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Abstract: The failure of overhead transmission lines in the United States can lead to significant
economic losses and widespread blackouts, affecting the lives of millions. This study focuses on
analyzing the failure of transmission lines, specifically considering the effects of wind, ambient
temperature, and current demands, incorporating minimal and significant pre-existing damage. We
propose a multiphysics framework to analyze the transmission line failures across sensitive and
affected states of the United States, integrating historical data on wind and ambient temperature.
By combining numerical simulation with historical data analysis, our research assesses the impact
of varying environmental conditions on the reliability of transmission lines. Our methodology
begins with a deterministic approach to model temperature and damage evolution, using phase-field
modeling for fatigue and damage coupled with electrical and thermal models. Later, we adopt the
probability collocation method to investigate the stochastic behavior of the system, enhancing our
understanding of uncertainties in model parameters, conducting sensitivity analysis to identify the
most significant model parameters, and estimating the probability of failures over time. This approach
allows for a comprehensive analysis of factors affecting transmission line reliability, contributing
valuable insights into improving power line’s resilience against environmental conditions.

Keywords: transmission line; finite element method; probability collocation method; uncertainty
quantification; sensitivity analysis; probability of failure

1. Introduction

The power grid’s components are so interconnected that the failure of a single com-
ponent can cause a widespread outage. Overhead transmission lines exposed to dynamic
weather conditions and current loads are particularly vulnerable. Such vulnerabilities not
only lead to frequent blackouts across the United States, affecting millions annually, but also
disrupt daily life and impose significant economic burdens. A report by the Department
of Energy estimated that weather-related power outages cost the US economy between
USD 18 billion and USD 33 billion from 2003 to 2012 [1]. Some states such as California,
Texas, and Michigan are particularly more vulnerable, with Florida having the highest total
number of 25,348,824 affected by power outages [2]. Hence, understanding the reliability
of transmission cables in such sensitive and affected regions is crucial.

Several studies have investigated the impact of environmental conditions on overhead
power lines. The effect on the life of aluminum conductor steel-reinforced (ACSR) cables
due to thermal stress was investigated by integrating a strength reliability analysis based
on Monte Carlo simulation and fuzzy logic-based ductility analysis [3]. Additionally, the
damage caused by wind loading has been extensively studied, affecting the transmission
lines and the supporting towers [4]. Studies by [5–7] have extensively examined the
dynamic responses and structural effects of wind on transmission line infrastructure. In [8],
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the overheating effect of wildfire due to the radiative heat transfer was studied. Similarly,
the ice and wind combined effect was studied in [9]. Several studies have been made to
understand the effect of weather conditions on the thermal rating of the conductor [10–12].
In addition to environmental factors, the choice of conductor material plays a crucial role
in determining the reliability of transmission wires.

All these studies laid a solid basis for understanding the failure mechanisms of power
transmission. While much of this research has focused on the thermal and electrical
modeling of transmission lines, none considered the mechanical model that relates to fatigue
and damage that influence the overall conductivity of the material. Transmission lines are
subjected to dynamic wind, temperature, and electrical loads, which can induce fatigue
and damage to the wires. This damage compromises the conductivity of the conductor,
leading to increased heat generation. Therefore, a coupled model that integrates mechanical
properties with electrical and thermal aspects can significantly improve failure prediction.

Recently, phase-field models have been integrated with electrical and thermal models
to study various phenomena [13–15]. Over the years, these models have been crucial
in simulating brittle [16–21], ductile [22–26], isothermal fatigue fracture [27], and non-
isothermal fatigue fracture mechanisms [28], They accurately capture phenomena such
as crack initiation, propagation, branching, and coalescence—events commonly observed
in dynamic fractures. Based on these applications, incorporating the phase-field model
with electrical and thermal models becomes crucial in studying transmission line reliability.
Further incorporation of stochastic analysis can enhance the precision of lifespan predic-
tions. This approach enables a more comprehensive understanding of the factors that affect
transmission line durability in real-world scenarios.

Although the phase-field methods are extensively used for damage evolution, discrete
dislocation dynamics (DDD) can provide valuable insights into the underlying microstruc-
tural mechanisms [29]. The interaction of dislocation can significantly affect the behavior
resulting in failure [30,31]. The normal behavior of materials also changes under high
operating temperatures, resulting in visco-elastic behavior. Integrating fractional visco-
elasto-plastic models as in the studies [32–35] can significantly improve the reliability
analysis. Even considering the uncertainty in the fractional order further improves captur-
ing the behavior of the system [36].

The classical Monte Carlo (MC) method [37,38] is a standard benchmark for studying
stochastic solutions that compute the quantity of interest (QoI) in a straightforward fashion.
However, this method is characterized by a slow convergence rate and requires a large
number of realizations. Some well-established methods, such as polynomial chaos [39,40]
or its generalization via Galerkin projection [41–43], require modifications to the governing
equations for stochastic analysis. This requirement makes these methods intrusive and
potentially impractical for complex problems since such modifications may not be feasible
or could overly complicate the analysis. To address this, non-intrusive techniques must
be used; one such technique is the probability collocation method (PCM) [44,45]. PCM
preserves the simplicity of solution structures and allows for independently sampled
realizations, thereby achieving better convergence compared to the traditional Monte Carlo
(MC) method. Although the curse of dimensionality challenges PCM due to tensorial
products, this issue can be effectively addressed using techniques such as sparse grids [46]
or active subspace methods [47–49].

In a recent study [50], the authors integrated the phase-field model with thermal
and electrical modules to predict the lifespan of overhead transmission lines. The study
initially examined a deterministic solution and later implemented the PCM for stochastic
analysis. However, a more comprehensive analysis involving historical data across various
specific states would provide a more realistic assessment. The reliability and durability of
transmission lines vary under different weather conditions, highlighting the need to adjust
the weather condition assessments to particular cases. Furthermore, analyzing the lifespan
of transmission lines with insignificant initial damage could offer valuable insights into the
extent to which pre-existing damage influences overall reliability.
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In this study, we develop a coupled fatigue and damage-based phase-field model
with thermal and electrical aspects to investigate the reliability of overhead transmission
lines under environmental conditions and the presence of initial damage, including the
uncertainties associated with these. We first investigate the reliability of Transmission
Lines deterministically using the finite element method. To explore the uncertainties
associated with environmental conditions and initial damage, we incorporate PCM for
uncertainty quantification (UQ), sensitivity analysis (SA), and probability of failure using
the limit state function. To understand the reliability of transmission lines more realistically,
we incorporate several realistic scenarios for a detailed historical analysis of wind and
temperature data rather than using parameterized data by focusing on the four most
affected U.S. states: Texas (TX), California (CA), Michigan (MI), and Florida (FL) according
to [2]. Additionally, we assess the system’s reliability under minimal damage to establish a
baseline and examine how precursor damage affects the reliability of transmission lines. By
analyzing these scenarios using our developed model, this research offers critical insights
into the conditions-including pre-existing defects-that most significantly influence the
durability and reliability of transmission lines. These insights can guide the development
of more resilient power line infrastructures designed to withstand diverse environmental
conditions and extend their lifespan. Ultimately, this work contributes to improving the
reliability of the transmission line.

