
Citation: Downs, T.; da Silva Costa, F.;

de Freitas Paganoti, C.; Holland, O.J.;

Hryciw, D.H. Adiponectin and Leptin

during Pregnancy: A Systematic

Review of Their Association with

Pregnancy Disorders, Fetal Growth

and Placental Function. Endocrines

2024, 5, 382–394. https://doi.org/

10.3390/endocrines5030028

Academic Editor: Osamu Hiraike

Received: 8 May 2024

Revised: 13 August 2024

Accepted: 26 August 2024

Published: 2 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Systematic Review

Adiponectin and Leptin during Pregnancy: A Systematic Review
of Their Association with Pregnancy Disorders, Fetal Growth
and Placental Function
Taylor Downs 1, Fabricio da Silva Costa 2,3 , Cristiane de Freitas Paganoti 2, Olivia J. Holland 1,2,*
and Deanne H. Hryciw 4,5,*

1 School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia;
taylor.downs@griffithuni.edu.au

2 Women’s, Newborn and Children’s Division, Gold Coast Hospital and Health Services,
Southport, QLD 4222, Australia; fabricio.dasilvacosta@health.qld.gov.au (F.d.S.C.);
cristiane.paganoti@health.qld.gov.au (C.d.F.P.)

3 School of Medicine and Dentistry, Griffith University, Southport, QLD 4222, Australia
4 School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
5 Griffith Institute of Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
* Correspondence: o.holland@griffith.edu.au (O.J.H.); d.hryciw@griffith.edu.au (D.H.H.)

Abstract: During pregnancy, the adipokines leptin and adiponectin can affect placental nutrient
transport and inflammatory pathways, potentially leading to altered fetal growth and pregnancy
complications including gestational diabetes mellitus (GDM) and preeclampsia (PE). The aim of this
systematic review is to gather and analyze research on maternal circulating leptin and adiponectin
levels and their relationship to adverse pregnancy and birth outcomes. Additionally, it seeks to deter-
mine whether these hormones are linked to alterations in placental transporters and cell signaling
pathways. PubMed and MEDLINE were systematically searched to include studies published be-
tween 2012 and 2022. All primary data studies reporting serum adiponectin and/or leptin, placental
mRNA and protein levels of related transporters, and adverse birth outcomes were eligible. The
current systematic review encompasses a total of 14 articles. Abnormal serum maternal leptin and
adiponectin levels were associated with changes in fetal growth and placental cellular signaling
and nutrient transporters. A majority of studies associated elevated maternal leptin and reduced
adiponectin with fetal overgrowth, although this relationship was not consistent and may be com-
plicated when other pathologies are present. The effects of maternal leptin and adiponectin on fetal
growth may be driven by placental adaptation in nutrient transporters and mitochondria. Future
studies should determine if the placental effects of leptin and adiponectin that have been found in
models have mechanistic roles in human pregnancy.
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1. Introduction

Maternal adaptations during pregnancy enable adequate energy to be provided for
the growing fetus, which is important for normal development [1]. Several maternal
adaptations are required to sustain and support a pregnancy, which include hormonal,
metabolic, and immunological changes [2]. In addition, maternal genetics and the maternal
environment contribute to offspring birthweight, as well as uteroplacental function [3].
Thus, fetal growth is highly dependent upon an adequate intrauterine environment, leading
to an optimal birthweight due to established placentation, appropriate nutrient transfer and
blood flow [4,5]. When maternal and placental adaptations to pregnancy are compromised,
changes to fetal growth (either under- or over-growth) and adverse obstetric and neonatal
outcomes may be a result [5,6].
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Adipokines are hormones mainly released by adipose tissue, which play a significant
role in mediating a number of systems associated with metabolism, appetite, inflammation,
angiogenesis, insulin sensitivity, and immune response [4]. The adipokines leptin [7]
and adiponectin [1] play critical roles in maintaining normal energy metabolism and
expenditure, immune response, and food intake [8]. Emerging research has demonstrated
that they are also critical for fetal development during pregnancy, with these maternal
hormones contributing to placental insulin sensitivity, nutrient supply, vascular function,
and inflammatory response [9].

