensional models (accounting for time, axial, and radial dimensions), which
solve momentum balances in both the axial and radial directions. This approach
assumes irrotational movement to determine the radial expansion velocity [102].
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• Application of semi-empirical relations based on the foundational work of Wood and
Kirkwood [103], specifically adapted to central flow lines [104].

Due to the one-dimensional nature of our model, we use the latter approach. Despite
the empirical nature of these relations, they include a term theoretically supported by a
force balance applied to the boundary layer of the expanding cylinder [105–107].

According to the system conceptualization introduced in Section 2.1, the radial
expansion velocity of each ring is given by

ur =
r
R

uR, 0 ≤ r ≤ R (2)

where r is the radius of the ring expanding with velocity ur and R is the radius of the
cylinder’s boundary layer expanding with velocity uR.

A momentum balance at the boundary layer yields the following equation for the
radial expansion velocity of the outer ring, whose radius is R(t):

duR
dt

=
2(p − p0)

ρR
(3)

where p denotes the pressure of the expanding medium, p0 is the pressure of the surround-
ing medium (typically gaseous), and ρ represents the density of the expanding medium.
This equation, initially used by Lu et al. [104], aligns with the theoretical framework
proposed by Wood and Kirkwood [103]. Their work provides a theoretical basis for the
detonation phenomenon, incorporating both radial and axial components of the products’
velocity. They demonstrate that a two-dimensional representation of the velocity is valid
for the central flow line.

Although we assume negligible axial expansion, we use a similar paradigm to model
the boundary velocity at time t = 0 (C-J point) with

uR(t = 0) =
DCJ − uCJ

Rc
RCJ . (4)

Here, DCJ is the detonation wave velocity along the axial direction of the explosive
matrix, uCJ is the sonic velocity of the detonation wave, and RCJ is the explosive radius at
the C-J point. Rc represents the curvature radius of the detonation front, given by

Rc =
R0

tan(θ)
(5)

where R0 is the explosive radius at point 0 and θ is the angle between the explosive axis and
the normal to the shock front. The value of θ is characteristic of the explosive configuration
and is listed for common matrices [108].

Assuming the expanding system is isolated with no mass losses, the dynamics of
the fundamental volumetric entity can be described by a mass conservation equation.
Taking the C-J point as the reference, the mass balance equation is

ρCJVCJ = ρ(t)V(t) (6)

where ρCJ and VCJ are the density and volume of the system at the C-J point, respectively,
and ρ(t) and V(t) represent the density and volume at a generic time t. The evolution of
the system’s volume can be traced using the relation

dV(t) = π · R2(t) · dz (7)

where dz denotes the infinitesimal thickness of the cylindrical elements. Given the concep-
tual assumptions about the coordinated movement of the concentric rings comprising each
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cylindrical element, the system’s volume is determined by the radial expansion velocity of
the outer layer. This is described by

dR(t)
dt

= uR(t) (8)

with the initial condition R(0) = RCJ . From this point onwards, the notation “(0)” refers to
the initial state, corresponding to t = 0.

To characterize the energy dynamics of the expanding system, we use the enthalpy
conservation law, considering kinetic, mechanical, and internal energy terms. It is assumed
that the enthalpy of the system remains constant relative to the reference C-J point.

Over time, transformations occur, converting mechanical and internal energy into
kinetic energy. Consequently, the energy balance in terms of mechanical energy can be
expressed as

eCJ +
pCJ

ρCJ
+ KCJ = e(t) +

p(t)
ρ(t)

+ K(t) (9)

where KCJ and K(t) represent the kinetic energy, eCJ and e(t) denote the specific internal

energy, and the ratios pCJ
ρCJ

and p(t)
ρ(t) correspond to the shaft work at the C-J point and at a

given time t, respectively.
Considering the earlier assumptions regarding system expansion, the overall kinetic

energy is the sum of the contributions from all concentric rings. Thus, the kinetic energy at
time t is given by

K(t) =
1

π ρ(t) R(t)2 dz

∫ R(t)

0
2π ρ(t) r u2

r (t) dz dr =
1
4

u2
R(t). (10)

The values of the variables at the C-J point used in Equations (4)–(9)—namely, ρCJ , pCJ ,
and eCJ—are obtained from a thermochemical prediction platform. Similarly, the values
of VCJ and RCJ are determined based on the mass of the detonation matrix and v̄CJ =

1
ρCJ

.
To close the system of Differential-Algebraic Equations (DAEs), two additional equations
are required. These equations arise from a p − v̄ − e EoS describing the thermodynamic
equilibrium loci. We use the Mie–Grüneisen p− v̄− e EoS, commonly employed for systems
involving condensed matter or solids [109]. This EoS is given by

p(V, e)− pk(vs) =
ω

V
[e − ek(vs)] (11)

where p(V, e) is the pressure in equilibrium with the volume V and specific internal energy
e, pk is the reference pressure, ek is the reference specific internal energy, and e is the specific
internal energy corresponding to p(V, e). The scaled specific volume vs is defined as
vs =

v̄
v̄0

= ρ0
ρ , where v̄0 is the reference specific volume. The parameter ω is the Grüneisen

coefficient, with ω = γ + 1 =
Cp
Cv

+ 1 for ideal systems.
In detonation systems involving condensed matter, such as the one under considera-

tion, the 0 K isotherm, often referred to as the cold compression curve, is commonly used
as a reference curve. The specific internal energy is derived by adding a thermal energy
term to the elastic energy represented by the cold isotherm at 0 K.

This paper employs two different Equations of State (EoSs) to describe the cold
isotherm. The first is the Jones–Wilkins–Lee (JWL) EoS, which combines two Murnaghan
EoSs and one Taft EoS, involving a total of six parameters [110]. The JWL EoS is known
for its strong predictive capability across a wide range of conditions typical in detonation
processes [111]. Specifically, one Murnaghan EoS provides an accurate fit for high-pressure
conditions, the other is suited for intermediate pressures, and the Taft EoS offers a reliable
prediction for low pressures.

In this work, a simplistic polytropic Equation of State is also employed to analyze the
influence of the Jones–Wilkins–Lee (JWL) EoS on detonation dynamics. Both EoSs consid-
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ered are commonly referred to as γ-variable EoSs. For gaseous systems, this assumption
enhances the quality of simulation results, and theoretical equations for computing γ and
updating its value over time are available in the literature [112]. However, in simulations
involving solid matrices, particularly when gaseous mixtures with condensed matter are
present, several authors use constant γ values [113]. This assumption is also adopted in
this paper.