This paper is structured as follows: Section 2 presents the problem statement, including
four representative scenarios. Section 3 presents a multiphysics model and discusses
each model. Additionally, the section discusses the historical data analysis for wind and
temperature of each specific scenario, including the reliability analysis procedure using a
limit state function. Section 4 presents the deterministic approach and solution, including
one-dimensional finite element discretization. Section 5 presents the stochastic analysis
methods and solutions using PCM as the building block. Section 6 presents the verification
and analysis of the model. Section 7 addresses the conclusion.

2. Problem Statement

The operating temperature is crucial for the reliable operation of overhead transmis-
sion lines. High operating temperature affects the wire’s life and reliability. Even the
presence of damage in the wire further elevates the temperature These issues often remain
undetected until a cable rupture occurs. Additionally, environmental conditions, includ-
ing temperature, speed of wind, and current load, can adversely affect these parameters,
pushing them beyond acceptable levels.

Therefore, operating temperature is considered the primary factor for our analysis.
Along with physical effects, material parameters, and loading conditions, these elements
determine the failure state of the transmission line over its lifespan. This study aims to
understand the multiphysics effects on these critical factors, which are crucial for assessing
the transmission line’s reliability.

Representative Scenarios

Previous research on the reliability of transmission lines often relied on parameterized
values for wind and temperature, which lack precision. This study aims to improve this by
incorporating real data from four representative scenarios: TX, CA, MI, and FL. We source
wind and temperature data from [51,52]. The data for each state are presented in Table 1.
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Table 1. Wind speed (ft/s) [51] and temperature (K) [52] data by state.

TX
ft/s 11.59 12.32 12.76 13.05 12.17 10.41 9.09 8.65 9.24 10.12 10.85 11.15

K 287.54 286.98 294.82 294.71 298.71 301.21 303.48 303.48 300.37 295.21 292.04 286.15

CA
ft/s 2.05 2.79 3.08 3.52 3.23 3.08 3.08 2.93 2.49 2.20 2.05 2.05

K 286.65 288.04 287.76 290.09 293.37 294.21 295.71 297.54 297.15 295.15 289.76 287.65

MI
ft/s 16.13 15.40 15.25 15.25 13.35 12.32 11.59 10.71 11.29 13.49 15.11 15.40

K 273.37 272.09 278.26 280.98 287.43 294.87 298.43 296.21 290.59 283.71 280.76 273.65

FL
ft/s 12.61 12.91 14.23 14.23 13.20 11.00 10.56 10.41 10.85 12.61 12.91 12.17

K 295.09 295.98 298.26 300.87 299.48 302.26 303.09 302.76 301.93 301.04 298.43 293.93

3. Methodology

This study aims to analyze the failure mechanisms in overhead transmission lines by
developing a coupled model that integrates thermal, mechanical, and electrical aspects. We
systematically assess how mechanical properties, in terms of damage, affect the electrical
and thermal aspects of the cable in the presence of environmental conditions contributing
to line reliability. Figure 1 illustrates the transmission line mounted on the transmission
tower, highlighting the cable failure.

Figure 1. Schematic representation of transmission lines.

We consider a cable to be a one-dimensional domain. The cable is supported by two
towers to maintain the sag on it. We consider the projected span equal to its effective
operational length for simplification, as shown in Figure 2. While sag can be an essential
consideration, we only account for its influence on horizontal tension due to temperature
variations. We do not explicitly model the sag; instead, we focus on understanding how
the horizontal tension contributes to material damage and fatigue over time.

Figure 2. One-dimensional representation of transmission line.
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The operating temperature of the conductor affects the tension acting on it. High
temperature reduces the tension, while low temperature increases it due to the effect of sag.
The temperature of the cable is mainly driven by current passing through it and convective
cooling from the wind acting on it. Additionally, any damage to the cable reduces its
conductivity, resulting in further heat generation.

The electrical model here does not consider the electrical design of transmission lines.
Rather, it focuses on the effect of current passing through the conductor independent of the
voltage levels delivered to consumers.

In this study, we propose that cyclic loading accelerates the damage to the material and
reduces the conductivity. This further increases the temperature due to resistivity effects
and leads to greater heat generation due to Joule heating, ultimately leading to failure. The
heat generation elevates the temperature of the material and accelerates aging.

This section introduces the mechanical, thermal, and electrical models that collectively
simulate these processes. We detail the method for deriving cyclic loading using DFT and
assessing transmission line reliability under these conditions.

3.1. Mechanical Model

For the mechanical model, we followed the principles in [28], which provides the
governing equations for displacement ud, damage φd, and fatigue F f . φd = 0 represents
virgin material, and φd = 1 indicates complete damage, while values 0 < φd < 1 represent
intermediate levels of damage. F f is considered an internal variable. Specific material
evolution behaviors can be obtained from the governing equations by choosing appropriate
free-energy potentials. Alternatively, one can approach this by considering the free-energy
function, as follows:

Ψ(∇ud, φd,∇φd,F f ) = d(φd)Y(∇ud)
2 + gc

γ

2
(∇φd)

2 +K(φd,F f ), (1)

where Y (GPa) denotes the Young’s modulus, gc (kN/m) denotes the fracture energy
release rate, and γ > 0 denotes the phase-field layer width parameter (m). The degradation
function is defined as d(φd) = (1 − φd)

2, affecting both elastic response and the electrical
conductivity. Additionally, K(φd,F f ) represents the coupling of damage and fatigue,
describing how damage evolves due to fatigue over time.

The original model described in [28] is time-dependent. However, we considered the
quasi-static form for our problem, which allowed us to simplify the governing equations
for ud and φd. Still, the evolution of F f , which represents long-term aging, is modeled as a
time-dependent ordinary differential equation (ODE), as follows:

∇ ·
(
(1 − φd)

2Y∇ud

)
− γgc ∇ · (∇φd ⊗∇φd) + f = 0, (2)

γgc∆φd + (1 − φd)(∇ud)
TY(∇ud)−

1
γ
[gcH′(φd) +F fH′

f (φd)] = 0, (3)

Ḟ f = −
F̂f

γ
H f (φd), (4)

The potentials H(φd) and H f (φd) describe the damage evolution from 0 to 1 as fatigue
changes from zero to gc. H′(φd) and H′

f (φd) are the derivatives of these potentials with
respect to φd. The appropriate choices of these potentials are as follows:

H(φd) =


0.5φ2

d for 0 ≤ φd ≤ 1,
0.5 + δ(φd − 1) for φd > 1,
−δφd for φd < 0.