In recent years, the incidence of obesity has increased, and in 2015 63.5% of Australian
women were obese or overweight [10]. The prevalence of obesity in women of childbearing
age is a global health concern [11]. Increased adiposity, independent of pregnancy, is
associated with increased circulating leptin and decreased adiponectin [9]. In pregnancy,
altered maternal leptin and adiponectin levels have been associated with fetal growth
abnormalities including fetal growth restriction (FGR) and macrosomia [12]. Notably,
an increase in adiposity and abnormal serum/plasma leptin and adiponectin are asso-
ciated with pregnancy complications including gestational diabetes mellitus (GDM) [9],
preeclampsia (PE), and stillbirth [12]. GDM is associated with increased maternal risk of
developing postpartum type 2 diabetes mellitus, and cardiovascular, retinal, kidney, and
liver diseases after the pregnancy [13]. Neonates born to obese mothers are more likely to
be born prematurely, require a Cesarean section delivery, have obesity, and are at higher
risk of developing insulin resistance and metabolic disease [14]. Leptin and adiponectin
have been identified as potential biomarkers in predicting the development of GDM, PE,
and adverse fetal growth [3], but the underlying mechanism linking maternal adiponectin
and leptin and the increased risk of poor perinatal outcomes in pregnancy remains unclear.

In pregnancy, maternal obesity is associated with metabolic inflammation, which in
turn is associated with proinflammatory cytokines and adipose tissue macrophage accu-
mulation, in addition to increased placental inflammation [15]. This proinflammatory state
extending to the placenta [10] suggests that maternal obesity exposes the placental/fetal
unit to an inflammatory environment during in utero development and that placental
pathophysiology may be a key mediator of adverse outcomes [11]. Leptin increases the
secretion of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necro-
sis factor α (TNFα) from human term trophoblast cells in vitro [16], and both leptin and
adiponectin are proinflammatory in human placental explants [17]. Adiponectin and leptin
have been shown to alter the placental nutrient transporter expression and subsequent
fetal growth in mouse models [18]. This suggests that there may be a correlation between
adipokine-dependent adverse maternal and offspring outcome, and placental dysfunction.

This systematic review aims to evaluate the potential link between maternal leptin and
adiponectin and fetal growth. A secondary objective is to explore whether these hormone
concentrations can help predict adverse pregnancy complications and identify potential
indicators of altered placental function.

2. Methods
2.1. Data Sources

The following review was conducted in line with PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines. The search was undertaken on
PubMed and Ovid Medline, between January 2012 and December 2022 by TD and repeated
by OJH and DHH. Articles were restricted to those in English. The databases were searched
independently by the aforementioned authors. Once shortlisted, full texts were ordered and
read. The bibliographies of articles selected for the review were also screened for suitable
additional articles to be included in this review. Inclusion in the review was selected by
consensus between the screening authors.
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2.2. Search Strategy

Search terms from PubMed/MEDLINE were “adiponectin” OR “leptin” AND “preg-
nancy” AND “placenta”, with searches performed from December 2012 to December 2022.
Studies were then filtered manually as per the inclusion criteria. The inclusion criteria were
human in vivo studies with primary data published in English. The exclusion criteria were
animal models or in vitro studies, reviews, case series, or case reports, and publication in a
language other than English.

2.3. Data Collection Process

The relevant experimental results were extracted from each of the included records
using a data extraction sheet on Excel (Microsoft). Data were extracted manually for
analysis by TD, OJH, and DHH in tabular form. Due to the heterogeneity of the studied
populations, variations in methods utilized, and in the endpoints of the studies, pooling of
data for meta-analysis was not considered appropriate.

The data extraction sheet included broad topics of study design, hormones measured
in the study, and whether hormone levels were increased or decreased compared to control
groups (the definition of “increased” and “decreased” compared to the control was taken
from each publication and represents a statistically significant difference). The effects
of both adiponectin and leptin on mRNA expression and protein of placental receptors
and nutrient transporters were recorded in the data extraction sheet. The activation and
inhibition of inflammatory signaling pathways were also included in the full text data
extraction sheet. Birthweight category (i.e., macrosomia, appropriate weight, fetal growth
restriction (FGR), small for gestational age (SGA), or large for gestational age (LGA)), ma-
ternal weight category (i.e., obese, overweight, or non-obese), and any relevant pathology
(i.e., GDM or PE) were also noted on the extraction sheet. Birthweight categories were
taken from each publication, and variation in the definition of these categories may vary
between publications. Macrosomia is defined by a growth beyond an absolute birth weight,
usually 4000 g or 4500 g, regardless of gestational age, and LGA is usually classified a
birthweight equal to or more than the 90th centile for a given gestational age [19]. SGA
is usually defined as fetuses whose estimated weight and/or abdominal circumference is
below the 10th percentile of a given growth curve, with further distinctions at the 5th or
3rd percentile for data analysis [3,20]. FGR usually refers to fetuses that do not reach their
growth potential [3,20].