Here, the JWL EoS is represented as follows (see Massoni et al. [114]):

pk(vs) = pk1(vs) + pk2(vs) (12a)

pk1(vs) = A exp(−C1vs) + B exp(−C2vs) (12b)

pk2(vs) = kv−(ω+1)
s (12c)

k =

[
pCJ − pk1(vCJ)−

ωCvTCJ

v̄s,CJ

]
vω+1

s,CJ (12d)

ek(vs) = ek1(vs) + ek2(vs) (12e)

ek1(vs) =

[
A exp(−C1vs)

C1
+

B exp(−C2vs)

C2

]
v̄0 + cek (12f)

ek2(vs) =
kv̄0

ω
v−ω

s (12g)

cek = −
[

A exp(−C1vs,CJ)

C1
+

B exp(−C2vs,CJ)

C2

]
v̄0 −

[
pCJ − pk1(vs,CJ)

ω

]
v̄CJ + eCJ (12h)

All variables retain the meanings introduced previously, with vs,CJ representing the
scaled specific volume at the C-J point and Cv denoting the specific heat of the expansion
matrix at constant volume. The constants A, B, C1, C2, and ω are specific to the detonation
matrix and are typically determined through fitting data obtained from cylinder tests. For
this study, values for these constants were sourced from the literature for ANFO [115]. The
parameters k and cek are adjusted based on the values of the variables at the C-J point, as
determined by the thermochemical code. The goal is to achieve an isentropic curve that
intersects the C-J point. In this context, the constant k represents the mechanical energy
expressed as pressure on the cold compression curve [116]. Similarly, cek accounts for the
increase in mechanical energy at the C-J point due to the heat released from the reaction.

When using the polytropic EoS, the modifications involve setting pk1(vs) and ek1(vs)
to zero. According to Fickett and Wood [117], temperature is not required or known for
simulating detonation processes. However, in our case, temperature, along with pressure,
significantly affects particulate phenomena, and thus its dynamics must be modeled,
simulated, and integrated into the framework.

Temperature is crucial because the velocity of particle coalescence depends on it,
and monitoring the temperature decrease is essential to determine when it falls below
the solidification temperature of the material (alumina oxide, in this case), which halts
growth. The specific internal energy, particularly when using a cold compression curve
as a reference, helps quantify the thermal component and determine the corresponding
temperature. Several relationships in the literature connect isentropes, isotherms, and
Hugoniot curves [97]. These relationships enable the determination of temperature using a
reference curve. In this study, we employ one such relationship, also used in works such as
Menikoff [118]:

T(t) =
e(t)− ek(t)

Cv
(13)

Here, T(t) is the temperature at time t, e(t) is the specific internal energy at time t,
ek(t) is the specific internal energy at the reference point, and Cv is the specific heat capacity
at constant volume.
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The empirical equation used to determine the vapor pressure of liquid-phase alumina
is provided by [119]

P(Tsol) = 1.3176 × 104

[(
Tsol
2200

)6.24
− 1

]
(14)

where P represents the system pressure (in bar) and Tsol is the solidification temperature
(in K).

3. Particulate Dynamics

This section focuses on modeling the particulate phenomena involved in the formation
and growth of metallic oxide droplets. After the detonation, the energy released from
the reaction vaporizes the metallic components present in the matrix. The vaporized
metallic species then react with oxygen (or other chemical species) to form metallic oxides,
such as alumina in our case, which initially exist as individual molecules. At this stage,
the gaseous phase is rich in metallic oxide vapor. As the pressure and temperature decrease,
the vapor condenses to form nuclei of critical size. These nuclei eventually coalesce into
liquid droplets when saturation conditions are met.

The transformations described occur instantaneously up to the C-J point. Beyond this
point, the metallic droplets begin to collide with each other, leading to increased particle
size due to coalescence and coagulation phenomena. Coalescence refers to the process
where two spherical particles merge to form a larger spherical particle upon collision. The
resulting particle has minimal surface energy, with its volume equal to the sum of the
original particles’ volumes [120]. Coagulation, on the other hand, involves the aggregation
of droplets without amalgamation. Although coagulated droplets may not be spherical,
their characteristic dimension is represented by the equivalent sphere.

Once the solidification temperature of the metallic oxide material is reached, the
droplets transition to a solid state, and their characteristic dimension ceases to increase.
Consequently, the simulation time domain covers the interval from the C-J point until
the transition from liquid to solid for the metallic oxide droplets occurs. The rates of
coagulation and coalescence depend on the system’s temperature and pressure, which
are influenced by the expansion of the detonation matrix as described in Section 2. These
variables interact with the particulate phenomena [121]. However, we assume that the PSD
does not affect the detonation dynamics.

3.1. Population Balance Equation Representation

The Particle Balance Equation (PBE) is characterized in the literature as a system
of integro-partial differential equations [122]. These equations incorporate terms com-
monly used to describe various particulate phenomena. Spatial dependence arises from
modeling the particle distribution as a spatial representation of the characteristic dimen-
sion, which describes the frequency of occurrence of particles (e.g., diameter, volume).
Time dependence captures the accumulation of particles, particularly addressing growth
and nucleation phenomena. Integral terms account for aggregation, coalescence, breakage,
and coagulation processes.

The PBE models the probability density function (pdf), denoted as F(x), representing
the number of particles whose characteristic dimension lies within the infinitesimal interval
[x; x + dx]. In our system, the characteristic dimension is the particle size, which can be
expressed in terms of diameter (assuming spherical particles), volume, surface area, or
mass. For this case, these metrics are inherently correlated.

The theory and solution methods for general PBEs are detailed in several references,
such as Hulburt and Katz [123], Randolph [124], Ramkrishna [125,126], Kumar and Ramkr-
ishna [127,128]. The general form of the PBE for a given particle distribution F(x) is
expressed as
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∂F(x, t)
∂t

=
∂

∂x

(
dx
dt

· F(x, t)
)

︸ ︷︷ ︸
growth of

particles of size x

+ δd(x − xN) · RN(t)︸ ︷︷ ︸
nucleation of new
particles of size xN

+
∫ ∞

x
kb(u) · g(u, x) · F(u, t) · du︸ ︷︷ ︸

formation rate of particles of size x
due to the break of size u>x

+

+
1
2

∫ x

0
β(x − u, u) · F(x − u, t) · F(u, t) · du︸ ︷︷ ︸

formation rate of particles of size x due to the
coalescence of particles of size u and x−u

− F(x, t) · kb(x)︸ ︷︷ ︸
consumption rate of particles
with size x due to breakage

− F(x, t) ·
∫ x

0
β(x, u) · F(u, t) · du︸ ︷︷ ︸

consumption rate of particles with size x
due to coalescence with particles with size u

(15)

Here, kb(u) represents the number of particles produced from breaking particles of
size u per time unit, g(u, x) is the breakage kernel describing the probability of forming a
particle of size x from breaking particles of size u per time unit, β(x − u, u) is the coagu-
lation/coalescence kernel representing the collision frequency between particles of sizes
x − u and u per time unit, δd(•) is the Dirac delta function, RN(t) is the nucleation rate of
new particles of critical size xN , and dx

dt is the growth rate of particles of size x.
The complexity of Equation (15), which involves specific initial distributions and kernel

representations, often precludes obtaining an analytical solution. As a result, numerical
methods are typically the only viable approach for simulating the dynamic behavior of the
particle size distribution.