(5)
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H f (φd) =


−φ for 0 ≤ φd ≤ 1,
−1 for φd > 1,

0 for φd < 0.

(6)

We describe the evolution of F f through F̂f , representing the formation and growth of
micro-cracks under cyclic loading conditions and the influence of temperature. F̂f has a
linear relationship with the level of stress associated with the following virgin material:

F̂f = ρma
(

θc

θ0

)
(1 − φd)|Y∇ud|, (7)

where the parameter a represents the aging rate, θc (K) represents the conductor temper-
ature, θ0 (K) denotes the reference temperature, and ρm (kg/m3) denotes the density of
the material.

The mechanical model allows damage healing when tensile stress decreases. To
simulate an irreversible damage process and avoid healing mechanisms, we adopt an
approach similar to that in [19]. We define He as the local maximum strain energy history:

He(x, t) = max((∇ud(x, t))TY(∇ud(x, t)),H(x, t)). (8)

We integrate the local maximum strain energy history variable He into the damage
equation and obtain a modified equation for damage as follows:

γgc∆φd + (1 − φd)He −
1
γ
[gcH′(φd) +F fH′

f (φd)] = 0. (9)

3.2. Thermal Model

The original model [28] relates fatigue with the increase in temperature due to repeti-
tive and fast loading; however, here, we focus on the long-term damage rather than the
short-term increase in temperature. Although the short-term effects are crucial, the long-
term reliability of the transmission lines is mainly affected by static loads, environmental
conditions, and gradual material degradation. Therefore, we assume a quasi-static regime
to simplify our analysis by focusing on steady-state conditions that significantly impact
long-term performance. The steady-state heat equation is given by the following:

∇ · (κm∇θc) + q = 0. (10)

Equation (10) describes the heat balance within a system, where κm (W/(m K)) repre-
sents the thermal conductivity, and q (J/m2) denotes the net heat exchange. Joule heating,
qj (J/m2), resulting from the current passing through the conductor, serves as a heat source,
while convective cooling, qc (J/m2), driven by the wind, acts as a heat sink. Thus, the
overall heat exchange can be represented as follows:

q = qj − qc, (11)

We consider a convective heat transfer using the following relation:

qc = h(θc − θa), (12)

where h (W/(m2 K)) is the convective heat transfer coefficient. We consider forced convec-
tion due to cross-flow over the cylinder using the relation given by [53], where h can be
calculated using the following relation:

NuD =
hD
κair

= CeReme
D Pr

1
3 (13)
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where NuD represents the Nusselt number and Pr represents the Prandtl number. We first
determine the Reynolds number ReD using a relation given by the following:

ReD =
vairD
νair

, (14)

where νair (m2/s) denotes the kinematic viscosity of air, vair (m/s) denotes the velocity of
air, and D (m) denotes the diameter of the conductor.

Ce and me are experimentally determined, and depend upon the value of ReD. Table 2
shows the values of Ce and me for different ranges of ReD.

Table 2. Experimental values of Ce and me for different ReD ranges.

ReD Range Ce me

0.4–4 0.989 0.330
4–40 0.911 0.385
40–4000 0.683 0.466
4000–40,000 0.193 0.618
40,000–400,000 0.027 0.805

3.3. Electrical Model

In the transmission line design, various factors such as frequency, inductance, reac-
tance, and electromagnetic interactions with the environment and nearby conductors are
considered. However, we are not considering the overall design of the transmission lines;
rather, we focus on understanding how current-driven Joule heating affects the reliability
of cables with existing damage. Additionally, we do not consider the transient effects of
AC currents since they average out over time. Therefore, we use a DC-equivalent mean
current, simplifying our approach to measure the heat source term efficiently. Further, to
reduce complexity, we parameterize the base value of the current Ibase, corresponding to
the allowable ampacity for all-aluminum conductors with a diameter of approximately 40
mm. While the current data can be obtained through sophisticated methods, we do not
focus on a specific transmission line. Instead, our emphasis is on the voltage drop due to
temperature and damage-induced resistivity.

From the above consideration, we focus on solving the conservation of current through
the following set of equations:

∇ · Jd = 0, (15)

Jd = σEE, (16)

E = −∇V, (17)

where Jd (A/m2) denotes current density, E (V) denotes the electric field generated by
the voltage V, and σE represents the electric conductivity at the operating temperature,
which depends upon the degradation function, d(φd), and non-degraded conductivity of
damage, σE,T :

σE = (1 − φd)
2σE,T . (18)

σE,T at the operating temperature, is related to the conductivity σE,0 at a reference
temperature and can be obtained by the following:

σE,T =
σE,0

1 + αc(θc − θ0)
, (19)

where αc is the coefficient of resistivity of the conductor. Combining the above equations,
the equation for the voltage field is as follows:

∇ · (−σE∇V) = 0, (20)
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qj can be defined as follows:
qj = Jd · E. (21)

Overall, this model links damage to voltage drop, increasing the power loss due to
increased resistance, thus aggravating the thermal load due to Joule heating.

3.4. Sag Consideration

The temperature of the cable influences the horizontal tension acting on it. This section
focuses on obtaining the mechanical load acting on a cable fixed at two ends, forming a
catenary curve. While several studies have been conducted to understand the mechanical
behavior of such cables [6,54], we simplify our approach using a one-dimensional damage
phase-field model. We assume the cable’s length L (m) is approximately equal to the span
length Sl (m). This assumption simplifies the model but does not ignore sag S; rather, it
highlights the effect of sag on horizontal tension H that results in fatigue and damage.

The sag in the cable is directly related to the temperature variation affecting the horizontal
tension. Higher temperatures increase the length of the cable due to thermal elongation, which
increases the sag and reduces tension. Conversely, lower temperatures contract the cable,
reducing the length and ultimately reducing the sag and increasing the tension. Therefore, the
horizontal tension at either end of the cable results from an initial pre-tension combined with
tension adjustments due to temperature variations. Based on these parameters, this model
determines the appropriate mechanical loading conditions in terms of horizontal tension.