2.4. Data Items

Duplicates were removed, then the titles and abstracts of all retrieved records were
reviewed. Title and abstract screening were performed using Covidence. The relevant ex-
perimental results were extracted from each of the included records, namely concentration
of leptin and adiponectin, and association between adipokines and (i) placental receptors
and nutrient transporters, (ii) inflammatory signaling pathways, (iii) birthweight, and
(iv) adverse pregnancy complications of GDM or PE.

2.5. Assessment of Risk of Bias

The US National Toxicology Program’s Office of Health Assessment and Translation
(OHAT) Risk of Bias (ROB) Rating Tool for Human and Animal Studies is recommended to
ensure accurate conclusions in completing systematic reviews [21]. The OHAT tool was
used in this review to assess the risk of bias. The answer format for each question domain
was labelled as either “definitely low”, “probably low”, “probably high”, or “definitely
high” for each study. No studies were excluded based upon the risk of bias assessment.

3. Results
3.1. Search Results

After removing duplicates, a total of 154 records were retrieved from PubMed/MEDLINE.
The titles and abstracts of all 154 records were reviewed (Figure 1). There was a total of
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129 articles excluded as they did not contain primary data (24), the full text was not available
(6), they were animal studies (41), or they did not report findings on the pathophysiology
of adiponectin and leptin on the placental–fetal unit (58). Lastly, 25 articles were read, and
11 studies were excluded as outcomes were not relevant (7), the studies were out of scope
(3), or they included the wrong study population (1). All experimental data were extracted
from 14 of the relevant studies.
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Figure 1. PRISMA diagram of search strategy for this study. A total of 154 studies were retrieved
and titles and abstracts were screened. After title and abstract screening, 25 studies were assessed for
eligibility. Fourteen studies were included in this systematic review.

3.2. The Relationship between Maternal Leptin and Adiponectin on Fetal Growth
3.2.1. Association between of Maternal Leptin and Fetal Growth

There was no pattern between maternal leptin and birthweight category (Table 1).
Three studies showed statistical association between an increase in maternal leptin in
pregnancies and LGA infants compared to those women with adequate for gestational
age (AGA) infants [22–24], whereas three other studies found increased maternal leptin in
pregnancies complicated by FGR compared to non-FGR pregnancies [25,26]. There was
also a decrease in maternal leptin among pregnant women with SGA newborns compared
to AGA infants [24]. Macrosomia was not associated with altered maternal leptin [27].
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Table 1. Association between maternal leptin and fetal growth.

Reference Maternal Serum Concentration
Compared to Control Offspring Birthweight p-Value

Lazo-de-la-Vega-Monroy et al. [22] Increased LGA 0.028
Lekva et al. [23] Increased LGA 0.047
Shroff et al. [24] Increased LGA <0.01
Shroff et al. [24] Decreased SGA <0.05

Schoots et al. [25] Increased FGR <0.01
Stefaniak et al. [26] Increased FGR 0.01

Shang et al. [27] Increased Macrosomia ns
Kyriakakou et al. [28] Increased FGR <0.05

LGA, large for gestational age; SGA, small for gestational age; FGR, fetal growth restriction. ns = not significant.

3.2.2. Association between Maternal Adiponectin and Fetal Growth

There was no pattern between adiponectin levels and birthweight category (Table 2). In
one study, decreased adiponectin level was associated with LGA infants compared to AGA
infants [23]. In contrast, another study found decreased adiponectin was associated with
FGR compared to non-FGR pregnancies [28], whereas this relationship was not statistically
significant in another study [29]. There was also an association between decreased maternal
adiponectin in macrocosmic infants compared to appropriately weighted infants in one
study [27], and increased adiponectin in SGA infants compared to AGA infants in another
study [22].

Table 2. Relationship between maternal adiponectin and fetal growth.

Reference Maternal Serum Concentration
Compared to Control Offspring Birthweight p-Value

Lazo-de-la-Vega-Monroy et al. [22] Increased SGA <0.05
Lekva et al. [23] Decreased LGA 0.007
Shang et al. [27] Decreased Macrosomia <0.05

Kyriakakou et al. [28] Decreased FGR <0.05
Zamarian et al. [29] Decreased FGR ns

LGA, large for gestational age; SGA, small for gestational age; FGR, fetal growth restriction. ns = not significant.

