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Abstract: In this paper, we address the modeling, simulation, and control of a rotary inverted pendu-
lum (RIP). The RIP model assembled via the MATLAB (Matlab 2021a)®/Simulink (Simulink 10.3)
Simscape (Simscape 7.3)™ environment demonstrates a high degree of fidelity in its capacity to cap-
ture the dynamic characteristics of an actual system, including nonlinear friction. The mathematical
model of the RIP is obtained via the Euler–Lagrange approach, and a parameter identification proce-
dure is carried out over the Simscape model for the purpose of validating the mathematical model.
The usefulness of the proposed Simscape model is demonstrated by the implementation of a variety
of control strategies, including linear controllers as the linear quadratic regulator (LQR), proportional–
integral–derivative (PID) and model predictive control (MPC), nonlinear controllers such as feedback
linearization (FL) and sliding mode control (SMC), and artificial intelligence (AI)-based controllers
such as FL with adaptive neural network compensation (FL-ANC) and reinforcement learning (RL).
A design methodology that integrates RL with other control techniques is proposed. Following the
proposed methodology, a FL-RL and a proportional–derivative control with RL (PD-RL) are imple-
mented as strategies to achieve stabilization of the RIP. The swing-up control is incorporated into all
controllers. The visual environment provided by Simscape facilitates a better comprehension and
understanding of the RIP behavior. A comprehensive analysis of the performance of each control strat-
egy is conducted, revealing that AI-based controllers demonstrate superior performance compared
to linear and nonlinear controllers. In addition, the FL-RL and PD-RL controllers exhibit improved
performance with respect to the FL-ANC and RL controllers when subjected to external disturbance.

Keywords: underactuated mechanical systems; modeling; simulation; rotary inverted pendulum;
simulation visualization; machine learning methods; reinforcement learning

1. Introduction

Underactuated mechanical systems (UMSs) are often considered an ideal benchmark
for designing and testing new algorithms because of their nonlinear and complex nature,
as well as the fact that their number of generalized coordinates is greater than the number
of control inputs [1]. Compared to fully actuated systems, UMSs present several advan-
tages, including decreased energy consumption, low weight, and a reduced chance of
failure. UMSs are present in many robotic settings [2–4], including spacecraft and space
vehicles [5–7], underwater and marine vehicles [8,9], and pendular systems [10,11]. Many
researchers have identified certain UMSs, including the inertia wheel pendulum (IWP),
acrobot, pendubot, rotary inverted pendulum (RIP), inverted pendulum on a cart, transla-
tional oscillator with rotational actuator (TORA), and a ball and beam system, which are
valuable test bed platforms for developing and evaluating novel control algorithms.

The RIP, also known as Furuta Pendulum, is an UMS with two degrees of freedom
(DOFs) and a single control input [12]. In consequence, the RIP may be defined as an
UMS, exhibiting a single degree of underactuation. It is characterized by nonlinear and
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underactuated dynamics and is classified as an inverted pendulum. This system comprises
an underactuated pendulum that is capable of rotating freely around the vertical axis and
attached to the end of a horizontally rotating arm, which is driven by an actuator. There
are four common control objectives reported in the literature when controlling the RIP [13]:
(1) swing-up control, which causes a transition from the downward pendulum position
to an unstable, upward one; (2) stabilization control, which involves maintaining the pen-
dulum vertically upward via regulation; (3) switching control, which consists of shifting
between swing-up control and stabilization control; and (4) tracking control, entailing
the upkeep of the upright pendulum position while the horizontal arm follows a desired
trajectory. Linear, nonlinear, and artificial intelligence (AI) control methods have been
used to achieve these latter control tasks. Linear control schemes offer simple controller
implementations. In [14], a combination of a linear quadratic regulator (LQR) controller
with an adaptive neuro-fuzzy inference system (ANFIS) was proposed to add robustness
to the control scheme. In [15], a robust controller was designed using the H∞-linear matrix
inequality technique to stabilize the pendulum from its unstable position under magnetic
external disturbance commands. The experimental results validate the proposal. Advanced
control methods such as feedback linearization (FL) are well-known nonlinear control meth-
ods. In [16], a controller for the RIP was developed using the input–output FL technique.
Experimental findings showed that the arm position effectively tracked the command
signal, whereas the pendulum remained in an unstable position. A sliding mode control
(SMC) scheme that offers a systematic approach for handling underactuation was proposed
in [17]. The proposal suggests to construct the underactuated system into cascaded sub-
systems comprising a linear subsystem as well as a reduced-order nonlinear subsystem.
In [18], the interconnection and damping assignment passivity-based control (IDA-PBC)
approach was applied to control an RIP by considering dynamic friction compensation.
To demonstrate the efficacy of this approach, experimental tests were conducted. Mofid
et al. [19] proposed a backstepping SMC to ensure finite-time convergence while adap-
tive control approximates the unknown upper bound of disturbances and uncertainties
for the RIP system. The proposed method was validated through both simulations and
experiments, thereby demonstrating its efficacy. AI has emerged as a promising alternative
for controlling UMS. This field has witnessed a surge of interest in recent years, with a
myriad of studies exploring its potential applications. In [20], a parameter self-tuning fuzzy
controller for balance control of an RIP was proposed. The controller parameters were
adjusted using particle swarm optimization (PSO) algorithm. The performance of this
controller is superior to that of a conventional fuzzy controller. In [21], an adaptive neural
network controller was designed to solve the tracking control problem of the arm and
pendulum regulation from the RIP. The results from the experiments demonstrated that
this latter controller outperformed other neural network controllers structures. Machine
learning (ML) is a rapidly evolving subarea of AI that has recently garnered considerable
attention. Reinforcement learning (RL) represents a subfield of ML in which an autonomous
agent interacts with its environment and learns to select the optimal action given a specific
state. The aforementioned is formulated within the context of a Markov decision process
for discrete states and actions spaces. However, in practical applications, discrete state
and action spaces incur a considerable computational burden. One potential solution to
this last inconvenience is to integrate deep neural networks (DNNs) with RL algorithms
in order to address tasks in continuous time. In [22], the soft actor critic (SAC) algorithm
was used with a novel reward function based on the cosine function to stabilize the RIP.
The agent was trained in a virtual environment, showing faster learning than polynomial
and step-type reward functions. This agent was transferred to a real system to validate
the policy learned. In [23], the proximal policy optimization (PPO) algorithm was used
to swing up and stabilize the RIP. The learning process was divided into three stages.
Each stage was designed using a specific reward function. Simulation results showed
that the pendulum reached its unstable upward position from its stable downward po-
sition in a shorter time than that from a conventional controller. Fault-tolerant control
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is another issue tackled by RL methods. In [24], a hybrid control approach that uses RL
to improve fault tolerance in unmanned aerial vehicles (UAVs) focusing on mitigating
actuator faults was proposed. By integrating RL, specifically the PPO algorithm, with a
base controller, compensatory control signals help maintain stability and mission continuity
despite operational faults. Tests in both simulations and experiments demonstrated the
effectiveness of this approach in significantly improving the safety and stability of UAV
operations during actuator failures. In [25], a data-driven 2D Q-learning algorithm within a
two-dimensional framework was proposed, allowing for optimal control of batch processes
experiencing actuator and sensor faults. This method was applied to the injection mold-
ing process. Unlike traditional model-based methods, this approach achieved enhanced
control performance and tracking accuracy by learning solely from measurable data, even
under model uncertainties and detection noise. In [26], an RL-based approach for optimal
fault-tolerant tracking control that enables improved control performance in systems with
actuator faults was proposed. The proposed RL algorithm learns the optimal control law,
expands the system’s fault tolerance, and enhances performance prior to fault resolution.
Its effectiveness was validated through a case study in a three-capacity water tank, showing
superior control effects over traditional model-based approaches. In [27], a novel RL-based,
model-free min–max fault-tolerant control approach for handling fault-tolerant tracking in
the presence of external disturbances and actuator failures was proposed. This approach
solves a Game Algebraic Riccati Equation (GARE) directly from measured data, eliminating
the need for knowledge of the system dynamics. The simulation results of the injection
molding process validated the proposed method.