In our modeling of droplet PSD dynamics, the growth term is omitted because the rate
of metallic layer deposition onto the nuclei is negligible compared to the rapid expansion
of the system. Similarly, the nucleation term is excluded, as we assume that all droplet
condensation occurs almost instantaneously. The partial pressure of metallic oxides in the
vapor phase decreases sharply, reducing the likelihood of new nucleus formation during
matrix expansion [89].

Additionally, the breakage terms are disregarded under the assumption that droplet
collisions result in amalgamation or aggregation rather than fragmentation. We focus
on two mechanisms that contribute to the increase in particle size: (i) coalescence and
(ii) coagulation. Thus, the PSD dynamics are primarily governed by the coalescence and
coagulation of liquid metal droplets, with coagulation specifically included to align with
empirical data obtained from industrial laboratory tests.

To simplify the analysis of the Partial Balance Equation (PBE) and the presentation of
the numerical strategy employed, a model focusing solely on coalescence is used, given
that coalescence and coagulation are described by similar representations and kernels. Ex-
tending the treatment to include both coalescence and coagulation phenomena is straight-
forward. The general PBE describing the dynamics of metallic droplets until solidification,
incorporating the aforementioned simplifications and assumptions, is given by

∂F(x, t)
∂t

=
1
2

∫ x

0
βl(x − u, u) · F(x − u, t) · F(u, t) · du − F(x, t) ·

∫ ∞

0
βl(x, u) · F(u, t) · du, (16a)

F(x, 0) = F0(x), (16b)

where βl(x − u, u) is the coalescence kernel and F0(x) is the initial PSD. The kernel also
depends on system properties like temperature and pressure, influencing the particle
collision dynamics. The 1

2 factor in the first term of Equation (16) avoids double counting
the same pair of particles [85].

To account for simultaneous coalescence and coagulation, the PBE extends to

∂F(x, t)
∂t

=
1
2

∫ x

0
βl(x − u, u) · F(x − u, t) · F(u, t) · du − F(x, t)

∫ ∞

0
βl(x, u) · F(u, t) · du+

+
1
2

∫ x

0
βg(x − u, u) · F(x − u, t) · F(u, t) · du − F(x, t) ·

∫ ∞

0
βg(x, u) · F(u, t) · du, (17a)

F(x, 0) = F0(x), (17b)
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where βg(x − u, u) represents the coagulation kernel.
Equations (16) and (17) conceptually describe particulate dynamics. For adaptation to

our system, we define the characteristic dimension of droplets as their volume, denoted
by ν. The pdf of droplets of different volumes is represented by classes N(ν, t), which
denotes the number of droplets with volumes in the range [ν, ν + dν] in the detonation
volume at time t. Specifically, N(ν, t) is given by V(t) · n(ν, t), where V(t) is the volume
of the detonation system at time t (see Equation (7)), and n(ν, t) is the concentration of
particles within the infinitesimal volume interval [ν, ν + dν].

Partial Balance Equations are often formulated for systems where the reaction volume
remains constant over time. However, in our case, the reaction volume continuously in-
creases due to the expansion of the detonation matrix described in Section 2. This expansion
leads to a rarefaction of colliding entities, thereby affecting the collision probability and
consequently the dynamics of the PSD. Considering these factors, Equation (16) becomes

∂n(ν, t)
∂t

=
1
2

∫ ν

0
βl(ν − u, u) · n(ν − u, t) · n(u, t) · du − n(ν, t) ·

∫ ∞

0
βl(ν, u) · n(u, t) · du − n(ν, t)

V(t)
· dV(t)

dt
(18a)

n(ν, 0) = n0(ν), (18b)

where dV(t)
dt = 2πR(t)L dR(t)

dt is the rate of volumetric expansion and dR(t)
dt is given by

Equation (3). Similarly, Equation (17) extends to

∂n(ν, t)
∂t

=
1
2

∫ ν

0
βl(ν − u, u) · n(ν − u, t) · n(u, t) · du − n(ν, t) ·

∫ ∞

0
βl(ν, u) · n(u, t) · du+

+
1
2

∫ ν

0
βg(ν − u, u) · n(ν − u, t) · n(u, t) · du − n(ν, t) ·

∫ ∞

0
βg(ν, u) · n(u, t) · du − n(ν, t)

V(t)
· dV(t)

dt
, (19a)

n(ν, 0) = n0(ν). (19b)

Two aspects of PBEs (18) and (19) are further clarified in the next subsections. The first
is the representation of the kernels for both phenomena, and the second is the initial PSD
distribution, n0(ν).

3.2. Coalescence/Coagulation Kernel

At first glance, the analysis of the coalescence phenomenon between metallic liquid
droplets suggests that it would occur in a turbulent regime, driven by the violent detonation
of the explosive charge. However, this assumption would contradict some of the consider-
ations used earlier in modeling the expansion of detonation products. The effects of gas
viscosity in a turbulent regime cannot be neglected, making it unreasonable to assume the
absence of radial profiles of the intensive properties that characterize the system.

Considering the magnitude of the speed at which the particles move during the expan-
sion process, if a balance between inertial and viscous forces is derived, the viscous term
can be neglected. Physical reasoning leads us to consider that the coalescence phenomenon
is dominated by the particles’ Brownian motion. Therefore, the kernel employed must
reflect the features of this regime. The literature on kernel representations for particulate
processes dominated by coalescence in Brownian motion systems is extensive. The choice
of the most appropriate function for a particular system depends on the ratio between
the particle diameter, dp, and the mean free path of the gas, ℓ [85], which is defined as the
average distance traveled by a gas molecule between successive collisions [129]:

ℓ(t) =
Vm(t)

π d2
p NA

(20)

where all variables have their previously introduced meanings, and Vm(t) = Mm
ρ(t) , with Mm

representing the mass of the detonation matrix. Determining the mean free path of the gas
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in the vapor mixture requires the average molecular weight and gas particle diameter. The
composition of the gaseous phase at the C-J point, determined by the thermochemical code,
is used to calculate these properties.

The relationship between particle diameter and the mean free path determines whether
the system falls into the continuous regime (dp ≫ ℓ) or the free molecular regime
(dp ≪ ℓ) [85]. Another strategy to infer the dominant motion regime of the expand-
ing droplets is to determine the Knudsen number, Kn, defined as the ratio of the mean
free path of the gas to the characteristic size (here, the diameter of alumina droplets). The
Knudsen number helps determine whether the fluid dynamics framework should be based
on statistical mechanics (Kn ≥ 0.1) or continuum mechanics (Kn < 0.1) [129].

To illustrate the calculation scheme, a detonation system based on an ANFO matrix
with emulsified metallic aluminum is considered, with variable values at the C-J point
and vapor composition obtained via the THOR platform. Table 1 presents the results for a
matrix with an initial diameter of 5 cm and a length of 3 cm. The simulation assumes the
chamber is initially at 25 ◦C and 1 atm. The results in Table 2 indicate that the system can
be addressed using continuum mechanics.

