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Abstract: Particle Swarm Optimization (PSO) is a widespread evolutionary technique that has
successfully solved diverse optimization problems across various application fields. However, when
dealing with more complex optimization problems, PSO can suffer from premature convergence and
may become stuck in local optima. The primary goal is accelerating convergence and preventing
solutions from falling into these local optima. This paper introduces a new approach to address these
shortcomings and improve overall performance: utilizing a reinforcement deep learning method
to carry out online adjustments of parameters in a homogeneous Particle Swarm Optimization,
where all particles exhibit identical search behaviors inspired by models of social influence among
uniform individuals. The present method utilizes an online parameter control to analyze and adjust
each primary PSO parameter, particularly the acceleration factors and the inertia weight. Initially,
a partially observed Markov decision process model at the PSO level is used to model the online
parameter adaptation. Subsequently, a Hidden Markov Model classification, combined with a Deep
Q-Network, is implemented to create a novel Particle Swarm Optimization named DPQ-PSO, and
its parameters are adjusted according to deep reinforcement learning. Experiments on different
benchmark unimodal and multimodal functions demonstrate superior results over most state-of-the-
art methods regarding solution accuracy and convergence speed.

Keywords: particle swarm optimization; partially observed Markov decision process; metaheuristics
control; parameter adaptation; deep reinforcement learning; hidden Markov model; deep Q-network

1. Background

Particle Swarm Optimization (PSO), similar to other non-exhaustive optimization
methods such as brute-force search [1], often performs well in some problems but fails
in others due to the common issue of becoming trapped in local optima or suboptimal
solutions. Two primary disadvantages of PSO are premature convergence and dependency
on parameter settings. Premature convergence occurs when swarm particles converge too
quickly towards a point near the best-known positions, which may not necessarily represent
the optimal solution [2]. The rapid information exchange among particles often intensifies
this issue, leading to uniformity, reduced diversity, and an increased risk of settling in
local optima [3]. Additionally, PSO’s performance can vary significantly depending on its
parameter settings, which are not universally effective across different problems [4]. The
main issue comes from balancing exploration (global search) and exploitation (local search).
Multiple methods have been proposed to enhance PSO’s effectiveness and reduce its ten-
dency to become stuck in undesirable solutions. The three primary strategies that have been
identified for enhancing Particle Swarm Optimization (PSO) are parameter adjustments,
modifications to algorithm components, and hybridization with other algorithms.

Adjusting parameters entails customizing several elements of PSO, including either
the topology or the significant parameters, such as the weight of inertia, coefficients of ac-
celeration, and the size of the population [5]. Modifying components pertains to altering or
updating rules for velocity or position (this may also include introducing new components
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or changing how they are calculated). Hybridizing the algorithm involves combining PSO
with different techniques to leverage the strengths of multiple approaches. For instance,
integrating PSO with clustering algorithms can enhance the optimization process, enabling
more effective search techniques [6]. Additionally, incorporating crossover operators from
genetic algorithms into PSO may further strengthen the optimization framework [7]. This
research specifically examines the integration of machine learning to improve the predictive
capabilities of PSO’s search process.

Through hybridization with other machine learning algorithms, this paper proposes
a novel way of adjusting key PSO parameters, precisely inertia weight and acceleration
coefficients. However, selecting optimal parameters is inherently complex and may vary
from one problem to another [4].

To address this matter, we model the online parameter setting problem of PSO using a
partially observed Markov decision process (POMDP). This model reflects dynamic state
changes in particles across different phases: exploration, exploitation, convergence, and
transitions out of local optima. Furthermore, the behavior of particles across iterations is
monitored through partial observations of these states, which guide the model in selecting
the most appropriate action for each belief state. The solution to this model involves both
a Hidden Markov Model (HMM) and a Deep Q-Network (DQN). The HMM employs a
Viterbi classification algorithm to capture the belief states of the particles. Subsequently,
based on deep reinforcement learning techniques, the optimal actions for adjusting PSO
parameters—namely the inertia weight and acceleration factors—are determined and
applied at each iteration.

In our earlier work [8], we already explored the use of the Hidden Markov Model (a
supervised learning technique) for the online estimation and adjustment of parameters in
Particle Swarm Optimization (PSO). Building on this, we now advance our approach by
integrating a partially observed Markov decision process (POMDP), further enhanced by
adding a Deep Q-Network (DQN) specifically to resolve the POMDP. This refined strategy
enables dynamic, real-time optimization of PSO parameters with each iteration, offering a
more precise and adaptable mechanism for parameter tuning.

The subsequent sections of this research work are arranged as outlined below: Section 2
reveals a comprehensive review of the literature. Section 3 elaborates on the POMDP model
and details the integration of the DQN model. Section 4 is entirely devoted to presenting
the empirical findings. Finally, the conclusion is provided in Section 5, which encapsulates
our findings and reflections.

2. Related Works

Several strategies have been established to improve Particle Swarm Optimization
(PSO) in the past decade. Improvements in PSO have been categorized into three key
methodologies, as shown in Figure 1: parameter optimization [9], algorithmic component
adjustments [10], and integration with other algorithms (hybridization) [11]. Parameter op-
timization entails fine-tuning PSO settings, including topology, coefficients for acceleration
and inertia, and population size. Adjustments to algorithmic components involve modify-
ing velocity or position update rules, which may include creating or recalibrating existing
elements. Hybridization with other techniques allows PSO to leverage complementary
algorithms, enhancing its performance and problem-solving capabilities.

Firstly, parameter setting for PSO algorithm has caused significant difficulty in the
area of iterative optimization techniques in recent years [12]. Recent research [13,14] has
identified two primary approaches to parameter setting: parameter tuning and parame-
ter control.

Parameter tuning entails establishing the algorithm’s parameters to specific values
found via simulations [15]. This approach has also been applied in airline scheduling
problems [16,17], where a Hidden Markov Model was investigated for tuning metaheuris-
tics [18]. In contrast, parameter control refers to the process of dynamically modifying
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parameter values while the algorithm is running [19,20]. This method can be classified into
static, adaptive, or self-adaptive approaches.
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Static parameter control utilizes some pre-established rules, sometimes referred to as a
time-varying rule, to modify parameter values depending on the PSO iteration number [21].
Adaptive control of parameters employs some function to establish a relationship between
the feedback obtained from the current optimization process and the value of the PSO
parameter [22].