Although control strategies may be diverse and varied, it is not possible to evaluate
their performance in an experimental platform for all cases. In a considerable number
of proposals, the control algorithms are only verified in the corresponding mathematical
model for the system of interest, and the results may show inconsistencies between this
model and the actual system. With the constant improvement of simulation software
in which three-dimensional (3D) modeling tools are integrated to allow the modeling of
mechanical elements with real material properties, it is possible to design and to build
complete mechanical systems similar to those from real systems. The MATLAB®/Simulink
Simscape ™Multibody™ toolbox, previously known as SimMechanics, is a simulation en-
vironment specifically focused on the modeling and simulation of 3D mechanical systems,
such as vehicle suspensions, robots, construction machinery, and aircrafts vehicles, among
other mechatronic systems. In previous studies, the Simulink/Simscape environment was
used to simulate the RIP in order to implement several control strategies. In [28], the
RIP was built using ADAMS software and then imported into the Simulink/Simscape
environment to implement an adaptive neural network controller to stabilize the orien-
tation angle of the arm and pendulum position. The controller was able to handle both
parametric uncertainties and external disturbances. In [29], QL (Q-learning) and DQNL
(Deep-Q network learning) algorithms were implemented to swing up and stabilize the
RIP. The simulation results in the Simulink/SimMechanics environment showed that both
RL algorithms outperformed the LQR and proportional integral derivative (PID) control
methods. Guida et al. [30] implemented the deep deterministic policy gradient (DDPG)
algorithm to swing up and stabilize the RIP in presence of dry friction. Simulation results in
a Simulink multibody environment demonstrated the effectiveness of the approach. In [31],
a combination of DDPG and PPO algorithms was applied to the Quanser Qube-Servo RIP
platform built in Simulink/Simscape/Multibody environment. The simulations results
demonstrated the superiority of DDPG-PPO over both PID control and the combination of
SAC-PPO algorithms.



Modelling 2024, 5 1827

In addition, merging RL with other control approaches aims to enhance the robustness
of the learned control policies because its performance may deteriorate in the presence
of non-modeled dynamics, parametric uncertainties, and external disturbances. In [32],
Q-learning was used to balance a double-inverted pendulum, and the learned policy was
combined with proportional–derivative (PD) control. Simulation results showed that
this hybrid control offers better results than individual controllers. Cheng et al. [33]
proposed an add-on method to enhance the robustness of pre-trained RL policies by
integrating a L1 adaptive controller (L1-AC). L1-AC swiftly estimates and compensates
for dynamic variations, thereby reinforcing the RL policy against diverse system changes.
The feasibility of the proposed method was proven through numerical simulations and
real-time experiments in a pendubot robotic system. In [34], authors proposed a compound
controller by merging a traditional feedback states controller with RL applied to a ballbot
robotic system. Numerical simulations illustrated that the proposed controller enabled
the ballbot robot to maintain balance across a wide range of initial tilting angles than
conventional model-based controllers. Kim et al. [35] suggested bolstering the robustness
of RL-based controllers through the application of a disturbance observer. This method
compensates for the mismatch between the real plant and the simulation model and rejects
disturbance to maintain the nominal performance while guaranteeing robust stability. The
proposed method was verified through simulations on an inverted pendulum.

While adaptive neural network compensation (ANNC) has demonstrated favorable
outcomes in controlling the RIP, RL offers an alternative avenue for addressing this challen-
ge. Therefore, the novelty and contribution of this work is twofold: (a) a virtual prototype
of the RIP is proposed in a Simscape/Multibody environment with the aim of capturing
the entire nonlinear dynamics from a real system, including nonlinear Coulomb friction
and viscous friction, which have not been considered in previous virtual models of the
RIP; and (b) a methodology that combines RL with other control strategies is proposed. In
particular, RL-based compensation provides better results than a conventional ANNC in an
FL controller [21] in order to stabilize the RIP, highlighting that the control using RL-based
compensation shows better results when facing external disturbances.

This manuscript is organized as follows. Section 2 provides a detailed description
of the design of the RIP in a Simscape multibody environment. Section 3 describes the
mathematical model of the RIP, its parameter identification, and validation. The proposed
methodology is explained in Section 4. The control algorithms used for comparison are
described in Section 5. The simulation results are presented in Section 6. Finally, the
concluding remarks are established in Section 7.

2. Modeling of the RIP in the Simscape Environment

In this study, the RIP is modeled and simulated as a multibody system using the
MATLAB®/Simulink simulation platform. A representation of the Simscape model of the
RIP is shown in Figure 1. The RIP comprises a horizontal arm that is affixed at one end
to an actuator, which is capable of rotating around its own axis. The opposite end of the
horizontal arm supports a vertical pendulum that swings freely. The control input, denoted
by u, responsible for the movement of the horizontal arm is expressed in [Nm]. The angular
position q1 from the horizontal arm is restricted to a range of [−π, π] [rad]. The position
of the pendulum q2 spans from −π to π [rad], and its vertical position is set at zero. The
angular position of the horizontal arm q1 is zero when the arm is on its origin. The angular
velocity of the horizontal arm is denoted by q̇1, whereas for the vertical pendulum it is
represented by q̇2. The usefulness of our model is demonstrated by implementing various
control strategies. Also, a swing-up controller is included for each control strategy.
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Figure 1. Simscape model of the RIP. The control input is denoted by u; the angular displacement of
the horizontal arm is denoted by q1, and the angular position of the pendulum is denoted by q2.

2.1. Modeling Software

Simscape (Simscape 7.3)™ Multibody™ provides a 3D simulation environment for
multibody systems, wherein it constructs and resolves the equations of motion that govern
a multibody mechanical system. In recent years, the improvement of various tools in the
Simscape library has led to improvements in the modeling of robotic structures [36].

The Simscape model of the RIP proposed in this work is divided into one Configuration
block and three subsystems, namely Support_base, Actuated_arm, and Pendulum, as it is
shown in Figure 2b, which includes all the elements that together make up the entire model
(Figure 2a). The Configuration block serves as the source of uniform gravity for the entire
mechanism. This block consists of three blocks, namely Solver Configuration, World Frame,
and Mechanism Configuration. The Solver configuration block is utilized to define the solver
parameters that are required by the 3D model. In our model, a Backward Euler solver is
used. The World Frame block is utilized to represent the global reference frame within the
model. This frame provides access to either the world frame or the ground frame and serves
as a fixed coordinate system that is predefined for each mechanical model. The world frame
serves as the reference point for defining all other frames, either directly or indirectly. The
Mechanism Configuration block establishes mechanical and simulation parameters applicable
to the whole target system to which it is connected. The parameters included are the gravity
constant and a linearization delta parameter, which are used for the calculation of numerical
partial derivatives in the linearization process. The value of the gravity parameter is set
along the z−axis as [x y z] = [0 0 − 9.81] [m/s2] and the linearization delta parameter is set
to 0.001. The Support_base subsystem consists of four legs arranged to support a rectangular
base on top to form a solid structure attached to the world frame that supports the UMS.
The Actuated_arm subsystem, as its name suggests, contains the body of the horizontal
arm that is attached to the actuator body and provides the position and velocity from the
arm as it is translated by the applied torque between the bodies. In this subsystem, the
dynamics also include the rotational friction force, characterized by the Coulomb friction
and viscous friction, in order to better replicate the real behavior. The Pendulum subsystem
represents the pendulum that is hanging, attained to the horizontal arm which freely rotates
around the tip of the shaft of the arm. This subsystem provides the angular position and
velocity from the pendulum and its rotational motion includes both Coulomb and viscous
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friction components. The density of all elements that constitute the prototype is chosen as
2700 kg/m3, which is the average value from the density of aluminum alloys.