We follow the methodology presented in [55] to calculate the horizontal tension in
the cable. We consider Wb (kg/m) as the cable weight per unit length and H0 as the initial
tension due to its load, which is considered 20% of the aluminum’s ultimate strength. The
initial slag S0 is calculated as follows:

S0 =
WbS2

l
8H0

, (22)

Although this is a simplification, the theoretical length L0 needs to be considered,
which is given by the following relation:

L0 = Sl +
8S2

0
3Sl

. (23)

The length of the cable changes with the change in the temperature according to the
following classical formula:

L = L0(1 + αL∆θc), (24)

where αL represents the thermal expansion coefficient. The sag due to the change in length is
as follows:

S =

√
3Sl(L − Sl)

8
, (25)

which then leads to a new calculation for the horizontal tension as follows:

H =
WS2

l
8S

, (26)

In this model, W denotes the total weight that could account for the weight of addi-
tional factors such as ice and wind. For this study, we consider only the wind component
and calculate W as follows:

W =
√

W2
b + W2

w. (27)

We follow a similar approach as in [56,57] to calculate the wind component. The
wind-induced component Ww (N/m) is obtained from the wind pressure Pw (N/m2) and
related to the wind velocity vair as follows:
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Pw =
1
2

ρairv2
air, (28)

Ww = PwCDD sin2(θw)αs, (29)

where ρair denotes the density of air, D denotes the diameter exposed to wind, θw denotes
the angle between the transmission line and wind flow, αs denotes the span factor, and CD
denotes the drag coefficient; the values are shown in Figure 3 for different ReD.

Figure 3. Values of CD for different ReD.

3.5. Discrete Fourier Transform

The available data for wind and temperature are discrete. We implement the discrete
Fourier transform (DFT) and Fourier series to obtain the loading conditions. The following
expression defines the DFT:

Xk =
Z−1

∑
z=0

aze−i2π k
Z z (30)

where az denotes the zth sample of a, and Z denotes the total number of the sample. We
obtain the mean, A0, and frequency coefficients, Az and Bz, for each sample from DFT. The
mean and frequency coefficients are used in the Fourier series to obtain the cyclic loading
equation using the following:

f (t) = A0 +
Z/2

∑
z=1

[Az cos(2πz
t
T
) + Bz sin(2πz

t
T
)] (31)

where t is time and T represents the time period. The discrete (original data) and continuous
data (obtained using the Fourier series analysis) plots of each state are shown in Figures 4–7:

(a) (b) (c) (d)

Figure 4. Wind and temperature data for Texas. (a) Original wind data. (b) Transformed wind data.
(c) Original temperature data. (d) Transformed temperature data.
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(a) (b) (c) (d)

Figure 5. Wind and temperature data for California. (a) Original wind data. (b) Transformed wind
data. (c) Original temperature data. (d) Transformed temperature data.

(a) (b) (c) (d)

Figure 6. Wind and temperature data for Michigan. (a) Original wind data. (b) Transformed wind
data. (c) Original temperature data. (d) Transformed temperature data.

(a) (b) (c) (d)

Figure 7. Wind and temperature data for Florida. (a) Original wind data. (b) Transformed wind data.
(c) Original temperature data. (d) Transformed temperature data.

3.6. Reliability of Transmission Lines

In this study, we define a limit state function g(R, S; t) for failure analysis. R denotes
the threshold temperature θlim beyond which failure occurs, S represents the maximum
temperature θmax on the transmission line, and t indicates time. We specifically focus on
the θmax that the line can withstand before the failure. This makes our function as follows:

g(θlim, θmax; t) = θlim − θmax(t) (32)

While both R and S are treated as random variables in general cases, R is held constant
in this study. Only θmax is considered a random variable. Therefore, the probability of
failure Pf (t) is as follows:

Pf (t) = P{g(θlim, θmax; t) < 0}. (33)

3.7. Multiphysics Framework

In Figure 8, we present a schematic representation outlining our approach to modeling
transmission line failures. The model consists of the main governing equations, including
Equations (2), (4), (9), (10), and (20), which describe the interconnection between the thermal
properties, electrical properties, and mechanical properties of the system. Additionally, we
introduce an environmental module for initial and boundary conditions, as follows:
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Figure 8. Schematic diagram illustrating the interconnection between four different aspects of the
multiphysics framework.

4. Deterministic Solution

In this section, we describe the finite element discretization, considering a one-
dimensional domain, and outline the deterministic solution process. The determinis-
tic solution has two primary objectives: it acts as a black box for stochastic analysis
for UQ and provides an interpretable basis for evaluating uncertainty propagation in
a higher dimension.

4.1. Finite-Element Discretization

We consider the domain length, L = 200 m, and number of elements, N = 1000, for our
one-dimensional problem. By multiplying the governing Equations (2), (4), (9), (10), and (20)
with a test function w, integrating by parts, and considering the volume differential expressed
as the cross-sectional area A(x), we derive their corresponding weak forms as follows:

∫ L

0
−(1 − φd)

2YA(x)
dud
dx

dw
dx

dx +
∫ L

0
γgc A(x)

(
dφd
dx

)2 dw
dx

dx +
∫ L

0
f A(x)wdx = 0, (34)

∫ L

0
−γgc A(x)

dφd
dx

dw
dx

dx +
∫ L

0
A(x)Hwdx −

∫ L

0
AHφdwdx

−
∫ L

0

gc A(x)
γ

φdwdx +
∫ L

0

A(x)
γ

F f wdx = 0,
(35)

∫ L

0
Ḟ f wA(x)dx =

∫ L

0

−ρa(1 − φd)Y| dud
dx |(−φd)

γ

θc

θ0
wA(x)dx, (36)

∫ L

0
−κm A(x)

dθc

dx
dw
dx

dx +
∫ L

0
σE A(x)

(
dV
dx

)2
wdx

−
∫ L

0
hθc As(x)wdx +

∫ L

0
hθa As(x)wdx = 0,

(37)

∫ L

0
σE

dV
dx

dw
dx

A(x)wdx = 0, (38)

For each element k, we use a linear approximation, as follows:
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uk
d = Nûk

d, (39)

φk
d = N φ̂k

d, (40)

F f
k = NF̂ f

k
, (41)

θk
c = Nθ̂k

c , (42)

Vk = NV̂k. (43)

We calculate the finite-element interpolation of spatial derivatives using linear combi-
nations of the derivatives of shape functions:(

dud
dx

)k
= Bûk

d, (44)(
dφd
dx

)k
= Bφ̂k

d, (45)(
dθc

dx

)k
= Bθ̂k

c , (46)(
dV
dx

)k
= BV̂k, (47)

where N, B, ûk
d, φ̂k

d, F̂ f
k
, θ̂k

c , and V̂k are defined as follows:

N =
[
N1 N2

]
, (48)

B =
[
N1,x N2,x

]
, (49)

ûk
d =

[
uk

1 uk
2
]
, (50)

φ̂k
d =

[
φk

1 φk
2
]
, (51)

F̂ f
k
=

[
F k

1 F k
2
]
, (52)

θ̂k
c =

[
θk

1 θk
2
]
, (53)