In a previous work [8], a Hidden Markov Model (HMM) was used as an online classi-
fication method to estimate PSO states, which are exploration, exploitation, convergence,
and jumping out [23]. The earlier approach adaptively adjusts the acceleration factors c1
and c2. In [9], an equivalent HMM-based approach was applied to adapt the population
size along with the acceleration factors. Another work [24] leveraged HMM-detected PSO
states to control the inertia weight also using HMM classification.

Self-adaptive parameter control embeds the parameters within each particle, enabling
these parameters to vary and develop during the algorithm’s execution [25]. Notably, the
use of a classification model has been explored for adapting PSO parameters, providing a
probabilistic framework for dynamic adjustments, like in [26], where the authors proposed
a probabilistic finite state machine design for self-parameter adaptations of each particle
in PSO, enhancing its adaptability and robustness. Similarly, the authors of [23] further
incorporated a self-dynamic adaptation of population size across iterations.

Additionally, PSO parameter adjustment may be performed in two contexts: homo-
geneous and heterogeneous swarms [27]. In a homogeneous swarm, all particles exhibit
uniform behavior, but in a heterogeneous swarm, several distinct behaviors coexist con-
currently [28]. Recent studies have introduced cooperative multi-swarm strategies and
adaptive cooperation using a Markov Model, enhancing the performance and robustness
of PSO in various applications [29,30].

Furthermore, the authors of [20,31] presented an in-depth investigation of the latest
advances in PSO, exploring different parameter control methodologies and real-world
applications. The research results jointly give important insights into the techniques and
the resulting impacts on the PSO algorithm.

Other recent advancements in Particle Swarm Optimization (PSO) have focused on
enhancing key algorithmic components, including velocity update rules, boundary condi-
tions, and topology structures. These components are crucial for the overall performance,
stability, and convergence of PSO algorithms. The velocity update calculus in Particle
Swarm Optimization (PSO) is essential for managing particle movement and ensuring
successful convergence. The authors of [32] presented adaptive velocity update techniques
that dynamically alter parameters depending on the optimization process. Their analysis
gives insights into how these updates boost PSO’s convergence and stability. Meanwhile,
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managing boundary conditions efficiently is essential for maintaining the search space’s
integrity and preventing particles from running away. The authors of [33] addressed unique
boundary management approaches that retain particle diversity while preserving search
space boundaries. Their thorough review underlines recent measures and their influence
on PSO performance.

Additionally, the topology of PSO specifies the structure of communication links
within particles, significantly affecting the algorithm’s efficiency. The authors of [14] ex-
amined different topology patterns and their effects on PSO achievement. Their work
offers suggestions for choosing suitable structures based on specific optimization prob-
lems. Also, the authors of [29,30] examined cooperative plans through PSO topologies,
emphasizing the advantages of multi-swarm cooperation and adaptive communication
frameworks. These studies indicate how cooperative strategies may boost PSO perfor-
mance by enhancing exploration and exploitation balance and strengthening the robustness
of the optimization process.

Hybridization in PSO leverages multiple strategies to increase the algorithm’s ef-
fectiveness. The authors of [34] reported that hybrid approaches have shown success in
resolving complex optimization problems and therefore validated the usefulness of com-
bining PSO with local search methods, meta-heuristics, and machine learning. One hybrid
strategy involves adding local search methods to refine solutions near potential regions
determined by PSO, which aids in attaining quicker convergence and more accurate solu-
tions. For example, the authors of [35] combined dynamic multi-PSO with gravitational
search algorithms to solve complex optimization problems. Another hybrid approach
involves combining PSO with other metaheuristics like simulated annealing or a genetic
algorithm, balancing their strengths to avoid local optima and the premature convergence
phenomenon. The authors of [36] demonstrated a hybrid PSO–firefly algorithm to enhance
cloud performances. The authors of [37] proved that integrating the global search capac-
ity of genetic algorithms with the convergence speed of PSO will result in a significant
improvement compared to other methods.

Integrating machine learning with PSO enables adaptive parameter control and dy-
namic modification of the algorithm’s behavior. Techniques like supervised learning [38]
and deep learning [39] have been utilized to inform and optimize PSO’s parameter ad-
justments effectively. For instance, the authors of [40] used a multilayer PSO with ANN,
adapting network topology and synaptic weights. This adaptive approach allowed for
the dynamic control of parameters, boosting optimization efficiency and accuracy. The
authors of [41] proposed one reinforcement learning-based parameter adaptation approach
for PSO, showcasing its effective and adaptive capabilities. This approach was further
validated in a recent study [42], emphasizing the usefulness of reinforcement learning
hybridized with PSO for suitable adaptation. Such models can predict optimal settings,
assess the optimization state, and guide the search process, significantly enhancing PSO’s
efficiency [43,44]. They also handle complex optimization challenges, solidifying PSO’s
role as an effective and versatile hybrid optimization method.

3. Deep Q-Network-Based Adaptive PSO

This section describes the background knowledge, some essential concepts of the
literature, and our previous algorithm, HMM-APSO [8], which provided the foundation for
presenting our parameter adaptation control method using a Q-network. The suggested
technique is about dynamically balancing the states of PSO to identify optimal parameter
values which assure success in different optimization settings. Using a Hidden Markov
Model (HMM) helps identify these appropriate states via analyzing the evolution and
transitions all over the PSO iterations. Once the most suitable state is determined, estab-
lishing a Deep Q-Network (DQN) permits the selection of the optimal action, indicating
the best suited parameter values in that state. This combination provides adaptive and
strategic adjustments to PSO parameters, boosting performance by dynamically modifying
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the algorithm. This dynamic adaptation helps strike a balance between PSO states, leading
to higher convergence and improvements in accuracy.