Table 1. Data acquired from THOR simulation of the production of alumina nanoparticles via detona-
tion of 1 kg of explosive matrix. The values presented are for the pre-detonation state, designated
earlier by the underscript 0, and at the C-J point, denoted by the underscript C-J, respectively.

Initial Conditions

P0 = 1.0 kbar T0 = 298 K V0 = 0.800 cm3/g ρ0 = 1249.72 kg/m3

Conditions at the C-J Point

PCJ = 149.015 kbar TCJ = 4370.223 K VCJ = 0.603 cm3/g ρCJ = 1658.37 kg/m3 CvCJ = 2502.393 kJ/kg
DCJ = 6824.932 m/s

Detonation Product Composition at C-J Point (Molar Basis)

Cβ 0.08826 H2O 0.32308 NH3 0.24990
N2 0.13012 Al2O3(L) 0.17957 Al2O3 0.00103

Al2O3(a) 0.01067 Al2O2 0.00048 NO 0.00071
CO2 0.00002 O2 0.00002 CO 0.00001
H2 0.01684

Table 2. Values of mean free path of the gas and Knudsen number at the C-J point.

dp (nm) ℓ (nm) Kn

0.3 0.069 0.01

Commonly, the kernel rate for systems whose dynamics fall within the continuum
mechanics paradigm is given by [85]

βl(ν − u, u) =
2kBT

3µ

[
1

(ν − u)1/3 +
1

u1/3

][
(ν − u)1/3 + u1/3

]
, (21)

where µ stands for the gas dynamic viscosity and kB for the Boltzmann constant. The gas
dynamic viscosity is estimated as

µ =
ℓ · c · ρ

2
, (22)

where c represents the average velocity of the gas molecules, defined as [129]

c =

√
3RgT

Mg
, (23)

with Mg denoting the molar mass of the gas and Rg the ideal gas constant.
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To analyze the influence of the kernel on the PSD dynamics and extract useful insights
for interpreting the results, we investigate the dependence of the kernel rate on the volume
of the colliding particles. The values used to simulate the kernel rate are µ = 0.135 44 cP,
c = 2363.4 m/s, and Mg = 19.5157 g/mol, with the temperature taken as TCJ listed
in Table 1. Figure 3 presents the results obtained for the collision frequency between a
generic particle of fixed volume 1000 nm3 and particles of different volumes u.

The kernel rate exhibits different behaviors depending on the volume of the colliding
particles. For a given particle with volume ν − u, the collision rate is higher when the
volume u of the colliding particle is smaller, with the rate of decrease proportional to u− 1

3 .
Conversely, the kernel for collisions between particles of volume ν − u and larger particles
u shows a considerably smoother increase than the decrease observed for smaller particles,
with the rate of increase proportional to u

1
3 . Additionally, the decrease in the difference

between the volumes of the colliding particles leads to a minimum value of the kernel,
occurring when the particles have identical volumes, with limν−u→u βl(ν − u, u) = 8kBT

3µ .
The kernel trend shown in Figure 3 suggests a very rapid dynamics of the PSD,

reaching a distribution close to its final state within a few microseconds. Additionally,
this trend indicates a narrowing of the PSD range, as smaller particles will be “consumed”
faster than larger ones.
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a − D = 500 nm3
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Figure 3. Normalized coalescence kernel for particle collisions with volumes of 500 nm3, 1000 nm3,
and 1500 nm3.

The coagulation kernel used to model the particle collision phenomenon is based on the
frameworks proposed by Ree et al. [84] and Shaw and Johnson [130]. This kernel is designed
for carbon particles generated by detonation operating under the Brownian regime. In
this regime, the relative motion of two independent particles, with radii Rν−u and Ru, is
governed by diffusion with a combined diffusion coefficient Dν−u,u = Dν−u +Du, where
Dν−u and Du are the diffusion coefficients of the two particles. The collision frequency for
the coagulation process is given by

βg(ν − u, u) = 4π (Dν−u +Du) · (Rν−u +Ru) (24)

Using the Stokes–Einstein equation, which relates the diffusion coefficient D of a
particle of radius R to the viscosity of the medium via D = kBT

6πµR , the coagulation kernel
simplifies to

βg(ν − u, u) =
2kBT

3µ

[
1

(ν − u)1/3 +
1

u1/3

][
(ν − u)1/3 + u1/3

]
(25)

Equation (25) resembles the coalescence kernel described by Equation (21). This
similarity is consistent with the findings of Ramkrishna [126], as both coalescence and
coagulation are aggregation processes that share a common mathematical representation,
as given by Equation (21).
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3.3. PBE Discretization

The numerical solution of the Population Balance Equation (PBE) is obtained by
discretizing the spatial dimension using finite element or finite difference methods.
This process transforms the continuous problem into a system of ordinary differential
equations (ODEs), which are then solved using an implicit integrator. The number
concentration of particles for each size class, referred to as a bin, is tracked throughout the
simulation. Further details on this approach are discussed subsequently.

The accuracy of the discretization scheme is related to the mesh density: finer meshes
yield more accurate results but also increase the size of the system of equations, which can
lead to higher computational costs. Consequently, there is a trade-off between solution
accuracy and computational effort. In particular, the choice of mesh size and node
placement (especially in fixed-node strategies) must balance these two factors effectively.

To approximate a continuous property with distribution F(x) using a discrete
representation, two main paradigms are commonly employed [131]:

1. Interpolation method: The value of F(xi) is obtained by solving the Population
Balance Equation (PBE) at discrete nodes xi, where i ∈ {1, . . . , K + 1}, and the entire
distribution is reconstructed using interpolation. Here, K represents the number
of nodes.

2. Class averaging method: The value of F(ϑk) for k ∈ {1, . . . , K} is computed for
discrete classes [xk, xk+1], which are slices of the original distribution. In this method,
ϑk is a representative point within [xk, xk+1], and F(ϑk) is given by

F(ϑk) =

∫ xk+1
xk

F(x) · dx

xk+1 − xk
.

Here, k denotes the bins.

Our approach utilizes the second paradigm, where the number concentration of
particles in the bins is represented by values at predefined points, known as pivots.
This method is commonly employed to ensure the conservation of the property F(x) [127].
The effectiveness of the discretization method depends on the function space used for inter-
polation (if the first paradigm is applied) or the number of discrete classes
(if the second paradigm is used).

Discretization methods for the PBE generally fall into two categories:

1. Fixed pivots: The location of bin points remains constant over time [127].
2. Moving pivots: The bin points are dynamically adjusted [128].

Alternative approaches, such as finite element and wavelet methods, are also docu-
mented (see Alvarez et al. [132], Chatzi and Kiparissides [133], Chen et al. [134], Gelbard and
Seinfeld [135], Hounslow et al. [136], Kiparissides [137], Nicmanis and Hounslow [138], Singh
and Ramkrishna [139,140]). While finite element methods address mass and volume con-
servation issues, they introduce higher complexity. Recently, moving grids have been
successfully applied to solve Population Balance Equations (PBEs) [141–143]. Although
these grids can adapt dynamically to follow the particle size distribution (PSD), their use in
scenarios where particulate phenomena are coupled with other processes may encounter
certain limitations.