V̂k =
[
Vk

1 Vk
2 ,
]
. (54)

where N1 and N2 are linear interpolation functions.
We use a forward Euler method to evolve F f , resulting in the discretization of kth

element as follows:

Kuûk
d = wu + M f̂ k, (55)

Kφ φ̂k
d = wφ, (56)

MF̂n+1k

f = MF̂nk

f + ∆twF , (57)

Kθ θ̂k
c = wθ , (58)

KVV̂k = 0. (59)

where the discrete forms are as follows:

Ku =
∫

k
(1 − N φ̂k

d)
2YA(x)BT B dx, (60)

wu =
∫

k
γgc A(x)(Bφ̂k

d)
2B dx, (61)

M =
∫

k
A(x)NT N dx, (62)
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Kφ =
∫

k
γgc A(x)BT B dx +

∫
k
HA(x)NT N dx +

∫
k

gc A(x)
γ

NT N dx, (63)

wφ =
∫

k
HA(x)N dx +

∫
k

A(x)
γ

NTF̂nk

f N dx, (64)

Kθ =
∫

k
κm A(x)BT B dx +

∫
k

hAs(x)NT N dx, (65)

wθ =
∫

k
σE A(x)

(
BV̂k

)2
N dx +

∫
k

hAs(x)θaN dx, (66)

Kv =
∫

k
(1 − N φ̂k

d)
2σE,T A(x)BT B dx. (67)

We derive the global forms of these matrices and vectors using standard finite-element
assembly procedures.

Kuûd = wu + M f̂ , (68)

Kφ φ̂d = wφ, (69)

MF̂n+1
f = MF̂n

f + ∆twF , (70)

Kθ θ̂c = wθ , (71)

KVV̂ = 0. (72)

The formulation supports a staggered solution scheme at each time step, implemented
according to the following Algorithm 1:

Algorithm 1 Multiphysics framework solution.

Set initial conditions and boundary conditions.
for Each ∆t do

Calculate the horizontal tensile load.
Solve the governing equation for displacements.
Update strain energy history.
Solve the equation for the damage field.
Update fatigue.
Solve the heat equation to update the temperature field.
Solve for the voltage field.

4.2. Results and Discussion

We consider an all-aluminum conductor (AAC) subjected to cyclic loading conditions
under wind, temperature, and current. The details on wind and temperature loading
conditions are provided in Section 2. The current loading is parameterized as follows:

I(t) = −Ibase − Iamp(sin 4πt), (73)

where Ibase is the base current, set at 1500 A, and Iamp is the amplitude, set at 100 A,
corresponding to the allowable ampacity for a 40 mm aluminum conductor.

We represent the boundary conditions for displacement setting u = 0 and u = H at
x = 0 and x = L, respectively. At both ends, we specify dφd

dx = 0. Similarly, we apply
boundary conditions for the current conservation equation setting V = 0 and V = Jd at
x = 0 and x = L, respectively.

In practice, all materials feature inherent imperfections, so we consider variable cross-
section areas in the center of the domain to represent the cumulative effects of these
multiple imperfections. We also consider a base scenario where the materials are assumed
to have insignificant imperfections, serving as a comparison point with the significant
initial damage cases. We define the cross-section area as follows:
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A(x) = A0

(
1 − 1

Aσ

√
2π

exp
(
−(x − L/2)2

2A2
σ

))
, (74)

where A0 denotes the cross-section area without any damage, while Aσ indicates the
spread-to-depth ratio at the center of the line, representing different levels of damage.
Figure 9 illustrates various area profiles based on Aσ, as follows:

Figure 9. Variable cross-section areas for different values of Aσ.

The material parameter values are given in Table 3. The simulations are considered
for 60 years with a 6000 run period for which the time-step, ∆t = 0.01. Aluminum begins to
anneal at temperatures exceeding 366 K [3,58], and rupture occurs when the temperature
surpasses 373 K [59]. Consequently, we establish the maximum temperature limit as
θlim = 373 K (100 °C). Once this limit is reached, all simulations are stopped.

Table 3. Air, Material, and Geometry parameters.

Parameter Value Unit

Domain length L 200 m
Number of elements N 1000
Initial Tension H0 40 kN
Diameter D 0.04 m
Young modulus Y 69 GPa
Damage layer width γ 0.02 m
Fracture energy gc 10 kN/m
Density ρm 2700 kg/m3

Aging coefficient a 1 × 10−10 m5/(y kg)
Thermal conductivity κm 237 W/(m K)
Electrical conductivity σE,0 3.77 × 107 S/m
Temperature coefficient αl 3.9 × 10−3 K−1

Density of air ρair 1.225 kg/m3

Kinematic viscosity of air νair 15 × 10−6 m2/s
Thermal conductivity of air κair 0.0295 W/(m K)
Prandtl Pr 0.71

We begin our analysis by examining the evolution of field quantities in the Texas
scenario, using the parameters in Table 3. Every five years, we plot the evolution of
field variables along the length of the transmission line as shown in Figure 10. We note
that damage typically begins and builds up in areas with smaller cross-sections, causing
increased temperatures and notable disturbances in the voltage fields. As damage and
temperature rise, the voltage drop along the line also increases over time due to higher
electrical resistance in the line.

Next, we study the effect of Aσ on the maximum values of field variables. Figure 11
shows that the presence of damage affects the evolution of field variables at the center of
the line.
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(a) (b)

(c) (d)

Figure 10. Evolution of field variables. (a) Damage evolution along the line. (b) Fatigue evolution
along the line. (c) Temperature evolution along the line. (d) Voltage drops along the line.

(a) (b)

(c) (d)

Figure 11. Effect of initial damage on maximum field values over time. (a) Maximum damage.
(b) Maximum fatigue. (c) Maximum Temperature. (d) Maximum voltage drop.

Moreover, we compare the life span of transmission lines for each specific scenario
varying the cross-sectional area of damage Aσ under respective loading conditions in
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Figure 12. In the Texas scenario, we observe the life span of the transmission line reduces
from 51 years to 44 years with moderate damage. However, with severe damage, the
life span reduces to 28 years, indicating how detrimental initial damage could be to the
longevity of the material. Similarly, in the California scenario, the lifespan of the transmis-
sion line reduces from 52 years to 26 years under severe damage. This reduction is due to
the state’s high temperatures and low wind speeds, significantly lowering the convective
cooling effect. Consequently, in the absence of the cooling effect, the accumulation of dam-
age raises the material temperature, leading to overheating and early failure. In the case of
the Michigan scenario, the state shows the most fluctuating temperature and wind over a
year, which progresses the damage, raising the temperature of the material and leading
to early failure under insignificant damage conditions among the four states. However,
due to the high wind speed and low temperature enhancing convective cooling during
some seasons, the life span under severe damage is higher than the California scenario.
The Florida scenario shows high temperatures over a year, similar to Texas and California.
However, the high wind speed in the state enhances convective cooling, reducing the early
failure of the transmission line. Overall, every scenario shows a significant reduction in the
life span of the transmission line under severe damage.