(a) (b)

Figure 2. Simulink blocks of the RIP system: (a) main subsystem, (b) elements of the main subsystem:
Configuration block components (box-dashed lines), Support_base, Actuated_arm and Pendulum subsystems.

2.2. Modeling of the Support Base

The base structure is an element that supports all components of the RIP. This structure
consists of four legs with a rectangular base at the top as is shown in Figure 3a. For this
purpose, five brick solid blocks are used to build this structure with respect to the x-y-z axes of
the coordinate system. The assembly of these components and their orientation relative to the
coordinate framework is performed via the rigid transform blocks RT-1 to RT-4, as is shown
in Figure 3b. Port R of the brick solid block Base is a local frame that represents a reference
associated with its geometry, and the support body of the arm is placed over this frame. The
choice of design parameters for the support-base components is shown in Table 1.

(a) (b)

Figure 3. (a) Simulink block of the support base and (b) components of the support base.

Table 1. Design parameters of the Support_base subsystem components.

Component Dimensions
[x y z]m

Inertia Properties

Type Based On Density [Kg/m3]

Leg A [0.03 0.03 0.50] From geometry Density 2700
Leg B [0.03 0.03 0.50] From geometry Density 2700
Leg C [0.03 0.03 0.50] From geometry Density 2700
Leg D [0.03 0.03 0.50] From geometry Density 2700
Base [0.27 0.27 0.02] From geometry Density 2700
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2.3. Modeling of Horizontal Arm

Once the support structure is built, the next step is to design the elements that make
up the arm-support body and the horizontal arm body within the subsystem block labeled
as Actuated_arm as it is shown in Figure 4a. In this subsystem, five cylindrical solid blocks
are used to model the geometric bodies that emulate the arm support and the horizontal
arm. Three of these components are utilized to build the arm support and are featured in
a subsystem labeled as Actuator; see Figure 4b. The remaining two components are the
Horizontal_arm and Arm_end_shaft blocks, connected to build the structure that constitutes
the horizontal arm and their orientation relative to the coordinate framework made via the
rigid transform blocks RT-6 and RT-7.

(a) (b)

Figure 4. (a) Simulink block of the Actuated_arm subsystem and (b) elements of the subsystem.

The elements that constitute the body of the actuated arm are the first to be considered
since the horizontal arm and the vertical pendulum are attached to them. The subsystem
labeled as Actuator is designed to resemble the body of an actuator conformed by actu-
ator_body, actuator_shaft, and arm_support. These components are illustrated in Figure 5.
The orientation of the Actuator_body with respect to the coordinate framework is achieved
via the rigid transform block RT-5. The Revolute Joint 1 block allows the arm_support to
rotate about its own axis. The description of the subsystem that represents friction from
each joint is discussed in Section 2.5. The selection of parameters which define each of the
components of the Actuated_arm block are shown in Table 2.

Figure 5. Elements of the Actuator subsystem Simulink block.
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Table 2. Geometric dimensions of the Actuated_arm subsystem elements.

Component Radius
[m]

Length
[m]

Inertia Properties

Type Based On Density
[Kg/m3]

Actuator_body 0.0500 0.20 From geometry Density 2700
Actuator_shaft 0.0500 0.01 From geometry Density 2700
Arm_support 0.0100 0.04 From geometry Density 2700
Horizontal_arm 0.0081 0.55 From geometry Density 2700
Arm_end_shaft 0.0025 0.03 From geometry Density 2700

2.4. Modeling of the Vertical Pendulum

The last component to be described is the vertical pendulum, which rotates freely at
the tip of the end shaft of the horizontal arm. The geometric bodies of these elements are
shown in Figure 6. A cylindrical block labeled as Body_pendulum is used to represent the
body of the pendulum, and its orientation relative to the coordinate framework is defined
by the rigid transform block RT-8. The Revolute Joint 2 block allows the pendulum to rotate
freely at the tip of the end shaft of the horizontal arm. The Friction in Joint q2 subsystem
block describes the friction for the joint connecting the pendulum to the tip of the end shaft
of the horizontal arm, which is discussed in more detail in Section 2.5. The parameters
which define each of the components of the Pendulum subsystem block are given in Table 3.

Figure 6. Elements of the Pendulum subsystem Simulink block.

Table 3. Dimensioning parameters of the vertical pendulum.

Component Radius
[m]

Length
[m]

Inertia Properties

Type Based On Density
[Kg/m3]

Body_pendulum 0.0081 0.3 From geometry Density 2700

2.5. Rotational Friction Modeling

The Friction subsystem incorporates the rotational friction present at each joint. In
real mechanical systems, the friction between their surfaces exhibits nonlinear behavior,
characterized by a decrease in its value with increasing sliding speed until a specific
condition is attained. At this point, the friction may remain constant, increase, or decrease
with increasing sliding speed due to viscous and temperature effects [37]. These phenomena
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between contacting bodies is modeled by (1), depicted in Figure 7a, and is incorporated
through a Simscape Rotational Friction block, Figure 7b. The torque caused by friction
in each joint is referred to as fi and is comprised of three components, namely Stribeck,
Coulomb, and viscous friction, and it is modeled as a function of relative angular velocity
as follows:

fi =
√

2e( fsi − fci)exp

(
−
(

q̇i
ωsi

)2
)

q̇i
ωsi

+ fci tanh(βc q̇i) + fvi q̇i, (1)

where fsi is the Stribeck friction coefficient in proximity to zero velocity, fci is the Coulomb
friction coefficient, fvi is the viscous friction coefficient, ωsi = ωbrki

√
2 is the Stribeck

velocity threshold, ωbrki is the breakaway friction velocity, ωc = ωbrki/10 is the Coulomb
velocity threshold, and βc = 1/ωc. The proper choice of the friction parameters is given in
Table 4.

(a) (b)

Figure 7. (a) Rotational friction torque and (b) components of the friction subsystem.

Table 4. Friction parameters of the Simscape RIP model.

i fsi [Nm] ωbrki

[
rad

s

]
fci [Nm] fvi

[
Nm·s

rad

]
1 0.0188 0.1 0.0188 0.0083
2 0.0087 0.1 0.0087 0.0007

These selected parameters represent a continuous friction model, described by the
Coulomb friction plus a viscous friction component.

3. Mathematical Model, Parameter Identification, and Validation
3.1. Mathematical Model

The mathematical model of the RIP is represented using the Euler–Lagrange method [38]
and expressed as follows:

M(q)q̈ + C(q, q̇)q̇ + g(q) + f (q̇) = τ (2)

where q = [q1 q2]
⊤ is the vector of joint positions; τ = [u 0]⊤ is the vector of control

inputs, where u ∈ R is the control input in the actuated joint; M(q) ∈ R2×2 represents the
inertia matrix. The centripetal and Coriolis forces are represented by vector C(q, q̇)q̇ ∈ R2,
g(q) ∈ R2 is the vector of gravitational forces, and f (q̇) ∈ R2 represents the friction
components. The elements of the dynamic model are the following:

M(q) =
[

m11 m12
m21 m22

]
C(q, q̇) =

[
c11 c12
c21 c22

]
g(q) =

[
g11
g21

]
f (q̇) =

[
f11
f21

]
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where

m11 = p1 + p2 sin2(q2) c11 =
1
2

p2 sin(2q2)q̇2 g11 = 0

m12 = p3 cos(q2) c12 = −p3 sin(q2)q̇2 +
1
2

p2 sin(2q2)q̇1 g21 = −p5 sin(q2)

m21 = m12 c21 = −1
2

p2 sin(2q2)q̇1 f11 = p8 tanh(βc q̇1) + p6q̇1

m22 = p4 c22 = 0 f21 = p9 tanh(βc q̇2) + p7q̇2

where positive constants pi are determined by the physical parameters of the RIP. Table 5
describes these parameters and their estimated values; they are composed of the inertia J1
of the horizontal arm, the mass m2 of the pendulum, the total length L1 of the horizontal
arm, the distance l2 to the center of the pendulum, the inertia J2 of the pendulum, the
viscous friction coefficients fv1 and fv2 from the arm and pendulum joints, respectively, the
Coulomb friction coefficients fc1 and fc2 from the arm and pendulum joints, respectively,
and the constant g of the gravitational acceleration of 9.81 [m/s2].