3.3. Association between Maternal Obesity or Leptin and Placental Receptors and
Nutrient Transporters
3.3.1. Association between Maternal Obesity or Leptin and Placental Expression of
Receptors and Nutrient Transporters

In pregnancy, maternal obesity is associated with increased circulating leptin and
changes in placental function [30], but consistent changes in placental glucose, amino acid,
or leptin transporter/receptor gene expression was not found in pregnant women with
obesity only (no measurement of leptin) compared to pregnancies with high maternal leptin
levels (Table 3). Nogues et al. reported a decrease in placental mRNA expression of glucose
transporter 1 (Glut1) and system A sodium-dependent amino acid transporter (Snat) 1 and
Snat2 in obese pregnant women [31], whereas there was an increase in mRNA expression
of Glut1 in placentas from pregnant women with GDM who also had high serum leptin,
compared to non-GDM low leptin pregnancies [32]. There was no association between
leptin and the placental mRNA expression of leptin receptor (LepR) in obese pregnant
women [33].
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Table 3. Association between maternal leptin/obesity and placental mRNA expression of receptors
and nutrient transporters.

Reference Participant Characteristics mRNA p-Value

Nogues et al. [31] obese Glut1 ↓ 0.0273
Nogues et al. [31] obese Snat1 ↓ 0.0273
Nogues et al. [31] obese Snat2 ↓ 0.0039

Balachandiran et al. [32] ↑ leptin; GDM Glut1 ↓ <0.05
Nogues et al. [33] ↑ leptin; obese LepR ns

Glut1, glucose transporter 1; Snat1, System A sodium dependent amino acid transporter 1; Snat2—System A
sodium dependent amino acid transporter 2; LepR, placental leptin receptor; ↑ increased; ↓ decreased.

3.3.2. Association between Maternal Obesity or Leptin and Protein Expression of Placental
Receptors and Nutrient Transporters

The association between maternal obesity or elevated leptin and the protein levels
of placental receptors and nutrient transporters was summarized in Table 4. In pregnant
women with an increase in serum leptin and LGA infants, placental protein levels of
SNAT2 were decreased [22]. In addition, SNAT1 in placentas from pregnant women with
obesity was decreased [32]. Despite no change in mRNA expression (Table 3), there was a
decrease in placental LEPR from obese pregnant women compared to non-obese pregnant
women [33]. Placental GLUT1 was increased in women with increased leptin levels and
GDM [32]. In contrast, there was a decrease in GLUT1 transporters in placentae from obese
women compare to non-obese women [31].

Table 4. Association between maternal leptin and placental protein expression of receptors and
nutrient transporters.

Reference Participant Characteristics Protein p-Value

Nogues et al. [31] obese GLUT1 ↓ 0.0221
Nogues et al. [31] obese SNAT1 ↓ 0.0283
Lekva et al. [22] ↑ leptin; LGA SNAT2 ↓ 0.01

Balachandiran et al. [32] ↑ leptin; GDM GLUT1 ↑ <0.05
Nogues et al. [33] ↑ leptin; obese LEPR ↓ <0.01

GLUT1, glucose transporter 1; SNAT1, system A sodium-dependent amino acid transporter 1; SNAT2, system A
sodium-dependent amino acid transporter 2; LEPR, leptin receptor; ↑ increased; ↓ decreased.

3.3.3. Association between Maternal Adiponectin and Placental Expression of Receptors
and Nutrient Transporters

Analysis of the association between adiponectin and expression of placental receptors
and nutrient transporters was summarized in Table 5. Reduced adiponectin was associated
with decreased Snat2 mRNA [23] and decreased AdipoR2 and AdipoR1 mRNA [23,33].
Moreover, there was a significant association between increased placental expression of
Glut1 mRNA among pregnant women with low levels of adiponectin [33].

Table 5. Association between maternal adiponectin and placental mRNA expression of receptors and
nutrient transporters.

Reference Participant Characteristics mRNA p-Value

Lekva et al. [23] ↓ adiponectin; LGA Snat2 ↓ 0.01
Lekva et al. [23] ↓ adiponectin; LGA AdipoR1 ↓ ns
Lekva et al. [23] ↓ adiponectin; LGA AdipoR2 ↓ 0.001

Balachandiran et al. [32] ↓ adiponectin; GDM Glut1 ↑ <0.05
Nogues et al. [33] ↓ adiponectin; obese AdipoR1 ↓ <0.05
Nogues et al. [33] ↓ adiponectin; obese AdipoR2 ↓ <0.05

Glut1, glucose transporter 1; Snat1, System A sodium dependent amino acid transporter 1; Snat2—System A
sodium dependent amino acid transporter 2; AdipoR1; placental adiponectin receptor 1; AdipoR2, placental
adiponectin receptor 2; ↑ increased; ↓ decreased.
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3.3.4. Correlation between Maternal Adiponectin and Placental Receptors and
Nutrient Transporters

Low serum adiponectin was associated with altered placental receptors and nutri-
ent transporters (Table 6). Low adiponectin was associated with an increase in GLUT1
transporter placental protein levels in GDM patients compared to non-GDM patients [32].
Nogues et al. (2019) reported a decrease in both ADIPOR1 and ADIPOR2 protein in
placentas from obese patients [33].