(a) (b)

(c) (d)

Figure 12. The failure of transmission lines for different values of initial damage. (a) Texas.
(b) California. (c) Michigan. (d) Florida.

5. Stochastic Solution

In this section, we address the challenge of performing UQ, SA, and the probability of
failure (Pf ) on the model treated as a black box. We focus on the conductor temperature
as our quantity of interest (QoI). The non-intrusive nature of our approach is particularly
beneficial, allowing us to apply the same methods of deterministic solutions to stochastic
problems without altering the model’s governing equations.
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We employ the PCM for three main purposes. First, we use it to compute the QoI.
Second, we conduct global sensitivity analysis by calculating Sobol sensitivity indices (Si).
These indices highlight the relative importance of each model parameter by quantifying the
contribution to the variance of the QoI. Lastly, we use PCM to facilitate the computation of
the probability of failure in a straightforward fashion by calculating the expectation of the
Bernoulli random variable.

5.1. Uncertainty Quantification

We followed the approach outlined in [27] to conduct UQ using PCM. We assume
(Ωs,G,P) as a complete probability space, where Ωs denotes the space of outcomes ω,
G is the σ−algebra, and P is a probability measure mapping G to the interval [0,1]. In
our model, we treat the material and loading parameters as random variables with two
different sets, ξm(ω) and ξl(ω). We model our QoI temperature as random variables and
denoted random parameters as ξ = ξ(ω).

Our QoI, denoted as QoI , involves calculating the expectation E[QoI(x, t; ξ)] as

E[QoI(x, t; ξ)] =
∫ b

a
QoI(x, t; ξ)ρ(ξ)dξ, (75)

where the probability density function (PDF) of ξ, denoted as ρ(ξ), is evaluated by mapping
the physical parametric space to the standard space [−1, 1], followed by integration using
the Gauss quadrature. This transformation allows the integral to be expressed within this
standard interval as follows:

E[QoI(x, t; ξ)] =
∫ 1

−1
QoI(x, t; ξ(η))ρ(ξ(η))Jdξ(η), (76)

where J = dξ/dη represents the Jacobian of the transformation. To approximate the expec-
tation, we use polynomial interpolation in the stochastic space, expressed as Q̂oI(x, t; ξ),
which approximates the exact solution as follows:

E[QoI(x, t; ξ)] ≈
∫ 1

−1
Q̂oI(x, t; ξ(η))ρ(ξ(η))Jdξ(η). (77)

We use Lagrange polynomials Li(ξ) to interpolate the solution in the stochastic space,
as follows:

Q̂oI(x, t; ξ) =
I

∑
i=1

QoI(x, t; ξi)Li(ξ), (78)

which satisfies the Kronecker delta property at the interpolation points as follows:

Li(ξ j) = δij. (79)

We substitute the polynomial approximation from Equation (78) into Equation (77)
and use the quadrature rule to approximate the integral and compute the expectation
as follows:

E[QoI(x, t; ξ)] ≈
n

∑
m=1

wmρ(ξ(η))J
I

∑
i=1

QoI(x, t; ξ(η))Li(ξ(η)), (80)

where ηm and wm are coordinates and weights, respectively, for each integration point
m = 1, 2, . . . , n. We choose the same collocation and integration points using Equation (79)
and simplify Equation (80) as follows:

E[QoI(x, t; ξ)] =
n

∑
m=1

wmρ(ξm(ηm))JQoI(x, t; ξm(ηm)). (81)

We use ξm(ηm) = a + (b−a)
2 (ηm + 1) as linear affine mapping that calculates the

Jacobian as J = (b − a)/2. Finally, we approximate the integration and rewrite as a
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summation over the collocation points, assuming a uniform distribution for the parameters
throughout the interval [a, b], with ρ(ξ) = 1/(b − a). The expectation is as follows:

E[QoI(x, t; ξ)] =
1
2

n

∑
m=1

wmQoI(x, t; ξm). (82)

Similar to the MC method, the standard deviation is computed as follows:

σ[QoI(x, t; ξ)] =

√
1
2

n

∑
m=1

wm(QoI(x, t; ξm)−E[QoI(x, t; ξ)])2. (83)

For the higher dimensions, Equation (75) includes additional integration that reduces to
the following:

E
[

QoI(x, t; ξ1, . . . , ξk)
]
= EPCM

[
QoI(x, t; ξ1, . . . , ξk)

]
≈

n

∑
m=1

· · ·
L

∑
l=1

wm . . . wl ρ(ξm) . . . ρ(ξl) Jm . . . Jl QoI(x, t; ξ1
m, . . . , ξk

l ) (84)

In the expanded version of PCM for higher dimensions, we have k summations
corresponding to each dimension in the random space. For simplicity, we represent the ex-
pectation as E

[
QoI(x, t; ξ1, , . . . , , ξk)

]
= E[QoI ]. We then formulate the standard deviation

as follows:

σ
[

QoI(x, t; ξ1, . . . , ξk)
]
= σPCM

[
QoI(x, t; ξ1, . . . , ξk)

]
≈

√√√√ n

∑
m=1

· · ·
L

∑
l=1

wm . . . wl ρ(ξm) . . . ρ(ξl) Jm . . . Jl
(
QoI(x, t; ξ1

m, . . . , ξk
l )−E[QoI ]

)2. (85)

Here, we assume discretization in the parametric space is isotropic, and the random
variables are mutually independent. Additionally, PCM is sufficient for the model in this
study, as it involves fewer than six dimensions. However, this approach becomes inefficient
for models with more than six dimensions due to the exponential increase in the number of
simulations required by the tensor product. The problem of dimensionality can be reduced
using Smolyak sparse grids [46], Principal Component Analysis [60], active subspaces
methods [47], and low-rank approximations [61].

5.2. Sensitivity Analysis

We examine the sensitivity analysis using Sobol indices [62]. For details on the deriva-
tion, we refer to the work by Saltelli et al. [63]. In our global sensitivity analysis, each
parameter is denoted as ξu, where u = 1, 2, ..., v. We evaluate the influence of ξu on the
variance of the QoI as follows:

Vξu

(
E

ξ̃
u(QoI |ξu)

)
(86)

where ξ̃
u

represents all possible values of the random parameters except for ξu, which is
held fixed. Equation (86) describes the process of computing the expected value of QoI
with ξu fixed. Based on the law of total variance, we have the following:

Vξu

(
E

ξ̃
u(QoI |ξu)

)
+E

ξ̃
u

(
V

ξ̃
u(QoI |ξu)

)
= V(QoI) (87)

We normalize Equation (87) to obtain the first-order Si. This index quantifies the
impact of the random variable ξu on the total variance and is calculated as follows:
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Si =
Vξu

(
E

ξ̃
u(U|ξu)

)
V(U)

(88)

Si only quantifies the first-order effects of the variable ξu on the variance. Follow-
ing normalization, the sum of all Si values is less than 1, with the remaining portion
representing interactions among the parameters, which are not considered in this paper.