In scenarios where the velocity of the particle size distribution (PSD) dynamics is
significant, adaptive or moving mesh methods may offer better accuracy. Moving grids can
better capture dynamic features by concentrating nodes in regions with steep gradients.
However, applying moving-pivot methods, as proposed by Kumar and Ramkrishna [128]
and Nopens and Vanrolleghem [144], presents numerical challenges when concentrations
approach zero. This difficulty is particularly related to the equations governing pivot
motion, which complicate the domain expansion. Conversely, although moving-pivot
methods facilitate narrower meshes, they require solving additional ODEs for pivot motion,
significantly increasing problem stiffness and computational time. Fixed-pivot methods,
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while simpler and more interpretable, offer a clear trade-off between accuracy and com-
putational effort. Consequently, we implemented a fixed-pivot method with a sufficiently
refined mesh to ensure accurate results.

Applying the fixed-pivot framework to our problem enables us to discretize the
continuous domain of particle volumes. We consider the domain Υ = [xmin, xmax], where
the limits are chosen to capture the dynamics of the particle size distribution (PSD) within
the time window of interest. This domain is divided into discrete classes of either constant
or variable width, with the assumption that the number concentration of particles outside
Υ is negligible.

Let nk denote the number concentration of particles in each volume class [xk, xk+1].
The volume of these classes, [xk, xk+1], is assumed to be constant over time and is repre-
sented by the pivot value νk, which is the midpoint of the class interval. The discretization
of the Population Balance Equation (PBE) for modeling the particle size distribution (PSD)
dynamics, considering only the coalescence phenomenon (i.e., Equation (18)), results in the
following equation:

dnk
dt

=
1
2

k−1

∑
i=1

βl(νi, νk−i) · ni · nk−i − nk ·
[

2uR
R

+
K

∑
i=1

βl(νi, νk) · ni

]
, ∀k (26a)

nk(0) = n0
k , ∀k (26b)

where all variables are defined as previously described, and n0
k represents the initial number

concentration of particles at t = 0.
The accuracy of the numerical solution is highly dependent on the number of classes

used to discretize the domain [126]. This choice involves a trade-off between result quality
and computational effort; while very fine meshes can provide accurate solutions, they
may also introduce numerical instability due to increased stiffness in the Jacobian matrix,
leading to higher computational costs. Conversely, excessively narrow grids might fail to
capture the essential features of the solution.

Another consideration is the dynamic nature of the solution, which can evolve spatially
over time. Typically, large rates of change are observed initially for small particles, with
high rates of change eventually developing for larger particles. This dynamic behavior can
be addressed by using adaptive or moving mesh techniques or by refining a fixed mesh. To
balance accuracy and computational efficiency, many approaches employ size classes in
geometric progression, resulting in non-uniform meshes. This method improves accuracy
for small particles at early time steps without the need for an overly fine mesh throughout.
In this approach, the recurrence relation for meshing is

ak = a1 rk (27)

where ak denotes the amplitude of the kth class, a1 represents the amplitude of the first bin,
and r is the progression ratio determined by

3

√
xmax

xmin
=

rk − 1
r − 1

(28)

This strategy allows for a more efficient mesh configuration while maintaining good
accuracy for the initial and evolving stages of the solution.

The non-adaptivity of the mesh presents challenges when dealing with newly formed
particles whose sizes do not exactly match any of the fixed pivots. In these cases, the
newly formed particles are redistributed to adjacent pivots to ensure the conservation of
two arbitrary moments of the distribution. The fixed-pivot discretization scheme uses a
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redistribution algorithm mathematically represented by an operator that simultaneously
conserves both mass and particle number. This operator is defined as [86]

χi,j,k =


νk+1−(νi+νj)

νk+1−νk
if νk ≤ νi + νj ≤ νk+1

(νi+νj)−νk
νk−νk−1

if νk−1 ≤ νi + νj ≤ νk

0 otherwise

(29)

Equation (29) specifies the weights used to redistribute newly formed droplets re-
sulting from the coalescence or coagulation of particles with volumes corresponding
to pivots i and j to the pivot of class k. The redistribution occurs under the constraint
νk−1 ≤ νi + νj ≤ νk+1. The majority of the particles are assigned to the pivot closest to the
sum νi + νj, with a proportionally smaller fraction assigned to the adjacent pivot further
away. This operator assumes that within each class of discrete entities, the concentration is
linearly approximated, and the pivot serves as a representative average for the class.

The reformulation of Equation (26) to include the redistribution operator χi,j,k yields

dnk
dt

=
k

∑
i=1

∆i,k−i,k · χi,k−i,k · βl(νi, νk−i) · ni · nk−i − nk ·
[

2uR
R

+
K

∑
i=1

βl(νi, νk) · ni

]
, ∀k (30a)

nk(0) = n0
k , ∀k (30b)

where

∆i,j,k =

{
1/2 if i = j,
1 if i ̸= j

.

When extending this approach to discretize the PBE for both coalescence and coagula-
tion phenomena, we obtain

dnk
dt

=
k

∑
i=1

∆i,k−i,k · χi,k−i,k · βl(νi, νk−i) · ni · nk−i +
k

∑
i=1

∆i,k−i,k · χi,k−i,k · βg(νi, νk−i) · ni · nk−i−

− nk ·
[

2uR
R

+
K

∑
i=1

βl(νi, νk) · ni +
K

∑
i=1

βg(νi, νk) · ni

]
, ∀k (31a)

nk(0) = n0
k , ∀k (31b)

Here, the operator ∆ is defined as in Equation (30a), and βl(νi, νj) and βg(νi, νj) are
given by Equation (25).

3.4. Initial Particle Size Distribution

The numerical solution of the PBE describing PSD dynamics, as formulated in
Equation (19), requires the specification of the initial distribution n0(ν). Due to the com-
plexity of the process used in the formation of alumina particles and the time window
during which particulate phenomena occur, accurately estimating the initial distribution is
challenging. To address this, we assume that the initial mass distribution of alumina over
the particle size domain follows a log-normal distribution. This assumption is supported
by the general forms proposed by Friedlander [85] to describe the size of particles formed
through condensation. Additionally, empirical evidence from controlled experiments fur-
ther validates this assumption, as the final PSD of nanoparticles across a wide range of
materials often exhibits a log-normal distribution.