3.1. Theoretical Framework

Regarding the new approach proposed this work, we utilize the classical version of
Particle Swarm Optimization (PSO) given in [45], which features a global topology where
each particle is connected to every other particle and influenced by the global best (gBest)
particle. Each particle i is described by two vectors: velocity vector vi and position vector
xi. The following equations define how those vectors are updated at each iteration t:

vi(t + 1) = wvi(t) + c1r1(pBesti − xi(t)) + c2r2(gBest − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

We assume that there are N particles of the swarm in S space. Here, i indicates the
particle’s index, and t is the iteration’s index; r1 and r2 are defined in the interval [0,1],
representing two independently and uniformly distributed random variables. The inertia
weight w is generally adjusted to decrease linearly from 1 to 0 throughout the execution.
The constants c1 and c1 are named acceleration factors. pBesti indicates the personal best
position of particle i. gBest refers to the global best position.

In Figure 2, the diagram shows the iteration steps of PSO. The stopping criteria
commonly have a maximum number of loops or some convergence criteria.
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3.2. Markov Chain on PSO

PSO can be analyzed by examining its stochastic behavior as a multi-stochastic process.
As identified by previous researchers, notable work on PSO is based on empirical studies
using simulations, and less work has been conducted to analyze PSO theoretically. In [46],
a few theoretical propositions were utilized to explore the stochastic process of PSO.
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According to [47], the PSO state takes into account as much detail as possible in the
process. Previous researchers [46] have proven that the PSO state is memory-less. The state
was defined by

ST(t) = (X(t), pbest(t), V(t), gbest(t)) (3)

W is called a state at time t. It proved the stationarity of the Markov chain on the
PSO. We assume that the information contained in W(t) is enough for future moves, and
it depends only on the actual iteration state and not the past iteration state. The effect
of the current state on the future states is not dependent on its past states. Thus, PSO’s
behavior only depends on the actual state, not on the succession of the past, which rides on
previous achievements.

To evaluate the success of the state, ST, in PSO, an index is defined to reflect the current
accomplishment based on particle positions and probability concepts due to their stochastic
movements. These states are categorized into classes identified as levels. The levels follow
a stochastic process described as

{L(ST(t)), t = 1, 2 . . .} (4)

Forming a Markov chain [48–50] on PSO levels, this approach, detailed in [46], en-
sures the achievement is position-dependent, aligning with the probabilistic nature of
particle movements.

We define, as shown in [51], four evolutionary levels considered as a global state of
the PSO swarm, namely the following:

L = {exploration, exploitation, convergence, jumping out}.
The Markov chain represents the PSO states in Figure 3. The arrows show the possible

transitions between states.
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Although the exploration state describes the process of looking at a large area in
solution space to avoid local optima, in the exploitation state, the swarm adjusts the
solution at the best-known locations to serve the purpose of accuracy. The convergence
state involves stable particles, and it is focused on the optimal solution so that the best
results may be reached. The jumping-out state adds randomness to escape local optima
and continue seeking the global optimum, maintaining variety and avoiding premature
convergence. One must balance these states of PSO, giving the appropriate parameter
setting for it to be successful when used in optimization situations.

3.3. Partially Observed Markov Decision Process in PSO

Based on the previous paragraph, we define a POMDP [52] on the PSO to build a
model of control and adaptation of PSO parameters according to the swarm state. We
can characterize a POMDP over PSO since there are already PSO states in the swarm: L
= {exploration, exploitation, convergence, jumping out}. The state of each particle is not
directly observable. Still, it is inferred through an evolutionary factor f that reflects the
relative positions of particles and is defined by the average distance of each particle to
all others, as described in [51]. The actions are variations in the PSO parameters, and the
reward is the measured enhancement of the best solution. This approach gives a perfect
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way for PSO to dynamically control and optimize its parameters based on the observed
swarm behavior.

Formally, the POMDP is defined as a tuple (S, A, T, Z, R, b0) as follows:

• States (S)

S = { s | s ∈ L } (5)

• Observations (O)

O = { o| o = f (Gbest)} (6)

f (Gpest) is the mean distance of Gbest to all other particles:

f (Gpest) =
∣∣∣∣dgbest − dmin

dmax − dmin

∣∣∣∣ ∈ [0, 1] (7)

where di is the distance between a particle i and the other particles.

• Actions (A):

A = { a | a is a combination o f PSO parameters settings}

We define four parameters setting combinations {A}4
1.

Actions include setting values for inertia weight, cognitive coefficient, social coefficient,
and randomness.

• Transition Model (T):

T(s, a, s′) = P
(
s′
∣∣ s, a

)
(8)

T is the probability of transitioning from state s to state s′ given an action a.

• Observation Model (Z):

Z(s′, a, o) = P(o | s′, a) (9)

Z is the observation probability of o given the next state s′ and the action a.

• Reward Function (R):

R(s, a) (10)

This is the reward received after taking action a in a state s and the measurement
enhancement of the best solution.

• Initial Belief State b0: This is the initial probability distribution over states. It will be
given as an exploration state with a probability equal to 1 and 0 for other states; this
means that we assume an exploration state at iteration one.

• The objective is to select the actions a ∈ A that maximize the expected cumulative
reward over time, accounting for the partially observable nature of the states through
the observed parameter f.

Then, the policy π maps the history of observations and actions to actions such that
the expected sum of rewards is maximized.

To solve this model, we conduct an approach integrating the Hidden Markov Model
and Q-network [53]. It is an advantageous solution strategy due to the complementary
strengths of these methods.

Using this approach, we can handle partial observability efficiently by using HMMs to
maintain and update the belief state of the swarm. A belief state is a probability distribution
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over possible states that enables the swarm to make effective inferences about the state of its
environment, even when the true state is not directly observable. It combines the powerful
deep-learning approximation algorithms of complex functions for high-dimensional state
spaces into the Q-network [53] used for action selection. This way, the agent can learn an
optimal policy that maximizes the long-term reward while solving this partial observability
problem. The state estimate generated by our proposed solution is effectively aggregated
by HMMs, leading to scalable Q-networks that can be efficiently used for policy learning
in POMDPs.

The following paragraphs will detail the HMM and Q-network models.