5.3. Probability of Failure

In this section, we calculate the Pf over time. Traditionally, MC methods are employed
in reliability analysis to compute the probability of failure [64]. Stochastic collocation meth-
ods are used for similar analysis; however, the method primarily yields the moments of a
limit state function g(R, S). To compute Pf , these moments must be transformed into a PDF,
which can be achieved using various techniques such as the method of moments [65,66], poly-
nomial chaos [67,68], Gaussian transformations [69], or entropy optimization methods [70].
However, these processes add a layer of complexity.

In this study, we present an alternative way that utilizes the efficiency of the PCM to
compute the probability of failure (Pf ). Rather than calculating and approximating PDF to
determine P(g < 0), we simplify the process by transforming g into a Bernoulli random
variable hB with coefficient ph.

The transformation of g to hB is defined as follows:

hB =

{
0, if g ≥ 0,
1, otherwise.

(89)

In single realization, we obtain hB, which remains zero until the point where θmax
exceeds the threshold θlim, at which hB becomes one and remains at this value. This
represents a step function for each realization.

At a fixed time-step, considering the expectation of hB, due to the smoothness of the
QoI, hB can be assumed as a real value between 0 and 1 which reflects the probability of
the maximum temperature exceeding the limit up to that time.

5.4. Results and Discussion

In the deterministic case, we understood how varying initial damage under cyclic
loading conditions influences the lifespan of the transmission line. Now, we shift our focus
to understanding the impact of uncertainty in the parameters on maximum temperature.
For this analysis, we model the parametric uncertainty with a uniform distribution, where
each parameter varies by 10% around its mean value.

5.4.1. Texas Scenario

We first consider the Texas scenario as our baseline for conducting preliminary analyses
on the uncertainties associated with parametric material properties and input loading
conditions. Our primary goal is to analyze UQ and perform SA on factors influencing
the maximum temperature. We first focus on material parameters, represented by the set
ξm(ω) = {Aσ(ω), γ(ω), gc(ω), a(ω)}. These parameters are selected due to their inherent
measurement inaccuracies or their assumptions within our modeling. We assume the
rest of the material parameters to be deterministic. Following the analysis of material
parameters, we then examine the uncertainty in loading conditions, denoted by the set
ξl(ω) = θbase(ω), wbase(ω), Ibase(ω), Iamp(ω). From both analyses using 5 PCM points per
dimension, we identify two material parameters and three loading parameters that are
most influential according to global SA results.

We begin by examining the uncertainty in the material parameters from the set ξm(ω).
We analyze the expectation and standard deviation of the temperature field over time, as
presented in Figure 13. Similarly to the deterministic case, the location at the conductor with
initial damage has the maximum temperature and standard deviation. Considering this,
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we plot the evolution of the expected maximum temperature and the standard deviation at
the center of the transmission line, where both the maximum temperature and standard
deviation increased over time, as shown in Figure 14. We plot the evolution of the expected
maximum temperature and the standard deviation similarly for loading parametric set
ξl(ω) in Figure 15.

(a) (b)

Figure 13. Expected temperature and standard deviation of temperature under the material paramet-
ric space ξm(ω) in the Texas scenario. (a) Expected temperature. (b) Temperature standard deviation.

(a) (b)

Figure 14. Expected maximum temperature and standard deviation of maximum temperature
under material parametric space ξm(ω) in the Texas scenario. (a) Maximum expected temperature.
(b) Standard deviation of maximum temperature.

(a) (b)

Figure 15. Expected maximum temperature and standard deviation of maximum temperature under
the parametric space ξl(ω) in the Texas scenario. (a) Maximum expected temperature. (b) Standard
deviation of maximum temperature.
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We use Equation (88) to calculate the Sobol indices Si and shown in Figure 16 for ma-
terial parameters set ξm(ω) and loading parameters set ξl(ω). Initially, Aσ has a significant
impact, but it is later surpassed by gc and a. The parameter Ibase, among the loading param-
eters, sets ξl(ω) from the initial state and emerges as the most crucial factor influencing the
uncertainty of θmax due to its direct impact on Joule heating. Meanwhile, the wind base
parameter, wbase, and the temperature base parameter also play significant roles due to the
interplay between Joule heating and convective cooling:

(a) (b)

Figure 16. Sensitivity index Si for the Texas scenario for material parameters, ξm(ω), and loading
parameters, ξl(ω). (a) Material parameters. (b) External loading.

We combine the two most influential material parameters with the three most influen-
tial loading parameters to form a new set, ξ1(ω) = gc(ω), a(ω), θbase(ω), wbase(ω), Ibase(ω),
and conduct a sensitivity analysis for Texas. Figure 17 shows that initially, the loading
conditions have a more substantial impact than material parameters, but over time, as aging
effects become more significant, the relative importance of material parameters increases.

(a) (b) (c)

Figure 17. Expected maximum temperature, standard deviation of maximum temperature, and
sensitivity index over time under parametric space ξ(ω) in the Texas scenario. (a) Maximum expected
temperature. (b) Standard deviation of maximum temperature. (c) Sensitivity index.

5.4.2. California, Michigan, and Florida

In California, Michigan, and Florida scenarios, we combine the two most influential
material parameters and the three most influential loading parameters to obtain a new
parametric set, ξ(ω) = {gc(ω), a(ω), θbase(ω), wbase(ω), Ibase(ω)}, to perform the SA.

In the California scenario, when the time series for maximum temperature is truncated
at the earliest occurrence of failure, the analysis reveals that failures happen within a span
shorter than five years. However, the pattern in Figure 18 aligns closely with observations
from the Texas Scenario. The consistency in the pattern highlights the dominant influence
of the current base parameter, Ibase, which is intensified by low wind speeds that reduce
convective cooling. As a result, the conductor temperature rapidly increases to critical
thresholds, driven by the Joules heating in the absence of effective cooling:



Modelling 2024, 5 1766

(a) (b) (c)

Figure 18. Expected maximum temperature, standard deviation of maximum temperature, and
sensitivity index over time under parametric space ξ(ω) in the California scenario. (a) Maximum
expected temperature. (b) Standard deviation of maximum temperature. (c) Sensitivity index.