Given that growth and nucleation terms are negligible, the initial PSD is expected to
be log-normal, with coalescence and coagulation shifting the mean towards larger volumes
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and increasing variability. Log-normal distributions are characterized by longer tails at
larger sizes and can be mathematically expressed as

f (ν) =
N∞√

2π ν ln(σg)
exp

{
−
[
ln(ν)− ln(νg)

]2

2 ln2(σg)

}
, (32)

where N∞ is the total value of the approximated property, ln(νg) =
∫ ∞

0 ln[n(ν) · ν]dν is
the logarithmic volume average, ln2(σg) =

∫ ∞
0 ln

[
n(ν) · (ν − νg)2]dν is the logarithmic

volume variance, and σg is the standard deviation.
If a mass-based PSD is to be computed, N∞ represents the total mass of alumina

theoretically formed (available at the C-J point), denoted as mAl2O3(0). This leads to

mAl2O3,k(0) =
mAl2O3(0)√
2π νk ln(σg)

exp

{
−
[
ln(νk)− ln(νg)

]2

2 ln2(σg)

}
, (33)

where mAl2O3,k(0) represents the mass frequency corresponding to the kth class of volume.
The logarithmic mean considered in Equation (32) corresponds to the critical diam-

eter of the nuclei formed at the C-J point, as determined by the Kelvin–Gibbs relation
(see Equation (1)). This assumption is crucial for reinforcing some of the model considera-
tions presented in Section 2. Specifically, the critical diameter pertains to nuclei that have
already condensed into metallic liquid droplets, implying that the formation of additional
stable entities during the expansion of the detonation matrix is neglected. Consequently,
after the C-J point, the system is treated as a gaseous phase with liquid droplets immersed
within it, where these droplets collide with each other. This approach assumes no further
nucleation of new entities, as the saturation ratio significantly decreases due to the rapid
drop in temperature and pressure.

The standard deviation of the initial PSD is chosen such that 99.7 % of the droplets
formed at the C-J point are accounted for. Since only liquid alumina droplets are considered,
the total mass of particles at C-J point is determined based on the dimensions of the
explosive matrix, as previously described, and data obtained from a simulation using THOR
(as shown in Table 1). The results in Table 3 provide the additional parameters necessary to
determine the initial mass distribution.

Table 3. Parameters involved in the determination of the initial PSD.

mAl2O3 (0)(kg) νg
(
nm3) σg

(
nm3)

0.0392 155 51.8

The initial particle number concentration required by Equation (19) is derived from
mAl2O3(0) as follows:

nk(0) =
mAl2O3(0)

ρAl2O3(0) νk V(0)
, k ∈ {1, · · · , K}, (34)

where ρAl2O3(0) is the density of liquid alumina and V(0) is the volume of the expanding
system at C-J point.

3.5. Time Integration

The model describing gas expansion beyond the C-J point, represented by
Equations (3), (6)–(10), (12a)–(12c), (12e)–(12g), (13) and (14), is solved concurrently with
the discretized form of the PBE modeling the PSD dynamics. This includes
Equations (20)–(23) and (30a) if only coalescence phenomena are considered or
Equations (20)–(23), (25) and (31) when both coalescence and coagulation phenomena
are considered.
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The vector yd ≡ (uR, ρ, V, R, p, pκ , pκ1, pκ2, e, eκ , eκ1, eκ2, T, Tsol) encompasses the
variables involved in the detonation process model. Initial conditions for yd are provided
by Equation (4) for radial expansion velocity and in Table 1 for all other variables. Similarly,
yp ≡ (βi,j, µ, c, ℓ, nk), ∀i, j, k ∈ {1, · · · , K} contains the variables describing the PSD
dynamics, with initial conditions for nk, ∀k, presented in Section 3.4. The combined vector
y ≡ (yd|yp)⊺ aggregates all variables.

The Mathematica 10 platform was used to integrate the Differential-Algebraic Equations
(DAEs) system described above [145]. The IDA solver, which is a variable-order, variable-
coefficient Backward Differentiation Formula (BDF) algorithm, was employed to handle
the DAE system. IDA operates in a fixed-leading-coefficient form, with the order varying
between 1 and 5, and is capable of solving systems of the form F

(
dy
dt , y, t

)
= 0 [146]. The

solution of the resulting non-linear system is achieved using a variant of the Newton
algorithm, and interpolation is employed to compute solutions at time points other than
those iterated by the integrator.

4. Results

This section presents the simulation results for the physical system mathematically
described in the previous sections. To facilitate the analysis, key conclusions are presented
and discussed concurrently. Although the numerical simulation approach involves solving
the equations for both the detonation of the emulsion matrix and the particulate transfor-
mations simultaneously, the characteristics of each phenomenon are analyzed separately in
the following two subsections.

4.1. Detonation Results

In Section 2, it was noted that closing the system of equations governing detonation
dynamics requires an Equation of State (EoS). In this study, the Mie-Grüneisen EoS is
employed, with the cold curve described by the JWL (Jones–Wilkins–Lee) EoS, which
depends on five parameters (A, B, R1, R2, ω) characteristic of the explosive family used.
Table 4 lists the JWL EoS parameters specific to the ANFO explosives family utilized in this
work, sourced from the literature [115]. Additionally, the parameter κ, derived from the
conditions at the C-J point using Equation (12d) and the properties listed in Table 4, is also
included. Table 5 presents the parameters relevant to determining the dynamics of radial
expansion velocity, which were predicted through simulations using the thermochemical
code THOR [147].

Table 4. JWL EoS parameters.

Parameter Value Parameter Value Parameter Value

A 12.5 × 109 Pa B 1.891 × 109 Pa R1 3.907
R2 1.118 ω 0.57 κ 1.983 × 109 Pa

Table 5. Parameters employed in the radial expansion velocity determination.

Parameter Value Parameter Value Parameter Value

DCJ 6825 m/s uCJ 1747 m/s RCJ 0.0217 m
R0 0.025 m θ 0.349 066 rad Rc 0.0687 m/s

uR(0) 1604 m/s

The dynamics of the detonation process are illustrated in Figure 4. Figure 4a displays
the expansion velocity of the system, which corresponds to a rapid decline in pressure.
Notably, the rate of this decline is not constant over time; it exhibits larger initial derivatives
and eventually stabilizes as the system temperature approaches the solidification point of
alumina. This behavior is consistent with the physical principles governing detonation
phenomena and is supported by various literature sources, such as Arienti et al. [148].
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Figure 4. Dynamics of key properties during the expansion of the detonation matrix: (a) isentropic vs.
system pressure; (b) system temperature vs. solidification temperature of liquid alumina particles;
(c) isentropic vs. system internal energy; (d) radial expansion velocity.

In Figure 4b, the system temperature is shown to decrease during expansion.
A comparison between the pressure and temperature dynamics reveals that the temperature
exhibits a much smoother evolution than the pressure, a trend consistent with established
references [117]. This behavior aligns with the typical differences in propagation speeds
between pressure and temperature waves in chemical and mechanical systems.
Additionally, Figure 4b illustrates the relationship between the solidification tempera-
ture of alumina particles and the system pressure. As the expansion progresses, both the
solidification temperature and the pressure decrease, following a similar profile.