3.4. HMM Belief State Classification

The Hidden Markov Model (HMM) is used for PSO state classification due to its
advantage in sequence analysis, notably in voice recognition and classification domains.
HMMs have proven effectiveness for sequence analysis [54], especially in representing sys-
tems with hidden states and time-dependent interactions. This results from their capacity
to manage sequential data with inherent stochastic processes. Algorithms including Baum–
Welch and Viterbi allow HMMs to continually estimate model parameters while identifying
the most probable sequence of hidden states, thereby enhancing accurate classification and
prediction in intricate temporal patterns.

We set the HMM with a triple (Π, A, B), and (Ω, F, P) is a probability space where the
whole processes are defined:

• Π = (πi), the vector representing initial state probabilities. Π = [1 0 0 0]: Initial state
probability specifying a first deterministic initialization in the exploration state.

• A = (aij), the transition matrix between states, P(Xt = i|Xt−1 = j), i, j ∈ [1, N]. We
supposed a 1/2 value of transition probabilities for all possible transitions in Figure 3.

• B = (bjk), the emission matrix named likewise a confusion matrix, P(Yt = k|Xt = j),
j ∈ [0, N], k ∈ [0, M].

The evolutionary factor f, representing particle distribution in a search, is used as an
observation source in the Hidden Markov Model. Since f is continuous within [0, 1], it is
discretized into seven subintervals [23]:

[0, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 1] (11)

Each value of f is assigned to an interval, resulting in a discrete state based on the
interval number. Then, matrix B has dimensions of 4 × 7.

Probabilities are deduced from an earlier work [23] as follows:

B =


0 0 0 0.5 0.25 0.25 0
0 0.25 0.25 0.5 0 0 0
2
3

1
3 0 0 0 0 0

0 0 0 0 0 1
3

2
3

 (12)

where once the parameters of the HMM are initialized, the Algorithm 1 Baum–Welch
algorithm [55] is employed to compute and update the emission and transition probabilities
iteratively. This process enhances the accuracy and adaptability of the HMM during the
classification stage.
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Algorithm 1: Baum–Welch Algorithm [55] 
1: 
2: 
3: 

𝑫𝒂𝒕𝒂: 𝛱, 𝑂, 𝐴, 𝐵, 𝑆, 𝑌  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑[4, 𝑇]  𝑎𝑛𝑑 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[4, 𝑇] 𝑚𝑎𝑡𝑟𝑖𝑥 𝒓𝒆𝒑𝒆𝒂𝒕 
4:  𝒇𝒐𝒓   𝑖 =  1 𝑡𝑜 4 𝒅𝒐 
5:   𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑆௜, 1]   𝜋௜ × 𝑏௜,ଵ; 
6:  𝒆𝒏𝒅 
7:  𝒇𝒐𝒓 𝑡 =  2 𝑡𝑜 𝑇 𝒅𝒐 

8:   𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 4 𝒅𝒐 
9:    𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑆௜, 𝑡]  ∑௞ୀଵ,..,ସ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑖, 𝑡 − 1]  ×  𝑎௞,௜ ×  𝑏௜,௬೟ 

10:   𝒆𝒏𝒅 
11:  𝒆𝒏𝒅 
12:  𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑌௧, 𝑇]  ∑௞ୀଵ,..,ସ 𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑘, 𝑇]  
13:  𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[𝑌௧, 𝑇]  ∑௞ୀଵ,..,ସ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[𝑘, 𝑇]  
14:  𝒇𝒐𝒓 𝑡 =  1  𝑡𝑜 𝑇 𝒅𝒐 
15:   𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 4 𝒅𝒐 
16:    𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[𝑆௧, 𝑡]  ∑௞ୀଵ,..,ସ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[𝑖, 𝑡 − 1]  ×  𝑎௞,௜ ×  𝑏௜,௬೟ 
17:   𝒆𝒏𝒅 
18:  𝒆𝒏𝒅 
19:  𝒇𝒐𝒓 𝑡 =  1 𝑡𝑜 𝑇 𝒅𝒐 
20:   𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 4 𝒅𝒐 
21:    𝒇𝒐𝒓 𝑗 =  1 𝑡𝑜 4 𝒅𝒐 
22:                𝜉௜,௝(𝑡) =  𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑖, 𝑡] ×  𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[𝑖, 𝑡] ×  𝑏௜,௬೟𝑃(𝑂/(𝐴, 𝐵, 𝜋))  

 

23:    𝒆𝒏𝒅 

24:   𝒆𝒏𝒅 

25:   𝜆௜(𝑡) =  𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑖, 𝑡] ×  𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[𝑠, 𝑡]𝑃(𝑂/(𝐴, 𝐵, 𝜋))  

26:  𝒆𝒏𝒅 

27:  𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 4 𝒅𝒐 
28:   𝒇𝒐𝒓 𝑗 =  1 𝑡𝑜 4 𝒅𝒐 
29:              𝜋௜ =  𝜆ଵ(𝑡), 𝑎௜௝ =  ∑௧ୀଵ,..,்ିଵ 𝜉௜,௝(𝑡)𝜆௜(𝑡) , 𝑏௜௞ =  ∑௧ୀଵ,..,்∩௢೟ୀொೖ 𝜉௜,௝(𝑡)∑௧ୀଵ,..,்𝜆௜(𝑡)  
30:   𝒆𝒏𝒅 
31:  𝒆𝒏𝒅 
32: 
33: 

𝒖𝒏𝒕𝒊𝒍 𝑛𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑃(𝑂/𝜆) 𝑜𝑟 𝑛𝑜 𝑚𝑜𝑟𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒   𝑹𝒆𝒔𝒖𝒍𝒕:  (𝜋, 𝐴, 𝐵) 

Subsequently, at each iteration, the Viterbi algorithm [56] is utilized to estimate the 
belief state of the swarm. Algorithm 2 shows the pseudo-code which describes the state 
sequence Q  (where Q =  qଵqଶ … . q୘ ) assuming a succession of observations O ( O = oଵoଶ … . o୘). Transitions between the four states are adjusted based on the classifications 
provided by the HMM. 