The dynamic Equation (2) exhibits linearity in its parameters [39]. This feature allows
the system to be represented as a linear-regression model, and the least-squares algorithm
can be used to identify unknown parameters, as described in [40]. The time evolution of the
estimated parameters p̂i is shown in Figure 8. It is worthwhile to note that the estimated
friction parameters are in close approximation to those defined in the Simscape model.

Figure 8. Evolution of the estimated parameters p̂i(t).
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Table 5. Parameters for the Simscape RIP model obtained via least-square identification procedure.

Parameter Description Parameter Value Units

p1 J1 + m2L2
1 0.04651 kg·m2·rad

p2 m2l2
2 0.00448 kg·m2·rad

p3 L1l2m2 0.01014 kg·m2·rad
p4 J2 + m2l2

2 0.00446 kg·m2·rad
p5 l2m2g 0.22936 kg·m2·rad
p6 fv1 0.00953 N·m·s/rad
p7 fv2 0.00090 N·m·s/rad
p8 fc1 0.01836 N·m
p9 fc2 0.00877 N·m

3.2. Validation of the Mathematical Model

In order to validate the mathematical model using the estimated parameters and
to compare it with the Simscape model, a proportional-type control signal is applied to
regulate arm position in accordance with the following specifications:

u(t) = Kp(qd(t)− q1(t)). (3)

The proportional gain Kp is set to 0.7271. The desired position qd(t) is a periodic signal
with a period of 10 [s] and is defined as follows:

qd(t) =

{
−0.75 [rad] para 0 ≤ t ≤ 5,

0.75 [rad] para 5 < t ≤ 10.
(4)

This signal is applied for 20 [s] with a sampling time of 0.01 [s]. The initial conditions
are set to q1(0) = 0, q2(0) = π, q̇1(0) = 0, and q̇2(0) = 0. The time evolutions of the
angular positions for both the Simscape and mathematical models are shown in Figure 9.

(a) (b)

Figure 9. Time evolution of angular positions of the Simscape and mathematical model for (a) arm
position and (b) pendulum position.

3.3. Linear Mathematical Model

When a linear control approach is designed, nonlinear model (2) cannot be used
directly. In such instances, it is essential to identify an approximate linear model that
accurately represents model (2) to a satisfactory degree for controller design purposes.
A linear controller is effective for maintaining the pendulum at the position q2 = 0 only
when the pendulum is in close proximity to this configuration and remains within a similar
range. To this end, a linearization technique must be applied to approximate the nonlinear
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dynamics of the system at a linear operating point. The first step is to express nonlinear
model (2) in the state variable form, defining the state vector as x = [x1 x2 x3 x4]

⊤ =
[q1 q̇1 q2 q̇2]

⊤. Neglecting the frictional forces, the state equation can be written as

ẋ =


f1(x, u)
f2(x, u)
f3(x, u)
f4(x, u)

 =


x2

m22(−c11x2−c12x4−g11)−m12(−c21x2−c22x4−g21)
m11m22−m21m12

+ m22
m11m22−m21m12

u
x4

−m21(−c11x2−c12x4−g11)+m11(−c21x2−c22x4−g22)
m11m22−m21m12

+ −m21
m11m22−m21m12

u

 (5)

A desirable operating point is for the pendulum to remain balanced in a vertically
upward position. Accordingly, the following operating point is selected:

x∗ =


x∗1
x∗2
x∗3
x∗4

 =


0
0
0
0

, u∗ = 0. (6)

It is possible to approximate nonlinear system (5) at the operation point (x∗, u∗) using
the following linear model:

ẋ = Ax + Bu (7)

Using the approximated linearization method [41] around the operating point, the
linear approximated model obtained is

A =


0 1 0 0
0 0 − p3 p5

p1 p4−p2
3

0

0 0 0 1
0 0 − p1 p5

p1 p4−p2
3

0

 =


0 1 0 0
0 0 −22.2125 0
0 0 0 1
0 0 101.8734 0

, B =


0
p4

p1 p4−p2
3

0
p3

p1 p4−p2
3

 =


0

42.6128
0

−96.8455

 (8)

This linear approximation model is only applicable when states x and u remain near
the operating point (x∗, u∗).

4. Proposed Methodology Based on RL
4.1. RL Framework

RL involves discovering the optimal behavior that yields the highest reward in an
unknown environment. This optimal behavior is acquired through interactions with
the environment and observations of its responses. The main elements of RL are the
agent (controller), environment (unknown system), policy (control signal), and reward
(utility function), as shown in Figure 10. In a RL framework, the agent observes the states,
represented by vector s, which are generated by the system. Utilizing this information,
action u that affects the system is generated by the agent and leads it into another state
s′ [42]. The agent receives an award or punish stimulus by the action taken; this stimulus
is known as reward r, determined by a predefined reward function. This reward signal
provides information on whether the chosen action moves the system toward the intended
goal state. The agent searches for an optimal policy that provides maximum cumulative
long-term reward. Figure 11 shows the flowchart of the proposed methodology. First, for
the design of the RL agent, it is important to consider the following aspects: definition of an
adequate reward function as well as the tuning of its parameters, which allows the agent to
perform a specific task, which in this case is to stabilize the RIP; definition of the vector of
observations coming from the environment; and adjustment of the hyperparameters of the
chosen RL algorithm. Next, the architecture of the neural networks is defined, as well as
the activation functions for the chosen algorithm, establishing the criteria under which the
learning process ends. These criteria include the total number of trials to be executed and
the value of the expected cumulative long-term reward. The latter indicates that the agent
has learned to control the system in an acceptable manner. Once all of the above criteria are
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defined, the second stage is to execute the RL algorithm. If, at the end of training, the agent
does not perform in an acceptable manner, it is necessary to adjust one of the previous
criteria and run the algorithm again until an acceptable performance is obtained. Once an
agent learns to perform the designed task, it is incorporated into a control scheme and its
performance is evaluated.

Figure 10. Block diagram of the elements of an RL framework.

Figure 11. Flowchart of the proposed methodology.
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4.2. Deep Deterministic Policy Gradient Algorithm

With the aim of achieving equilibrium in the pendulum’s vertical upward position
and preserving the angular position of the arm as close to its point of origin as possible,
we used the DDPG algorithm [43]. The block diagram of the DDPG algorithm is shown
in Figure 12. This algorithm provides a solution based on an actor–critic structure, which
entrusts the actor µϕ(s) to formulate the policy. In contrast, a critic Qθ(s, u) assesses the
excellence of the actions produced by approximating the anticipated total reward according
to the current policy. DDPG utilizes target neural networks for both the actor µϕ′(s) and
the critic Qθ′(s, u) with the objective of enhancing the stability of the learning process.
These target neural networks are copies of the original actor and critic, and they undergo
gradual updates through a soft update mechanism. To promote exploration within the
action space, a Gaussian white noise-based stochastic signal, known as Ornstein–Uhlenbeck
N , is incorporated into the actor’s output. The agent selects an action u = µϕ(s) +N ,
executes the action u, observes the reward r and the new state s′. While exploiting the
learned policy to some extent, the agent has the ability to explore alternative actions. As
part of the learning process, the agent interacts with its environment, acquiring experiences
in the form of tuples comprising four elements (s, u, r, s′) at each time step. These tuples
are stored in the replay buffer, designated asR. Every m episodes, the agent selects a small
set of experiences D ∈ N from its memory bank and utilizes them to modify the parameters
of both the actor and critic neural networks. The training of the actor aims to optimize the
anticipated total reward, which is evaluated by the critic for the given state. The target
value function (Q-value) is computed as

yi = ri + γQθ′(s′i, µϕ′(s′i)) (9)

where γ ∈ (0, 1) represents a discount factor. The training of the critic utilizes the mean
squared error loss between the anticipated Q-value (expected total reward) and the target
Q-value by means of the mean-square Bellman difference equation:

L =
1
D

D

∑
i=1

(yi −Qθ(si, ui))
2 (10)

Figure 12. Block diagram of the DDPG algorithm.