Moreover, Figure 4b indicates that the time window for particle growth lasts only about
46 µs, a relatively short duration compared to other gas-to-solid nanoparticle production
methods. Since the dynamics of temperature are heavily influenced by pressure, and
pressure itself is governed by the “cold curve”, the parameters of the JWL EoS are critical
for ensuring the accuracy of the final results. Figure 4c shows the trends in specific internal
energy. Given that total enthalpy is assumed constant, with thermal energy converting into
kinetic energy, the internal energy profile closely mirrors the temperature trend.

Figure 4a,c also highlight the differences between the curves for system pressure and in-
ternal energy and their corresponding isentropic reference states. In light of
Equations (11)–(13), it is evident that the observed decrease in temperature during ex-
pansion is directly correlated with the diminishing gap between the system pressure and
internal energy curves and their respective isentropic counterparts.

Figure 4d illustrates the dynamics of radial expansion velocity, which is directly re-
lated to the expansion volume. The observed trend is consistent with findings from other
studies [149,150]. Initially, the radial expansion velocity increases rapidly, followed by
a phase where it asymptotically approaches a maximum value as the system pressure
nears atmospheric levels. However, our results show higher velocities than those typically
reported in the literature. Several factors may contribute to this discrepancy. First, the
theoretical basis for the ordinary differential equation (ODE) describing radial expansion
velocity was originally derived for central flow lines. In this study, it was extended to repre-
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sent the radial expansion of all infinitesimal layers independent of their position and time.
Second, Lu [151] observed lower velocities using a similar ODE to Equation (8) but with
an additional empirical term proportional to the square of the velocity, which decelerates
expansion. This term was omitted in our model to maintain system independence and
exclude specific features of the detonation matrix and chamber. As a result, the exclusion
of this term may lead to higher expansion velocities and affect the time required to reach
the solidification temperature. The impact of this potential discrepancy on particulate
phenomena will be analyzed in the subsequent subsection.

Finally, the estimate for the initial radial expansion velocity (at the C-J point) relies
on parameters such as the curvature radius and detonation velocity angle θ, which were
determined experimentally for a range of high-purity detonation matrices. Given that
our matrix is a non-pure emulsion, these parameters may involve some inaccuracies.
Additionally, the expansion velocity is dependent on the system pressure and, consequently,
on the parameters of the JWL EoS.

4.2. Particulate Dynamics

The accuracy of the mesh used to describe the initial particle size distribution (PSD),
as determined by the strategy outlined in Section 3.4, is first assessed. The mesh domain is
configured to minimize errors associated with the formation of larger particles, which can
result in mass loss during the simulation process. The mesh was established by defining the
minimum and maximum volumes that bound the domain Υ and specifying the number of
classes to be used. The pivots for the mesh were determined using Equations (27) and (28).
The parameters used are summarized in Table 6. In practice, the grid was configured
by adjusting the progression ratio r to balance the accuracy of the time-varying PSD
representation with computational efficiency. The grid defined in Table 6 ensures that the
squared error between the PSD calculated with 101 nodes and a grid of twice the density
remains below 1 %.

Table 6. Parameters used in the determination of the mesh.

xmin (nm3) xmax (nm3) a1(nm3) K ( )

0 9.548 34 × 1010 5.235 99 × 10−4 70

Figure 5a shows the initial mass distribution of liquid alumina in both continuous and
discretized domains, determined using Equation (33) with the moments listed in Table 3.
The geometric scale employed effectively captures the features of the continuous initial
PSD. Figure 5b presents the corresponding number concentration PSD, derived using
Equation (34).
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Figure 5. Initial numerical concentration distributions of liquid alumina particles: (a) mass-based
PSD; (b) number concentration-based PSD.

Figure 6 illustrates the dynamics of mass and number concentration of liquid alu-
mina particles from the C-J point to solidification, assuming only coalescence phenomena.
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The results align closely with predictions from Section 2 and with observations from gas-
to-solid alumina growth studies [86]. The data highlight the critical role of the first few
microseconds in shaping the process, with the PSD rapidly shifting towards larger particle
sizes and stabilizing.
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Figure 6. Evolution of the particle size distribution: (a) mass-based PSD; (b) number concentration-
based PSD.

Several factors influence this behavior. Firstly, the high collision frequency under the
initial thermodynamic conditions results in a rapid evolution of the PSD. Figure 7 shows
that both the coalescence kernel, in Figure 7a, and the total particle number, in Figure 7b,
exhibit significant changes shortly after crossing the C-J point. Mathematically, the system
of ODEs has large negative eigenvalues at t = 0, driving the system towards a near-steady
state within a few microseconds. As time progresses, the magnitude of these eigenvalues
decreases, leading to minor changes in the pivot dynamics.

Secondly, the expansion effect reduces collision frequency as the volume expands,
leading to rarification. This effect is significant in the PBE due to the high expansion
rate, denoted by 2 uR

R . Additionally, the first microseconds have a substantial impact on
particle size, with large particles forming from the collision of smaller ones, contributing
to rarification. This is explained by the varying coalescence kernels for small versus large
particles, as shown in Figure 3.

Figure 6a further reveals that the mass-based PSD tightens as smaller particles coalesce
into larger ones, with a slow shift towards larger particle sizes and increased PSD height
due to constant overall mass. The number concentration-based PSD also shows a gradual
increase in average particle size with a decrease in overall concentration, reflecting the
expansion of the detonation matrix and resulting rarification.
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Figure 7. Dynamics of (a) coalescence kernel for two isolated particles, each with a fixed volume of
2.7488 nm3, and (b) total number of liquid alumina particles.
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To simplify the analysis of process velocity, we define the ratio of the number of
particles at time t relative to another time t1, denoted as η(t, t1), by the following equation:

η(t, t1) =
∑K

k=1 nk(t)

∑K
k=1 nk(t1)

(35)

The ratio η(1 µs, 0 µs) is nearly equal to η(46 µs, 1 µs), highlighting the significant
impact of the initial moments on the final characteristics of the product. Additionally,
Figure 8a demonstrates that by t = 1 µs, 58.4 % of the total observed increase in average
particle diameter has already occurred (see Table 7).
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Figure 8. Evolution of particle size characteristics: (a) Aaverage particle diameter distribution under
coalescence-only and coalescence+coagulation conditions; (b) standard deviation of the particle diam-
eter distribution; (c) relationship between the standard deviation and the average particle diameter.

Table 7. Metrics of the PSD at different time instants.

Coal Coal + Coag
Measure

t = 0 µs t = 1 µs t = 46 µs t = 0 µs t = 1 µs t = 46 µs

Particles’ number 2.57 × 1020 7.62 × 1016 1.77 × 1016 2.57 × 1020 3.78 × 1016 8.66 × 1015

Average diameter (nm) 6.67 71.53 122.84 6.67 90.36 156.47

Coal—coalescence phenomena; Coal + Coag—coalescence + coagulation phenomena.