Subsequently, at each iteration, the Viterbi algorithm [56] is utilized to estimate
the belief state of the swarm. Algorithm 2 shows the pseudo-code which describes
the state sequence Q (where Q = q1q2 . . . .qT) assuming a succession of observations
O (O = o1o2 . . . .oT). Transitions between the four states are adjusted based on the classifi-
cations provided by the HMM.

Additionally, for each state of the swarm as determined by the HMM classification, the
subsequent actions are determined by the Q-network, as detailed in the following paragraph.
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1: 
2: 
3: 

𝑫𝒂𝒕𝒂:  𝛱, 𝑂, 𝐴, 𝐵, 𝑆, 𝑌, 𝑇  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑉𝑖𝑡𝑒𝑟𝑏𝑖[4, 𝑇]  𝑚𝑎𝑡𝑟𝑖𝑥 𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 4 𝒅𝒐 

4:   𝑉𝑖𝑡𝑒𝑟𝑏𝑖[𝑖, 1]   𝜋௜ ×  𝑏௜,ଵ; 
5:  𝑆𝑡𝑎𝑡𝑒[𝑖, 1]  𝑋ଵ; 
6: 𝒆𝒏𝒅 

7: 𝒇𝒐𝒓 𝑡 =  2 𝑡𝑜 𝑇 𝒅𝒐 

8:  𝒇𝒐𝒓 𝑖 =  1 𝑡𝑜 4 𝒅𝒐 

9:   𝑉𝑖𝑡𝑒𝑟𝑏𝑖[𝑖, 𝑡]  𝑚𝑎𝑥௦ᇲୀଵ,..,ସ 𝑉𝑖𝑡𝑒𝑟𝑏𝑖[𝑘, 𝑡 − 1]  ×  𝑎௞,௜ ×  𝑏௜,௬೟ 
10:   𝑆𝑡𝑎𝑡𝑒[𝑖, 𝑡]     𝑎𝑟𝑔𝑚𝑎𝑥௦ᇲୀଵ,..,ସ 𝑉𝑖𝑡𝑒𝑟𝑏𝑖[𝑘, 𝑡 − 1] ×  𝑎௞,௜; 
11:  𝒆𝒏𝒅 
12: 𝒆𝒏𝒅 
13: 𝑌   𝑎𝑟𝑔𝑚𝑎𝑥௞ୀଵ,..,ସ 𝑉𝑖𝑡𝑒𝑟𝑏𝑖[𝑘, 𝑇]  ; 
14: 𝑋்   𝑋௒೟  
15: 𝒇𝒐𝒓 𝑡 =  𝑇, 𝑇 − 1, . . . 2 𝒅𝒐 

16:  𝑌௧ିଵ =  𝑆𝑡𝑎𝑡𝑒[𝑌௧, 𝑡]  
17:  𝒆𝒏𝒅 
18: 𝑹𝒆𝒔𝒖𝒍𝒕: 𝑇ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑸𝒛 =  (𝑺𝒀𝟏, . . . . , 𝑺𝒀𝒕) 

Additionally, for each state of the swarm as determined by the HMM classification, 
the subsequent actions are determined by the Q-network, as detailed in the following par-
agraph. 

3.5. Deep Q-Network-Based Parameter Setting Actions 
After determining the belief state of the PSO, the Q-network is used to determine the 

suitable action that corresponds to the parametric adjustment control of the PSO. The Q-
network, specifically the Deep Q-Network (DQN), is a kind of neural network that will be 
used to approximate the Q-value function in reinforcement learning, giving the optimal 
action selection strategy. 

A formal description of the Q-network’s architecture is provided in Figure 3: 
• The input layer of four possible values and four dimensions: state 1 [1, 0, 0, 0], state 

2 [0, 1, 0, 0], state 3 [0, 0, 1, 0], and state 4 [0, 0, 0, 1]. 
So, we have four neurons, each representing one element of the one-hot encoded state 
vector. It will receive the state representation of the belief state in the POMDP calcu-
lated previously by the HMM classification. Each neuron in this layer corresponds to 
one element of the state. 

• Hidden layers include a fully connected layer with h1 = 32 neurons and ReLU activa-
tion. 

• The output layer of dimension 4 that corresponds to the number of possible actions. 
Q-values that represent the expected cumulative reward for each action in the pro-

vided state are determined as follows: 𝑄(𝑠, 𝑎) =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝐵𝑒𝑠𝑡௜ିଵ) − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑔𝐵𝑒𝑠𝑡௜) (13)

Fitness is the fitness function used in PSO, and 𝑖 is the iteration number; we are sup-
posed to have a minimization problem. 

The pseudo-code of the Algorithm 3 DQN algorithm is as follows: 

3.5. Deep Q-Network-Based Parameter Setting Actions

After determining the belief state of the PSO, the Q-network is used to determine
the suitable action that corresponds to the parametric adjustment control of the PSO. The
Q-network, specifically the Deep Q-Network (DQN), is a kind of neural network that will
be used to approximate the Q-value function in reinforcement learning, giving the optimal
action selection strategy.

A formal description of the Q-network’s architecture is provided in Figure 3:

• The input layer of four possible values and four dimensions: state 1 [1, 0, 0, 0], state 2
[0, 1, 0, 0], state 3 [0, 0, 1, 0], and state 4 [0, 0, 0, 1].
So, we have four neurons, each representing one element of the one-hot encoded
state vector. It will receive the state representation of the belief state in the POMDP
calculated previously by the HMM classification. Each neuron in this layer corresponds
to one element of the state.

• Hidden layers include a fully connected layer with h1 = 32 neurons and ReLU activa-
tion.

• The output layer of dimension 4 that corresponds to the number of possible actions.

Q-values that represent the expected cumulative reward for each action in the provided
state are determined as follows:

Q(s, a) = f itness
(

gBesti−1
)
− f itness(gBesti) (13)

Fitness is the fitness function used in PSO, and i is the iteration number; we are
supposed to have a minimization problem.