In the Michigan scenario, shown in Figure 19, Ibase initially has the most significant
impact on the failure of the transmission line. Over time, however, gc becomes increasingly
influential, eventually surpassing the impact of Ibase. Historical data from Michigan shows
that the state experiences higher wind speeds compared to the other states analyzed.
Although the wind has a convective effect, the impact of increased mechanical load on the
cable is more significant, accelerating the transmission line’s aging:

(a) (b) (c)

Figure 19. Expected maximum temperature, standard deviation of maximum temperature, and
sensitivity index over time under parametric space ξ(ω) in the Michigan scenario. (a) Maximum
expected temperature. (b) Standard deviation of maximum temperature. (c) Sensitivity index.

In the Florida scenario, as illustrated in Figure 20, Ibase initially shows the most signifi-
cant influence on the transmission line’s failure. However, over time, the fracture energy
parameter, gc, becomes more dominant. Historical data considered in this study show that
Florida experiences high temperatures throughout the year. Despite higher wind speeds,
the effectiveness of convective cooling is diminished due to the high ambient temperatures.

(a) (b) (c)

Figure 20. Expected maximum temperature, standard deviation of maximum temperature, and
sensitivity index over time under parametric space ξ(ω) in the Florida scenario. (a) Maximum
expected temperature. (b) Standard deviation of maximum temperature. (c) Sensitivity index.
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5.4.3. Probability of Failure

In this section, we first calculate the expected value of h, with the application of PCM
considering n = 5. The results are displayed in Figure 21 for the reference mean parameter
values from the parameter sets ξ1(ω), ξ2(ω), ξ3(ω), and ξ4(ω). Under the consideration of
four specific states, the probability of failure curve for California initially shows the early
higher possibility of occurrence of failure. In contrast, the Florida scenario shows the failure
curve on the right shift, indicating a lower possibility of failure among the four states.

Figure 21. Probability of failure for Texas, California, Michigan, and Florida.

Finally, we analyze the impact of varying mean values of five influential parameters
ξ1(ω) = gc(ω), a(ω), θbase(ω), wbase(ω), Ibase(ω) under three different levels of Aσ in the time-
series probability of failure (Pf ) for each scenario. The comparison includes a baseline scenario
representing a transmission line with minimal initial damage. Unlike previous sensitivity
analyses of parameters, which provided insights into levels of importance relative to their
uncertainty, this section focuses on the effects of changing the baseline values of influential
parameters on the Pf curves under minimal, moderate, and severe initial damage.

In each scenario, we observe three distinct curve shapes representing different levels
of damage, as depicted in Figure 22. The analysis shows that in the presence of moderate
initial damage, the chance of failure increases from 20% to 60% after 45 years in the Texas,
California, and Michigan scenarios. In Florida, the probability of failure increases from 20%
to 60% after 45 years. In severe initial damage, the probability of failure reaches 100% well
before the failure initiates in a minimal damage case. All the states show the life span of
the transmission lines to be around 35 to 40 years under severe damage. This indicates how
detrimental the initial damage could be to the life span of the transmission line. Among all
the four scenarios, the chance of failure was initiated early in the case of California, which
has low wind and high ambient temperature, reducing the impact of convective cooling.
Also, the plots reveal that the probability of failure is around 90% in 60 years, indicating
a 10% chance the transmission line will last more than 60 years. However, in the case of
Michigan, as it has higher fluctuations in wind and temperature, the chance of failure is
maximum at 60 years compared to the three states.

(a) (b)

Figure 22. Cont.
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(c) (d)

Figure 22. The probability of failure of transmission lines for different values of initial damage (shown
in legends). (a) Texas. (b) California. (c) Michigan. (d) Florida.

6. Verification and Analysis of the Model

As the model involves the coupling of several governing equations, obtaining an
analytical solution is not feasible. Therefore, we perform convergence analysis using a
refined PCM solution as our reference:

ϵ =
∥θ − θre f ∥2

∥θre f ∥2
. (90)

In our convergence study, we defined the problem as a 1D problem, considering the
most influential parameter Ibase as the only model parameter. We considered 100 collocation
points as the reference solution and calculated the relative errors until the earliest failure,
considering the Texas Scenario as a reference. The comparison is graphically represented in
Figure 23 to highlight the accuracy of PCM relative to Monte Carlo methods:

(a) (b)

Figure 23. Error estimation using PCM and MC method plots (a) PCM; (b) MC.

The probabilistic collocation method achieved significantly lower errors, approxi-
mately two orders of magnitude less, compared to 10,000 Monte Carlo simulations using
just 5 collocation points.

7. Conclusions

We developed an integrated model to study the reliability of transmission lines across
four specific states in the US: Texas, California, Michigan, and Florida. We considered
the historical wind and temperature data of each state. The model integrates the fatigue
and damage phase-field model with a thermal model that accounts for Joule heating and
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convective cooling, as well as an electrical model that addresses how accumulated damage
and temperature-induced resistance lead to voltage drops along the transmission line.

We used the finite element method to solve all the governing equations. We studied
four different states of the US, Texas, California, Michigan, and Florida, to understand the
long-term behavior of the overhead power lines in the presence of minimal, moderate, and
severe damage. We used discrete Fourier analysis to obtain the continuous loading condi-
tion from the discrete historical data of wind and temperature. To reduce the complexity,
we parameterized the current loading. Subsequently, we implemented the PCM for UQ,
SA, and probability of failure assessments.

The deterministic solution revealed how the temperature in the conductor under cyclic
wind, air temperature, and current loading in the presence of initial damage affects the
overall longevity of the transmission lines. Even the moderate initial damage significantly
reduced the material’s life expectancy. In the global sensitivity analysis using PCM, we
identified that Ibase initially had the most significant effect, which was later surpassed
by gc over time. Additionally, exploring the further application of PCM, we studied the
probability of failure for each specific scenario, varying the most influential parameters
for three damage cases. The analysis revealed that the chance of failure was significantly
increased even with moderate initial damage.

Overall, this research provides critical insights into how initial damage significantly
reduces the lifespan of transmission lines—an aspect often overlooked in previous studies.
By highlighting key parameters that most influence transmission line reliability, this predic-
tive model offers direct applications for improving transmission line design and enhancing
resilience. Furthermore, by incorporating realistic environmental data, the model can be
adapted to various regions, making it a flexible and practical tool for assessing transmission
line reliability across diverse climates and environmental conditions.

However, the model incorporates simplifying assumptions such as static conditions
and the one-dimensional domain of the cable, which could be further explored in the future.
Even the integration of real current data for specific states, along with the effects of solar
radiation and solar heat gain, could enhance the predictive accuracy of failure probabilities.
All these modifications shift the dependency from abstract stochastic process modeling to a
more robust physics-based approach, significantly improving the reliability assessments of
the transmission line.
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