Figure 8a shows the evolution of the average particle diameter and standard deviation
throughout the simulation, considering both coalescence alone and the combined effects of
coalescence and coagulation. The rapid early changes in the particle size distribution are
evident. When only coalescence is considered, the most representative diameter by the end
of the simulation corresponds to a pivot of 121.992 nm, with a volume of 9.505 99× 105 nm3.
When both coalescence and coagulation are included, the representative diameter shifts to
157.127 nm, corresponding to a volume of 2.031 21 × 106 nm3.

The standard deviation, as depicted in Figure 8b, progressively increases throughout
the simulation, closely reflecting the behavior of the average diameter. The coefficient
of variation (Cv), a crucial metric for assessing PSD dispersion, exhibits a linear increase
in both scenarios (see Figure 8c), reinforcing the log-normality of the PSD [152]. In the
coalescence-only scenario, Cv stabilizes at approximately 0.34, while in the combined
scenario, it remains around 0.33, with both values showing minimal fluctuation. This
consistency, which mirrors the initial distribution, suggests that the particle distribution
is largely preserved, with only the mean and standard deviation increasing over time as
a result of coagulation and coalescence phenomena. Minor deviations observed at larger
diameters may be attributable to numerical inaccuracies.

In Section 3, we made assumptions to select the most appropriate kernel based on
the particles’ motion regime. The validity of this assumption throughout the simulation
period is assessed in Figure 9. The Knudsen number’s dynamic behavior reveals that it only
exceeds 0.1 near the end of the simulation, confirming our initial assumption. Furthermore,
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during this late stage, particle growth is nearly negligible, and the rise in the Knudsen
number is primarily due to the increased mean free path, which results from the decreasing
density of the expanding matrix.
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Figure 9. Evolution of the Knudsen number throughout the simulation.

4.3. Model Verification and Validation

The primary goal of this work was to provide a foundation of phenomenologi-
cal knowledge to assist industrial producers of nanoparticles via detonation processes
in optimizing their production methods. The model reveals two key trends: (i) the most
critical phases for controlling PSD size occur within the first µs; and (ii) the only feasible
approach to influencing PSD size is through adjusting the energy released from the detona-
tion matrix, which requires careful selection, especially in terms of matrix formulations.

For model verification, we varied kernel parameters, finding that they have only
a limited impact on PSD until solidification. To compare the model’s PSD predictions
with experimental results, we conducted experiments in a controlled chamber. While
simulations tend to underestimate the PSD, microscopic images suggest that an improved
disaggregation technique is needed to reduce particle coalescence, as some coalescence
remains visible even after washing.

Another noteworthy aspect is that our detonation model, which incorporates sim-
plified assumptions for numerical feasibility, slightly overestimates the radial velocity
of the detonation wave. This discrepancy stems from assuming that each infinitesimal
cylindrical layer progresses uniformly at a rate based on the velocity of the outer layer,
grounded in the assumption of homogeneity within the detonation matrix in the gas phase.
Other thermochemical codes suggest that the actual radial velocity is 10 % to 30 % lower.
Despite this, the difference has minimal effect on particle size, as a lower radial velocity
only slightly prolongs the time to particle solidification, leading to a marginal increase in
average diameter. This effect remains minor because of the following: (i) the extension
in solidification time is less than 5 µs; and (ii) the increase in average diameter becomes
negligible after 20 µs. Consequently, any additional time beyond 20 µs has minimal impact
on PSD.

Improving the model’s predictive accuracy could involve introducing heterogeneity
in matrix dynamics. However, this approach poses numerical challenges, as it requires
solving a distinct Population Balance Equation (PBE) at each radially evolving position
through discretization. Another potential approach is to integrate the simulation tool with
a thermochemical code, enabling more accurate and straightforward characterization of the
Chapman–Jouguet point. Additionally, integration with a general-purpose finite element
analysis tool could allow for precise detonation simulations, generating data files that the
PBE solver can subsequently use to dynamically simulate the particulate phenomena.
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5. Conclusions and Future Work

Detonation is emerging as a promising method for producing metallic oxide
nanoparticles, sharing key features with other gas-to-solid techniques. Its theoretical
potential is significant due to the high energy involved, which can fully vaporize metal-
lic species and facilitate oxidation in the gas phase. However, industrial adoption faces
challenges. Knowledge gaps often arise concerning the complex phenomena of matrix deto-
nation and the impact of intensive variables on particle formation and growth. Additionally,
controlling the process remains difficult, potentially limiting its industrial use.

This paper aims to address these knowledge gaps by presenting a phenomenolog-
ical tool for prediction purposes. To our knowledge, there are no existing models in
the literature that use first principles to address nanoparticle production via detonation.
Our tool, combining theoretical formulations with robust numerical algorithms, is designed
to forecast and extract knowledge about this process.

The developed conceptual tool consists of two models: one describing the detonation
of an emulsified matrix containing explosive material and another representing particulate
phenomena. These models are solved numerically, considering the extensive and intensive
properties affecting particle dynamics. While the detonation model uses approximate
methods to balance computational efficiency with capturing main trends, it incorporates
a thermochemical code to compute “jump conditions” based on the Chapman–Jouguet
theory. These conditions are then used to model the radial expansion of the gas phase
post-detonation, represented by concentric rings with radial and axial homogeneity. The
axial expansion is treated as infinitesimally thin elements expanding radially, all following
similar thermodynamic trajectories with minimal time delays. The Mie-Grüneisen Equation
of State is used to describe the detonation products’ thermodynamics, while the JWL EoS
serves as the reference “cold curve”.

The particulate dynamics are modeled using a Population Balance Equation (PBE) that
accounts for both coalescence and coagulation. The initial particle size distribution (PSD)
is assumed to be log-normal, with the average diameter derived from the Kelvin–Gibbs
relation. Particle collisions are described using kernels for Brownian motion, and growth
occurs via coalescence and coagulation until the matrix temperature reaches the solidifica-
tion point of the metallic oxides. New nucleation during this period is not considered. The
PBE is discretized using a fixed-pivot approach, leading to a set of Differential-Algebraic
Equations (DAEs) representing particle number concentration.

The DAEs for detonation and PSD dynamics are solved with an implicit DAE solver
over time. This approach is applied to predict the PSD of alumina nanoparticles produced
from an ANFO aluminized matrix. Results align well with literature values, showing
that particulate phenomena occur within a very short time window ( 5 × 10−5 s). Notably,
the initial moments are crucial for PSD characteristics due to the rarefaction effect and
rapid particle coalescence. For instance, 58.4 % of the average particle size increase occurs
within the first microsecond. The PSD evolves towards larger particles, stabilizing in a few
microseconds while maintaining a log-normal distribution.

The findings underscore the need for further sensitivity analysis of PSD parameters
and process variables for optimization. Control challenges arise from the brief critical time
window and limited controllability of the process. However, optimization can be achieved
by selecting appropriate explosive materials and designing the explosive matrix. Future
work will focus on optimizing these variables using the developed model and exploring
additional knowledge related to detonation-based production and gas-to-solid strategies.
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