The pseudo-code of the Algorithm 3 DQN algorithm is as follows:
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𝑫𝒂𝒕𝒂: 𝐷, 𝑄, 𝜃, 𝑁, 𝑀, 𝑇, 𝐶 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 ∶  𝑟𝑒𝑝𝑙𝑎𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝐷 𝑡𝑜 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑁, 𝑎𝑐𝑡𝑖𝑜𝑛− 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑄 𝑤𝑖𝑡ℎ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝜃, 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑐𝑡𝑖𝑜𝑛− 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑄෠ 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝜃ି = 𝜃, 𝑆𝑒𝑡 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (𝜀) 𝑓𝑜𝑟 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝒇𝒐𝒓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 =  1, 𝑀 𝒅𝒐   7:  𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑠ଵ  =  {𝑠ଵ} 𝑎𝑛𝑑 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝜑ଵ  =  𝜑(𝑠௧) 

 8:  𝒇𝒐𝒓 𝑡 =  1, 𝑇 𝒅𝒐  9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 

 𝑊𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎௧ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎௧  =  𝑎𝑟𝑔𝑚𝑎𝑥 ௔𝑄∗(𝜑(𝑠௧), 𝑎, 𝜃) 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎௧ 𝑖𝑛 𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟௧ 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑠௧ + 1 𝑆𝑒𝑡 𝑠௧ + 1 =  𝑠௧, 𝑎௧, 𝑥௧ + 1 𝑎𝑛𝑑 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝜑𝑡 + 1 =  𝜑(𝑠𝑡 + 1) 𝑆𝑡𝑜𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (𝜑௧, 𝑎௧, 𝑟௧, 𝜑௧ାଵ) 𝑖𝑛 𝐷 𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝜑௝, 𝑎௝, 𝑟௝, 𝜑௝ାଵ)  𝑓𝑟𝑜𝑚 𝐷 𝑆𝑒𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 𝑦௝  =  {    𝑟௧                                                           𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝜑௧ାଵ 𝑟௧ +  𝛾 𝑚𝑎𝑥௔ᇱ 𝑄෠(𝜑௧ାଵ, 𝑎′;  𝜃ି)     𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝜑௧ାଵ } 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑎 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡 𝑠𝑡𝑒𝑝 𝑜𝑛 (𝑦௝  −  𝑄(𝜑௝, 𝑎௝;  𝜃))ଶ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜃  𝜃ି  ← 𝜃 𝑒𝑣𝑒𝑟𝑦 𝐶 𝑠𝑡𝑒𝑝𝑠 

19:  𝒆𝒏𝒅 𝒇𝒐𝒓 
20: 
21: 

𝒆𝒏𝒅 𝒇𝒐𝒓 𝑹𝒆𝒔𝒖𝒍𝒕: 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑄 
Regarding the action set, each of the four actions defines the parameter setting of 

acceleration coefficients and inertia weight. The parameter adaptation is carried out ac-
cording to four actions: 
• Action 1: 

− Random values of inertia weight between 𝑤௠௜௡ and 𝑤௠௔௫: 𝑤௜ = 𝑤௠௜௡ + (𝑤௠௔௫ − 𝑤௠௜௡) ∗ 𝑟𝑎𝑛𝑑() (14)𝑟𝑎𝑛𝑑(): the function that generates random values in [0,1]. 
− Increase 𝑐ଵ and decrease 𝑐ଶ. 

• Action 2: 
− The inertia weight is calculated according to its distance from other particles: 𝑤(f) =  11 +  1.5eି ଶ.଺୤ ∈  [0.4, 0.9] ∀ l ∈  [0, 1] (15)

− Increase 𝑐ଵ and slightly decrease 𝑐ଶ. 
• Action 3: 

− The maximum value of 𝑤 = 𝑤௠௔௫. 
− Slightly increase 𝑐ଵ and decrease 𝑐ଶ. 

• Action 4: 
− The minimum value of the inertia weight: 𝑤௜ = 𝑤௠௜௡. 
− Decrease 𝑐ଵ and increase 𝑐ଶ. 
These parameter variation actions are deduced from the best-known literature on 
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The complete applied framework for adapting the parameters in PSO is described in 
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3.6. The PSO-Based DQN Algorithm 
The parameter adaptation of PSO will be carried out according to the POMDP pre-

sented earlier. The POMDP framework enables the modeling of uncertain environments, 
providing a robust mechanism for dynamically adapting the parameters of PSO based on 
the actual state and observations. In this approach, a Hidden Markov Model (HMM) will 
be used to identify hidden states that correspond to various ways of adapting the optimi-
zation process, including exploration, exploitation, jumping out, and convergence. By 

Regarding the action set, each of the four actions defines the parameter setting of
acceleration coefficients and inertia weight. The parameter adaptation is carried out
according to four actions:

• Action 1:

- Random values of inertia weight between wmin and wmax:

wi = wmin + (wmax − wmin) ∗ rand() (14)

rand(): the function that generates random values in [0,1].
- Increase c1 and decrease c2.

• Action 2:

- The inertia weight is calculated according to its distance from other particles:

w(f) =
1

1 + 1.5e−2.6f ∈ [0.4, 0.9]∀l ∈ [0, 1] (15)

- Increase c1 and slightly decrease c2.

• Action 3:

- The maximum value of w = wmax.
- Slightly increase c1 and decrease c2.

• Action 4:

- The minimum value of the inertia weight: wi = wmin.
- Decrease c1 and increase c2.

These parameter variation actions are deduced from the best-known literature on PSO
parameters’ online control, such as [24,51].

The complete applied framework for adapting the parameters in PSO is described in
the next paragraph.

3.6. The PSO-Based DQN Algorithm

The parameter adaptation of PSO will be carried out according to the POMDP pre-
sented earlier. The POMDP framework enables the modeling of uncertain environments,
providing a robust mechanism for dynamically adapting the parameters of PSO based on
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the actual state and observations. In this approach, a Hidden Markov Model (HMM) will
be used to identify hidden states that correspond to various ways of adapting the opti-
mization process, including exploration, exploitation, jumping out, and convergence. By
recognizing these hidden states, the HMM can adequately track the optimization dynamics
and provide information for the following actions. The DQN, with its advanced deep
learning capabilities, will subsequently choose the most appropriate strategy for selecting
actions in each recognized state. The following Algorithm 4 illustrates the approach steps.