The parameters of the critic Qθ are updated using this difference in a gradient form.
The policy of the critic is updated using this gradient. Subsequently, both critic and actor
targets update their parameters using a smoothing factor η. To update their parameters,
the critic-target applies the formula θ′ ← ηθ + (1− η)θ′, while the actor-target network
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uses ϕ′ ← ηϕ + (1− η)ϕ′. The agent’s learning process continues in a repetitive manner
until it converges a locally optimal or nearly optimal policy for the specified task.

4.3. Design of the Reward Function

To stabilize the RIP, a reward function is designed with the following considerations:
(i) the upward position of the pendulum is 0 [rad] and the downward position is π [rad];
(ii) the action u is bounded by u < |umax| with umax = ±10 [Nm]; (iii) the observation
signal, denoted as s, is represented by a vector defined as s = [q1 q̇1 q2 q̇2]

⊤; and (iv) a
training episode terminates under the following conditions: (a) |q1| > q1max , with q1max = π

3
[rad]; (b) |q2| > q2max , with q2max = π

6 [rad], and (c) |u| > umax.
The reward function designed for this purpose is as follows:

r = −α1

[
α2q2

1 + α3q̇2
1 + α4q2

2 + α5q̇2
2 + α6u2

t−1

]
− F (11)

F =

{
B if |q1| > q1max ∥ |q2| > q2max ∥ |u| > umax
0 otherwise

(12)

where αi are tuning parameters, F is a numeric indicator (set to value B) to interrupt the
training process if any of the conditions set in (12) are true, and restart the training. The
use of quadratic terms in the reward function enables training of a successful policy and
simplifies the tuning process.

4.4. Learning of the RL Agent

The RL Toolbox of MATLAB® is used to train the RL agent. The RL agent is limited
to a maximum of 1500 training episodes. The elapsed time for each episode set to 10 [s].
The simulation is conducted on a PC with the following features: CPU (11th Gen Intel(R)
Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz) and RAM (12 GB). The Simulink diagram of the
RL controller implementation is shown in Figure 13. The actor and critic neural networks
are described in Table 6.

Figure 13. Simulink diagram of the RL controller.

Table 6. Actor and critic neural network architectures.

Actor Critic

Layer Neurons Activation Function Layer Neurons Activation Function

input 4 - input 4 -
1 128 ReLu 1 128 ReLu
2 200 ReLu 2 400 ReLu
3 1 Tanh 3 1 Lineal

The initial conditions for each episode of the learning process are as follows:

q(0) = [q1(0) q̇1(0) q2(0) q̇2(0)]
⊤ = [0 0 q2(0) 0]⊤.
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In each episode, the initial position q2(0) assume random values of ±π
9 . The reward

function parameters and hyperparameters of the RL algorithm are described in Table 7.
The minibatch size determines the number of experiences utilized during each gradient
update of the neural networks. The use of large mini-batches has the effect of reducing
the variance when computing gradients; however, this is accompanied by an increase in
the computational effort. The experience buffer defines the number of past experiences
(rewards, states, and actions observed) that are stored and mixed with current experiences.
In general, a relatively large value for this parameter is utilized in the majority of cases.
The smoothing factor serves as a relaxation factor for the copied network parameters.
This implies that the target values are constrained to evolve gradually, enhancing the
stability of the learning process. A common value is to select η ≪ 1. The learning rates of
the actor and critic define the step size of the gradient update when optimizing network
parameters. A low learning rate results in prolonged training times. Conversely, a high
learning rate may yield suboptimal results or divergence. With respect to the exploration
noise variance parameter, it has generally been observed that low values of this parameter
are conducive to enhanced learning performance, although this is influenced by the specific
environment. A typical value is to have σn

√
Ts between 1 and 10 percent of the action

range for the Ornstein–Uhlenbeck noise. The rate of noise variance decay also exerts
influence on the convergence of the algorithm. A low value of this parameter increases
the extent of exploration. Parameter α1 is a scaling factor that helps to achieve a stable
learning process. Parameters α2, . . . , α5 penalize or award the deviations of the states
from the desired value and parameter α6 defines the importance of past actions. The
design of network architecture is a crucial aspect that requires careful consideration. While
expanding the number of nodes and hidden layers can improve learning capabilities, it may
also introduce problems such as overfitting and increased computational cost. The proper
selection of the network architecture depends on the specific problem and environment,
and it is often an empirical matter to determine the proper architecture. In this study,
the selected architecture allows acceptable learning of the agent. All the configuration
parameters are set in an “.m file” in MATLAB. As part of the learning process, the agent
interacts with the RIP. The optimal policy is reached in 776 episodes over a five-episode
window, considering an average reward criterion of ravg < −40. Figure 14 shows the
learning curve of the RL agent. This curve shows that in the initial phase of learning, the
reward is bad owing to exploration. As the learning progresses, the reward increases and
approaches the expected cumulative reward.

Figure 14. Curve of the RL agent learning process.



Modelling 2024, 5 1840

Table 7. Hyperparameters for the DDPG algorithm and reward function.

Symbol Meaning Value

D Minibatch size 128
R Experience buffer length 1 × 106

η Smoothing factor 1 × 10−3

γ Discount factor 0.99
Actor learning rate 5 × 10−4

Critic Learning rate 1 × 10−3

σn Exploration noise variance 0.1
Noise variance decay rate 1 × 10−5

Ts Simulation time step 0.01 s
Maximum steps in an episode 1000

[α1, . . . , α6] Tuning parameters [0.1, 10, 0.1, 20, 1, 0.5]
B Numeric indicator 100

4.5. FL Controller with RL Compensation

An FL controller with adaptive neural compensation (FL-ANC) is proposed in [21].
The control law is given by

u = −Ŵ⊤w(V̂⊤χ)− kpy− δsign(y) (13)

with kp > 0, δ > 0, the term Ŵ⊤w(V̂⊤χ) represents the adaptive neural network that
compensates the unknown dynamics. The output function is defined as

y = ė1 + ∆1e1 + ė2 + ∆2e2 (14)

with e1 = q1d − q1, and e2 = q2d − q2 and ∆1, ∆2 > 0 being the adjust parameters. In
this work, our proposal suggests substituting the term with ANNC given in (13) by the
previously trained RL agent. Consequently, the FL controller incorporating RL-based
compensation is referred to as FL-RL and is established as follows:

uFLRL = uFL + uRL

uFL = −kpy− δsign(y)
(15)

where uRL is the action control provided by the RL agent.

5. Control Algorithms for Comparison

In this section, linear, nonlinear, and AI-based control schemes are proposed as com-
parison controllers. LQR, PID and model predictive control (MPC) are described as linear
approaches, whereas SMC and FL are nonlinear control approaches. Finally, the RL agent
and controllers (13) and (15) are considered as AI-based control approaches. For all con-
trollers, a swing-up controller is considered, which brings the pendulum from its hanging
position near the desired upright position and then switches it to a previously designed
controller. A block diagram of the implemented controllers is shown in Figure 15.

Figure 15. Block diagram of implemented controllers.
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5.1. LQR Controller

For the linear time invariant System (7), the LQR control law is subject to the optimal
control problem designed to minimize the quadratic cost function [44]:

J(x, t) =
∫ ∞

0

(
x⊤Qx + u⊤Ru

)
dτ. (16)

In this case, Q penalizes the state variables and R penalizes the control signal. The
unique minimum of the cost function can be obtained by solving the Algebraic Riccati
Equation (ARE),

A⊤S + SA− SBR−1B⊤S + Q = 0 (17)

where S is known as the kernel matrix and is the only solution positive definite to the ARE
such that the control gains Klqr are obtained by Klqr = R−1B⊤S and the control signal is

u = −Klqrx(t). (18)

Matrix Q must be Q ≥ 0 and R > 0. This implies that the scalar quantity x⊤Qx
is invariably positive or zero at each time instant for all state x(t) values, and the scalar
quantity u⊤Ru is always positive for each time t for all values of u(t). This ensures that J
remains a relatively small quantity. Selecting Q to be a large value results in a smaller state
x(t). Conversely, selecting large values of R implies that the control input u(t) must be
smaller in order to maintain a small value of J. This implies that larger values of Q typically
result in the poles of the closed-loop system matrix Ac = (A− BKlqr) being situated further
to the left in the s-plane, thereby facilitating a faster decay of the state to zero. Conversely,
larger values of R imply a reduction in control effort, resulting in slower poles and larger
values of the state x(t). Therefore, selecting appropriate values of Q and R requires a
trial-and-error process until a satisfactory response is obtained. The selected values for the
weighted matrices are Q = diag{1, 1, 1, 1} and R = 1, which produce a relatively fast state
response and low control input. MATLAB® command lqr(A, B, Q, R) is used to compute
the control gains, where A and B are the coefficient matrices of Linear System (8). The gains
computed are

Klqr =
[
−1.0000 −1.3805 −11.2936 −1.7981

]
. (19)

5.2. PID Controller

To stabilize the angular positions of the RIP, the following PID controller is considered:

u = −kp1e1 − ki1

∫ t

0
e1dt− kd1 ė1 − kp2e2 − ki2

∫ t

0
e2dt− kd2 ė2 (20)

where kp1 and kp2 are the proportional gains; kd1 and kd2 are the derivative gains; and ki1
and ki2 are the integral gains. The error signals are defined as e1 = qd1− q1 and e2 = qd2− q2
with qd1 = qd2 = 0 and their corresponding derivatives are ė1 = −q1 and ė2 = −q2. The
corresponding selected gains are kp1 = 4.7306, kp2 = 8.1237, kd1 = 1.2306, kd2 = 1.1306,
ki1 = 0.017 and ki2 = 1.4570.

5.3. Model Predictive Control

Model predictive control (MPC) represents a set of control methods that utilize a
model to predict the behavior of a system. Considering this prediction, MPC formulates
an optimal control signal through the resolution of a constrained optimization problem.
The MPC Toolbox of MATLAB® is used to design an MPC in order to stabilize the RIP. The
design parameters for the MPC are described in Table 8.
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Table 8. Parameter design for the MPC.

Parameter Description Value

Sample time 0.01 [s]
Prediction horizon 50
Horizon 5
Scale factor for the control signal 100
Scale factor for q1 1
Scale factor for q2 0.7
Output weight for q1 1.5
Output weight for q2 1
Constraints on control signal −10 ≤ u ≤ 10 [Nm]
Constraints on arm position −π ≤ q1 ≤ π [rad]
Constraints on pendulum position −π/4 ≤ q2 ≤ π/4 [rad]

5.4. FL Controller

The FL is a well-known nonlinear control methodology. The primary objective of this
method is to transform a complex system into a simple equivalent model [41]. For this
purpose, the nonlinear model of the RIP (2) can be expressed in the space-state form as

d
dt

q1 = q̇1 (21)

d
dt

q̇1 = fn1 + gn1u (22)

d
dt

q2 = q̇2 (23)

d
dt

q̇2 = fn2 + gn2u (24)

where

fn1 =
1

det{M(q)} [m22z1 −m12z2] (25)

gn1 =
1

det{M(q)} [m22] (26)

fn2 =
1

det{M(q)} [−m22z1 + m11z2] (27)

gn2 =
1

det{M(q)} [−m21] (28)

with

z1 = −c11q̇1 − c12q̇2 − g12 − f11 (29)

z2 = −c21q̇1 − c22q̇2 − g21 − f21 (30)

The following FL controller [16] was implemented to stabilize the angular positions of
the RIP:

u =
−∆1 ė1 − ∆2 ė2 − q̈d1 + fn1 + fn2 − kpy

−(gn1 + gn2)
(31)

The output function is
y = ∆1e1 + ∆2e2 + ė1 + ė2 (32)

where the error signals are defined as e1 = qd1 − q1 and e2 = qd2 − q2 with qd1 = qd2 = 0.
The Simulink model for this controller is shown in Figure 16. The selected gains for this
controller are the same as those in [16] with ∆1 = 4, ∆2 = 6 and kp = 2.
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(a) (b)

Figure 16. Simulink diagram of the FL controller: (a) control scheme implementation, (b) control law
implementation.

5.5. Sliding Mode Controller

SMC does not require knowledge of the dynamics in (2). We consider the following
SMC law,

u = Kssign(ν) (33)

with ν = Kmx and x ∈ R4 being the state vector. The switching control is sufficient to
stabilize the RIP when the states are in proximity to the zero position, and the gain of the
sliding mode is greater than the upper limit of all unknown dynamics. This implies that the
states are on the sliding surface [45,46]. To avoid chattering in (33), instead of the sign(·),
the following saturation function can be used:

sat(ν) =


1 if ν > ∆
λν if |ν| ≤ ∆ λ = 1

∆ ,
−1 if ν < −∆

(34)

Parameter ∆ is known as the boundary layer. The controller gains are selected as follows:
Km = [−1.0000 − 1.3805 − 11.2936 − 1.7981], which are the same gains used in the LQR
controller, while Ks = 1.2 and ∆ = 0.1.

5.6. Feedback Linearization Controller with ANNC

We consider an FL-ANC (13). The estimated input weights are contained in the matrix
V̂ ∈ R8×L, Ŵ ∈ RL contains the estimated output weights, the activation functions are
contained in the vector represented by w(·) ∈ RL, which uses the tanh(·) function in the
hidden layer as the activation function, L is the number of neurons, and χ ∈ R8 contains
the input signals to the neural network and is defined as

χ =
[
q1 q2 q̇1 q̇2 ė1 ė2 q̈d1 1

]⊤. (35)

The adaptive laws for the weights of the neural network are given by

˙̂W = αyNw
(

V̂⊤χ
)
− αyNw′

(
V̂⊤χ

)
V̂⊤χ

˙̂V = αyΛχŴ⊤w′
(

V̂⊤χ
)

where α ∈ R+, N ∈ RL×L, Λ ∈ R8×8, and w′(·) ∈ RL×L is the Jacobian matrix containing
the derivatives of the activation function [47]. The Simulink model for this control scheme
is depicted in Figure 17. The parameters of the controller are the same as those in [21]
with kp = 1.05, δ = 0.035, ∆1 = 3, and ∆2 = 8. The hidden layer of neurons is configured
to have L = 10 elements. The parameters of the adaptive law are established as α = 1,
N = 1.05I10×10, and Λ = 8.53I8×8, and the initial weights are set randomly in the range of
[−1, 1].
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(a) (b)

Figure 17. Simulink diagram of the FL-ANC controller: (a) control scheme implementation, (b) adap-
tive neural network controller subsystem block.

5.7. Swing-Up Controller and Switch Control

The swing up is a well-known problem in pendular systems. In this study, we slightly
modified the energy controller law [48]. The swing-up control law is expressed as follows:

usw = ng tanh(k(E− Eo)q̇2 cos(q2)) (36)

where n and k are design parameters, g is the gravitational constant, and Eo is the energy
of the pendulum in the upward vertical position. Therefore, it is reasonable to assume
that Eo = 0 when the pendulum is vertically positioned. The energy function of the
pendulum is

E =
1
2

J2q̇2 + p2(cos(q2)− 1) (37)

The moment of inertia of the pendulum is computed as J2 = 1
12 p2 = 0.000313 [kg·m2].