Algorithm 4: DQNPSO
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17: 
17

   𝑓𝑏𝑒𝑠𝑡 ←  𝑓(𝑥௜) ; 
18:    𝑝𝑏𝑒𝑠𝑡 ←  𝑥௜ ; 
18: 
19: 
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23: 
24: 
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25: 
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The PSO method is designed to optimize its parameters by maintaining a balance
between exploring new solutions and exploiting established, highly effective ones. It is
also successful at escaping local optima and rapidly converging to optimum solutions,
enhancing overall performance. An experimental study was conducted, and it is described
in the following section to display the effectiveness of the newly adopted method.

4. Experimental Study

We empirically evaluated the provided approach for adapting PSO parameters based
on HMM and DQN. We simulated several benchmark functions, including unimodal and
multimodal categories. Subsequently, the findings are compared with those obtained from
other modern PSO variations to evaluate our method’s efficiency.

4.1. Parameters Configuration

Several interconnected variants of the PSO algorithm from the literature were chosen
for comparison during testing (Table 1).

The suggested DQNPSO approach was simulated and validated on many benchmark
functions (see Table 2).

The empirical study was carried out by iteratively conducting simulations ten times,
with identical beginning parameter values. The population size was set to 30, with each
particle having a dimension of 30. In each execution, a total of 1000 generations were
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executed. The inertia weight was set by default to specific settings given in Table 1. The
parameters c1 and c2 were initialized with the value 2. The learning rate for the DQN was
fixed at a value of 0.001, and the number of steps was 10. The tests were executed on a
system with a configuration of an Intel i7 10th-generation processor and 16 GB of RAM. We
focus on two performance metrics: solution accuracy and convergence speed.

Table 1. The selected PSO variants from the literature.

Algorithm Name Specific Settings Reference

APSO Adaptive PSO c1 = c2 = 2, ω = 0.9 [51]
LinWPSO Linear decreasing weights PSO ωmin = 0.0001, ωmax = 0.1 [58]

AsyLnCPSO Asynchronous PSO c1min = c2min = 0.01,c1max = c2max = 2 [59]
RandWPSO Random inertia weight PSO c1 = c2 = 2, ωmin = 0.01, ωmax = 0.9 [60]

YSPSO PSO with compressibility factor c1 = c2 = 2, ω = 0.9 [61]
SecVibratPSO Order oscillating PSO c1 = c2 = 2, ω = 0.9 [62]

CLSPSO Cooperative line search PSO c1 = c2 = 2, ω = 0.9 [63]

Table 2. Standard test functions.

Function Name Category

f1 =
D
∑

i=1
[(106)

i−1
D−1 x2

i ] Elliptic Unimodal

f2 =
D
∑

i=1

(∣∣xi + 0.5
∣∣)2 Step Unimodal

f3 =
D
∑

i=1
xi

2 Sphere Unimodal

f4 = 106x1
2 +

D
∑

i=2
xi

2 Tablet Unimodal

f5 =
D
∑

i=1
(

D
∑

i=1
xi)2 Quadric Unimodal

f6 =
D
∑

i=1

[
xi

2 − 10cos(2πxi) + 10
]

Rastrigrin Multimodal

f7 = −20exp(−0.2
√

1
D xi

2) Ackley Multimodal

f8 = 1
4000

D
∑

i=1
xi

2 − Πcos(xi/
√

i) + 1 Griewang Multimodal

f9 =
D
∑

i=1
xisin(

√
xi) Schewefel Multimodal

f10 = −
1+cos

(
12
√

x1
2+x2

2
)

1/2
(

x1
2+x2

2
)
+2

Drop wave Multimodal

4.2. Solution Accuracy

In order to assess the efficacy of our DQNPSO approach, we performed a comparison
study by testing it against several PSO variations utilizing benchmark test functions. Each
benchmark function was performed over all PSO variations, and the mean and best values
were obtained to evaluate the solution accuracy when measured against other PSO variants
published in the literature. The findings of this comparison are shown in Table 3.

We can see in Table 3 that DQNPSO enhances PSO when compared to the selected PSO
variants from published research. There is a considerable improvement across DQNPSO
compared to the other techniques. Our suggested approach delivers much superior results.
DQNPSO has developed considerably higher solution accuracy efficiency for unimodal
and multimodal functions.

Table 3. Comparative analysis of PSO variant results.

Functions DQNPSO PSO APSO YSPSO LinWPSO CLSPSO AsyLnCPSO RandWPSO SecVibratPSO

f1

Best 0.010212 241×106 29 × 106 367 × 106 372 × 106 7734 × 106 222 × 106 4451 × 106 911 × 106

Mean 6.7226 7646×106 134 × 106 1074 × 106 624 × 107 292 × 108 1002 × 106 1262 × 106 22,265 × 106

f2

Best 0 9.13×10−6 0 0 0 0 0 0.00001166 16,867

Mean 0 0.21843 0 0 0 11,393 1.41 × 10−25 23,771 92,849

f3

Best 7.104 × 10−6 292,268 48,545 73,068 159,127 716,543 165,327 272,797 46,138

Mean 0.00175 463,932 24,973 14,448 31,6226 2,259,075 408,782 607,237 647,525
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Table 3. Cont.

Functions DQNPSO PSO APSO YSPSO LinWPSO CLSPSO AsyLnCPSO RandWPSO SecVibratPSO

f4

Best 1.67 × 10−5 985,342 11,408 220,672 34,463 2,021,904 240,971 1,186,314 3888

Mean 0.00348 164,255 42,255 418,765 1,054,338 4,028,212 439,076 2,111,731 1,951,189

f5

Best 0.38443 2.44×1011 871 × 106 170 × 107 3484 × 107 2.050×1012 369 × 108 6.586 × 1011 1325 × 107

Mean 624.22 1.61×1012 8934×106 6950 × 107 9.927×1011 7.07×1012 1856 × 107 3.105 × 1012 6.228 × 1012

f6

Best 0.000115 2,189,475 373,897 1,099,642 170,471 3,712,168 1,977,706 2,043,068 2,095,081