After several trials, the selected gains for the swing-up controller are set to k = 0.5 and
n = 0.05. The choice of the initial pendulum position from its downward position depends
on the choice value for parameter n. With these values, it is possible to start the initial
position of the pendulum from q2(0) = 17π/18 [rad]. The switch control block guarantees
that while swing up occurs, the state signals remain at zero, and once the switching
threshold is reached, they take on their current values. The threshold for switching is
selected as |q2| ≤ π

9 [rad]. Figure 18 shows the Simulink diagram of the swing-up controller
implemented for all control schemes.

Figure 18. Simulink block diagram of swing-up controller.
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6. Simulation Results and Discussion
6.1. Simulation Specifications

To assess the efficacy of the suggested control method and highlight the useful-
ness of the proposed Simscape RIP model, simulation results in two scenarios are stud-
ied. Additionally, a proportional derivative controller combined with the RL-agent (PD-
RL) is implemented to validate the proposed method. This controller is defined as
u = −8.4e2 − 1.05ė2 + uRL and its gains are equivalent to the proportional and deriva-
tive terms of the pendulum position error from the FL-ANC controller. First, the swing-up
controller is considered to bring the pendulum from its bottom position to its vertical
position, and then it switches to one of the proposed controllers. In the second scenario,
the pendulum position starts close to the vertical position, and an external disturbance is
included in the control input to test the ability of each controller to maintain pendulum
stability under external forces. Simulations are conducted in the Simscape environment
in MATLAB®/Simulink 2021a. For the first scenario, the initial conditions are set at
q(0) = [q1(0) q̇1(0) q2(0) q̇2(0)]⊤ = [0 0 17π/18 0]⊤. In the second scenario, the initial
conditions are set at q(0) = [q1(0) q̇1(0) q2(0) q̇2(0)]⊤ = [0 0 11π/90 0]⊤. A fixed-step
backward Euler solver with a sampling interval of 0.01 s is used. The performance is
evaluated in terms of the absolute value of the maximum error, the root-mean-square (RMS)
value of the error positions, the RMS value of the control signal u(t), maximum overshoot,
and settling time.

6.2. Simulation Results: Non-Perturbed Case

The results of the controllers in stabilizing the pendulum to its upright position once
the threshold value is reached are shown in Figure 19. It can be observed that the swing-up
control brings the pendulum position to the switching threshold at approximately 5 s.
All the proposed controllers effectively stabilize the angular positions of both the arm
and the pendulum. The effect of nonlinear friction on the angular positions of each joint
is noteworthy in the steady-state oscillations. Table 9 presents a comparative analysis
of pendulum position errors. To quantify the maximum error, the first interval of time
5 ≤ t ≤ 10 evidences the performance of each controller in attaining a stable position
within a shorter time. The PD-RL controller exhibits the lowest absolute value of maximum
error in the angular displacement of the horizontal arm. Moreover, the maximum error of
the FL-RL controller in the angular displacement of the horizontal arm is reduced by 8.56%
compared to the FL-ANC controller. The FL-RL controller shows the lowest maximum
absolute error of the angular position of the pendulum with respect to the rest of the
controllers, reducing its value by 37.52% with respect to the FL-ANC controller. The second
interval of time, 5 ≤ t ≤ 20, indicates the effectiveness of each controller after the swing-up
controller, during which the RIP is stabilized. In this interval, the RMS index of the error
positions indicates their performance relative to the desired value. A small value of this
index indicates a better controller performance. FL-ANC exhibits the best performance in
terms of the RMS{e1}, demonstrating an improvement of 2.47% and 26.46% relative to the
RL and FL-RL controllers, respectively. The SMC controller achieves the best result in terms
of RMS{e2}, with improvements of 42.52%, 27.09%, and 2.19% relative to the FL-ANC, FL-
RL, and RL controllers, respectively. On the other hand, FL-RL improves by 21.19% in terms
of RMS{e2} relative to the FL-ANC controller. The complete performance of the controllers
is evaluated in the interval 5 ≤ t ≤ 20; the RMS value of the error e = [e1 e2]

⊤ reveals that
the AI-based controllers exhibit the best performance. Accordingly, the best performance is
obtained using the FL-RL controller and demonstrates an improvement of 0.90% and 24.51%
over the FL-ANC and RL controllers, respectively. In terms of lower power consumption,
the RMS value of the control signal u(t) of the LQR controller provides the best performance,
and the FL-RL controller improves the RMS{u} performance index by 31.13% and 33.81%
relative to the FL-ANC and RL controllers, respectively. The RL controller exhibits the
lowest peak value of overshoot. Moreover, the FL-RL controller improves its overshoot by
38.16% relative to the FL-ANC controller and the PD-RL controller improves its overshoot
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by 4.19% relative to the FL-ANC controller. The settling time is defined as the time at
which the angular position q2 remains within the limits defined by its upper and lower
values in the steady state. The FL-RL controller shows the best settling time with 6.09 s
and improves by 32.33% and 27.59% over the FL-ANC and RL controllers, respectively. A
virtual simulation for the non-perturbed case was carried out and is available by clicking
on the next icon  https://www.youtube.com/watch?v=Ul-iqBunxaI&t=54s (accessed on
21 November 2024).

Figure 19. Time evolution of controller signals. Left-hand side upper plot: arm position q1. Left-hand
side bottom plot: control signal u. Right-hand side plot: pendulum position q2.

Table 9. Quantitative index performance and quantitative metric: non-perturbed case.

Index
Linear Nonlinear AI

LQR PID MPC FL SMC FL-ANC RL FL-RL* PD-RL*

max {|e1|}[rad]
5 < t ≤ 10

0.7422 0.7239 0.7421 0.7849 0.7363 0.7135 0.6420 0.6524 0.6389

RMS {e1}[rad]
5 ≤ t ≤ 20

0.2099 0.1879 0.2351 0.1931 0.2038 0.1420 0.1931 0.1456 0.3516

max {|e2|}[rad]
5 < t ≤ 10

0.2205 0.2549 0.3316 0.2633 0.2107 0.1735 0.1299 0.1084 0.1406

RMS {e2}[rad]
5 ≤ t ≤ 20

0.0401 0.0919 0.0770 0.1142 0.0358 0.0623 0.0366 0.0491 0.0396

RMS {e}[rad]
5 ≤ t ≤ 20

0.2099 0.2092 0.2474 0.2244 0.2070 0.1551 0.2036 0.1537 0.3538

RMS {u}[Nm]
5 ≤ t ≤ 20

0.0573 0.1381 0.2364 0.1677 0.1512 0.1012 0.1056 0.0699 0.1320

M.O.{q2}[rad]
5 ≤ t ≤ 20

0.0609 0.2549 0.2123 0.2633 0.0567 0.1753 0.0566 0.1084 0.0681

S.T.{q2}[s]
5 ≤ t ≤ 20

8.63 7.24 6.45 10.63 8.55 9.00 8.41 6.09 7.75

* Proposed method; M.O.(Max. overshoot); S.T. (Settling time). The best results are denoted in bold format.

6.3. Simulation Results: Perturbed Case

External force ud is introduced to evaluate the robustness of the proposed controllers.
In this case, the swing-up controller is not considered, because the aim is to evaluate the
robustness in the steady state. This force is added to the control signal as u = uc + ud.

https://www.youtube.com/watch?v=Ul-iqBunxaI&t=54s
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In this context, uc corresponds to the control signal generated by the linear, nonlinear, or
AI-based controller, while ud is the disturbance defined as

ud =

{
1.5 [Nm] 7 ≤ t ≤ 7.1,
0 [Nm] otherwise.

Figure 20 illustrates the temporal progression of the angular positions and control
signal in the presence of an external force. All controllers remain stable under this condition.
According to Table 10, the FL-RL controller shows the best result in terms of max{|e1|}, with
improvements of 7.33%, 7.28%, 25.58%, and 28.08% over the LQR, FL-ANC, MPC, and SMC
controllers, respectively. The best performance in relation to the RMS{e1} index is achieved
by the FL-RL controller, outstanding of the remaining controllers, and performance is
improved by 1.83%, 4.86%, 33.81%, and 33.68% relative to the FL-ANC, SMC, MPC, and RL
controllers, respectively. For the angular position of the pendulum, the PD-RL controller
shows the best result in terms of max{|e2|} improving by 39.07%, 22.12%, and 35.07%
compared to the MPC, RL, and FL-RL controllers, respectively. The best performance
for the pendulum position in terms of the RMS{e2} index is achieved by the SMC and
PD-RL controllers. In addition, the MPC controller exhibits the best result in terms of the
maximum overshoot after the external disturbance, followed by the FL-RL controller. The
best performance in terms of RMS{e} index is obtained by the FL-RL controller. Finally,
in terms of RMS{u(t)} index, the PD-RL controller provides the best performance. A
virtual simulation for the perturbed case is available by clicking on the next icon  https:
//www.youtube.com/watch?v=CMeSbsyRoEI&t=28s (accessed on 21 November 2024).

Table 10. Quantitative index performance and quantitative metric: perturbed case.

Index Linear Nonlinear AI
LQR PID MPC FL SMC FL-ANC RL FL-RL* PD-RL*

max {|e1|}[rad]
7 < t ≤ 15

0.1896 0.2990 0.2361 1.7100 0.2443 0.1895 0.3469 0.1757 0.5733

RMS {e1}[rad]
7 ≤ t ≤ 15

0.1107 0.1601 0.1538 0.3748 0.1070 0.1037 0.1535 0.1018 0.3045

max {|e2|}[rad]
7 < t ≤ 15

0.0724 0.1464 0.1167 0.8072 0.1223 0.1158 0.0913 0.1095 0.0711

RMS {e2}[rad]
7 ≤ t ≤ 15

0.0383 0.0847 0.0657 0.2252 0.0366 0.0606 0.0403 0.0462 0.0368

M.O.{q2}[rad]
7 ≤ t ≤ 15

0.0625 0.1464 0.0165 0.8072 0.0742 0.0788 0.0851 0.0522 0.0755

RMS {e}[rad]
7 ≤ t ≤ 15

0.1171 0.1811 0.1672 0.4372 0.1131 0.1201 0.1587 0.1118 0.3067

RMS {u}[Nm]
7 ≤ t ≤ 15

0.0684 0.1362 0.1053 0.5569 0.1331 0.0995 0.0685 0.0697 0.0633

* Proposed method; M.O.(Max. overshoot); The best results are denoted in bold format.

https://www.youtube.com/watch?v=CMeSbsyRoEI&t=28s
https://www.youtube.com/watch?v=CMeSbsyRoEI&t=28s
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Figure 20. Time evolution of controller signals under an external force. Left-hand side upper plot:
arm position q1. Left-hand side bottom plot: control signal u. Right-hand side plot: pendulum
position q2.

6.4. Discussion

In summary, modeling and control of the RIP is not a simple task. The creation of a
comprehensive model that accurately represents the dynamic and mechanical properties of
a real system is a highly advantageous undertaking. On the other hand, although control
strategies can be diverse and varied, precise and adaptive control is required to maintain
stability and balance. The linear and nonlinear approaches implemented in this study
deteriorate their performance when external forces affect the system. AI controllers, such
as those based on RL, are not required to have knowledge of the dynamical model of
the system. Through interaction with the system and observation of its response, they
can find a control policy that satisfies the control requirements. Nonetheless, the primary
challenges associated with the implementation of RL methods in the RIP lie in the adequate
design of the reward function and the architecture of the actor and critic, as well as the
precise tuning of their associated hyperparameters. Consequently, the experience and
expertise of the designer play an important role for the success of this approach. In this
work, the proposed RL controller was able to stabilize the RIP without prior knowledge
of the system. Moreover, this controller was merged with both FL and PD controllers
to compensate for unknown dynamics, and its performance was improved. Simulation
outcomes obtained in a virtual environment provide the basis for designing and validating
in an experimental platform. Furthermore, the results obtained from the SMC approach
suggest the development of an RL control strategy combined with SMC, as reported in [49].
Another important issue is the reward function. Different shapes of reward functions,
such as continuous and sparse rewards or those that include exponential and Gaussian
functions, can be designed to enhance the learning process and improve the performance
of the controller [30,50]; however, this aim is beyond the scope of this work.

7. Conclusions

This work details step-by-step procedure for modeling and designing a RIP within
the Simscape™ Multibody™ environment. The parameters that define the mathematical
model of the designed system are identified to confirm the accuracy of the Simscape
model. A control framework that integrates RL with other controllers such FL and PD is
proposed. To demonstrate the usefulness of the Simscape model and the proposed control
framework, a comparison coming from the performance of some linear, nonlinear, and
AI-based controllers is carried out. The results obtained confirm that AI-based controllers
offer a superior alternative for controlling the RIP. Furthermore, the proposed methodology
shows promising results for controlling the RIP. The implementation of AI-based controllers
such as RL in virtual environments diminishes the risk of damaging the experimental
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prototype during the learning stages. The latter is advantageous since it allows a safe
training of the agent, which can be then transferred to the real plant for its evaluation in real
time. In future work, this methodology will be applied to the trajectory-tracking problem
in UMS, which is still an outstanding problem in RL.
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Abbreviations
The following abbreviations are used in this manuscript:

UMS Underactuated Mechanical System
RIP Rotary Inverted Pendulum
LQR Linear Quadratic Regulator
PID Proportional–Integral–Derivative
FL Feedback Linearization
SMC Sliding Mode Control
AI Artificial Intelligence
ANNC Adaptive Neural Network Compensation
FL-ANC Feedback Linearization Controller with Adaptive Neural Compensation
ML Machine Learning
RL Reinforcement Learning
FL-RL Feedback Linearization Controller with Reinforcement Learning Compensation
PD-RL Proportional Derivative Controller with Reinforcement Learning Compensation
MPC Model Predictive Control
IWP Inertia Wheel Pendulum
TORA Traslational Oscilator with Rotational Actuator
ANFIS Adaptive Neuro-Fuzzy Inference System
PSO Particle Swarm Optimization
UAV Unmanned Aerial Vehicle
IDA-PBC Interconnection and Damping Assignment Passivity-Based Control
DNN Deep Neural Network
DDPG Deep Deterministic Policy Gradient
PPO Proximal Policy Optimization
SAC Soft Actor Critic
3D Three-Dimensional
CAD Computer-Aided Design
DOF Degrees of Freedom
RMS Root Mean Square
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Nomenclature
qi Angular position at joint i Qθ(u, s) Critic neural network
q̇i Angular velocity at joint i µϕ′ (s) Target actor network
u Control input Qθ′ (u, s) Target critic network
fi Friction force at joint i R Experience buffer lenght
fsi Stribeck friction coefficient at joint i D Minibatch size
fci Coulomb friction coefficient at joint i r Reward function
fvi Viscous friction coefficient at joint i γ Discount factor
ωsi Stribeck velocity threshold at joint i ei Position error in joint i
ωbrki Breakaway friction velocity at joint i ėi Velocity error in joint i
ωc Coulomb velocity threshold kp, δ, α, ∆i Control gains
pi Lumped parameter i N, Λ Gain matrices
x State vector A, B Matrices of the linear system
s Observations vector Q, R Weight matrices
µϕ(s) Actor neural network Klqr, Km, Ks Gain vectors
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