Mean 3.6364 3,074,856 573,572 1,821,846 2,583,946 5,351,072 2,905,228 3,133,353 3,280,662

f7

Best 0.000725 47,818 14,562 3659 44,627 73,411 45,955 48,573 18,349

Mean 0.020312 56,504 22,541 44,661 54,669 94,979 5951 58,876 51,858

f8

Best 5.46 × 10−8 15,527 59,507 71,176 13,023 38,083 68,348 15,657 39,343

Mean 0.01632 38,999 26,352 16,698 32,301 75,682 19,472 53,535 46,518

f9

Best 0.012693 572,305 33,239 155,126 325,646 1,583,686 186,099 68,254 108,678

Mean 3.6911 995,474 563,267 247,067 663,407 4,052,457 587,928 1,769,817 2,338,293

f10

Best −1 −99,999 −1 −1 −1 −1 −1 −99,297 −9943

Mean −1 −9599 −9856 −98,972 −96,298 −94,403 −99,383 −94,333 −82,273

4.3. Process Time

We analyzed the process time of the DQNPSO approach against other PSO variants
based on the CPU execution time for all benchmark functions. Since the execution is
performed solely on the CPU without any parallelism or GPU implementation, our focus is
exclusively on the CPU time.

The execution durations of several PSO variants are illustrated in Figure 4. It empha-
sizes that DQNPSO has execution durations that are substantially longer and more variable
than other PSO variants. This is a result of the use of a Deep Q-Network (DQN), which
incorporates complex neural network computations. The execution durations of the other
PSO variants, including APSO, PSO, LinWPSO, and others, are consistently lower and
more predictable, suggesting more efficient and reliable performance. This implies that
DQNPSO operates at the expense of computational efficacy. However, the high accuracy
performance demonstrated in the previous paragraph can largely compensate for this time
consumption. In addition, this issue of CPU time consumption can be addressed, and we
can implement GPU execution and incorporate parallelism capabilities into our algorithm.
This approach is supported by studies such as [64].
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4.4. Convergence Speed

We conducted a comparison regarding the convergence speed for the ten bench-
mark functions.

The charts used for the comparative analysis of the convergence speed are presented
in Figure 5. The red line of the DQNPSO executions’ cross-iterations is below all other
chart lines. Consequently, DQNPSO delivers a speedier convergence than the previously
employed PSO variations in the literature.
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4.5. Statistical Test Evaluation

To further compare DQNPSO with other selected PSO algorithms, we employed
parametric two-sided testing, specifically the t-test, at a 0.05 significant level. Using this
method makes it easier to assess whether the observed performance differences are due to
chance and whether they are statistically significant [65]. Using the 0.05 criterion enabled us
to definitely determine whether DQNPSO exhibits real gains over other PSO algorithms or
if the observed changes lack a significant effect. The t-test findings define the outcomes as
significant (p-value < 0.05), marginally significant (0.05 ≤ p-value < 0.1), or not significant
(p-value ≥ 0.1), permitting a straightforward evaluation of comparative performance and
providing an evidence-based foundation for analysis.

The statistical comparison (see Table 4) of DQN against multiple PSO algorithms indi-
cates that DQN consistently outperforms other PSO versions, with only very few occasions
when its performance equals that of the others. This is underscored by the large count of +1
(better) results across all comparisons, where DQN demonstrated superior performance in
90% to 100% of the cases. APSO, AsyLnCPSO, RandWPSO, YSPSO, and CLSPSO each pre-
sented a single result of 0 (Same), illustrating marginal differences where DQN performed
similarly but not worse. Evidently, there were no examples of -1 (worse), indicating DQN’s
robustness and better or equivalent performance across all tests. This analysis confirms
DQNPSO’s strong potential compared to standard and modified PSO algorithms.
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Table 4. Statistical t-test comparison of DQNPSO with other PSO algorithms.

PSO APSO LinWPSO AsyLnCPSO RandWPSO YSPSO SecVibratPSO CLSPSO

f1 0 0 0 0 0 0 0 0

f2 0.0260 0 0 0.0040 0.0797 0 0.0149 0.0710

f3 0 0 0 0 0 0 0 0

f4 0 0 0 0 0 0 0 0

f5 0 0 0 0 0 0 0 0

f6 0 0 0 0 0 0 0 0

f7 0 0 0 0 0 0 0 0

f8 0 0.0129 0 0 0 0 0 0

f9 0 0 0 0 0 0 0 0

f10 0 0.0822 0 0.0745 0 0.0536 0 0

+1 (Better) 10 9 10 9 9 9 10 9

0 (Same) 0 1 0 1 1 1 0 1

−1 (Worse) 0 0 0 0 0 0 0 0

5. Conclusions

In conclusion, this research proposes significant advances in Particle Swarm Optimiza-
tion (PSO) by integrating a deep machine learning approach, namely Deep Q-network, for
dynamic parameter setting in a homogenous PSO framework. By solving the prevalent
issues of slowing down convergence or being stuck in local optima, this suggested approach
considerably boosts the entire performance of the PSO. The newly introduced DPQ-PSO
framework, which combines a partly observed Markov decision process model with Hid-
den Markov Model classification and a Deep Q-Network, offers an adaptive method for
real-time parameter adaptation. The experimental findings regarding several benchmark
unimodal and multimodal functions verify the superior performance of the DPQ-PSO
algorithm, providing considerable increases in solution accuracy and convergence speed
compared to current techniques. However, this approach suffers from an increased CPU
time due to the computational complexity introduced by the integration of deep learning.
This novel method not only increases the application capacity of PSO in handling complex
optimization issues but also sets a new benchmark in improving metaheuristic algorithms
using deep machine learning approaches.

Future research should focus on the augmented computational time resulting from
deep learning integration by exploring model optimization strategies, such as pruning the
DQN parameters, alongside parallel computing methods for improved scalability. Extend-
ing DPQPSO to heterogeneous systems could increase solution variety, while integrating
other advanced reinforcement learning techniques like Proximal policy optimization could
further develop parameter adaptation. Furthermore, the DPQPSO framework has substan-
tial potential for real-world applications, improving performance in several domains, and
implementing this method in complex optimization tasks, such as engineering design and
scheduling, will further support its efficacy.
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