Table 6. Correlation between maternal adiponectin and placental protein for receptors and
nutrient transporter.

Reference Participant Characteristics Protein p-Value

Balachandiran et al. [32] ↓ adiponectin; GDM GLUT1 ↑ <0.05
Nogues et al. [33] ↓ adiponectin; obese ADIPOR1 ↓ <0.05
Nogues et al. [33] ↓ adiponectin; obese ADIPOR2 ↓ <0.05

GLUT1, glucose transporter 1; ADIPOR1; placental adiponectin receptor 1; ADIPOR2, placental adiponectin
receptor 2; ↑ increased; ↓ decreased.

3.4. Association between Maternal Adiponectin and Leptin and Placental Inflammatory
Signaling Pathways
3.4.1. Association between Elevated Maternal Leptin and Placental Inflammatory
Signaling Pathways

In placentas from pregnancies affected by SGA, increased maternal serum leptin was
associated with an increased phosphorylation of AMP-activated protein kinase (AMPK)
and reduced phosphorylation of mammalian target of rapamycin (mTOR) (Table 7) [22].

Table 7. Correlation between maternal leptin and adiponectin and inflammatory signaling pathways.

Reference Participant Characteristics Protein p-Value

Lazo-de-la-Vega-Monroy, et al. [22] ↑ leptin; SGA pAMPK ↑ <0.05
Lazo-de-la-Vega-Monroy, et al. [22] ↑ leptin; SGA p-mTOR ↓ <0.02
Lazo-de-la-Vega-Monroy, et al. [22] ↓ adiponectin; SGA pAMPK ↑ <0.05
Lazo-de-la-Vega-Monroy, et al. [22] ↓ adiponectin; SGA p-mTOR ↓ 0.02

AMPK, adenosine monophosphate-activated protein kinase; mTOR, mammalian target of rapamycin, ↑ increased;
↓ decreased.

3.4.2. Association between Reduced Adiponectin and Placental Inflammatory
Signaling Pathways

There was an association between reduced adiponectin and placental inflamma-
tory signaling pathways (Table 8). Despite no significant changes to phosphorylation of
p38-mitogen-activated kinase (MAPK) [34,35], there was an increased phosphorylation of
AMPK and reduced phosphorylation of mTOR [22].

Table 8. Association between maternal leptin and adiponectin and GDM and PE.

Reference Maternal Serum Concentration Pathology p-Value

Shroff et al. [24] ↑ leptin PE <0.05
Hogg et al. [36] ↑ leptin PE <0.05
Hogg et al. [36] ↑ leptin GDM <0.0001

Schoots et al. [25] ↑ leptin PE <0.05
Shang et al. [27] ↓ adiponectin GDM <0.05

Balachandiran et al. [32] ↓ adiponectin GDM <0.05

GDM, gestational diabetes mellitus; PE, preeclampsia; ↑ increased; ↓ decreased.
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3.5. Adiponectin and Leptin in GDM and PE
Association between Elevated Leptin and Reduced Adiponectin in GDM and PE

Maternal leptin was found to be elevated in pregnancies complicated with PE [24,25,36].
Maternal leptin was also increased in pregnant women with GDM [33]. Maternal adiponectin
was reduced in pregnancies complicated with GDM [27,32] (Table 8).

4. Discussion

This systematic review analyzed the potential associations between maternal circulating
adiponectin and leptin with fetal growth, placental nutrient transport, placental signaling
pathways, and pregnancy complications (GDM and PE). This review found that circulating
maternal adiponectin and leptin may play a role in fetal growth through changes to placental
signaling pathways that affect functions related to nutrient transport and energy homeostasis,
as well as contribute to the pathology associated with GDM and PE.

4.1. Maternal Leptin and Adiponectin Influences on Fetal Growth

Leptin and adiponectin have often opposing concentrations and effects, and both
change during pregnancy. Maternal leptin levels increase during pregnancy and decrease
postpartum, with the greatest increase in the second trimester when maternal physiolog-
ical changes to glucose homeostasis occur [37,38]. During pregnancy, adiponectin levels
are physiologically reduced in the third trimester, the greatest peripheral insulin resis-
tance period, which means that levels decrease proportionately with insulin sensitivity.
Conversely, compared to the pre-gravid state, serum adiponectin is increased in early
gestation [1,39,40]. Both leptin and adiponectin levels are influenced by a range of factors.
Although adiponectin is produced by adipocytes, it is paradoxically decreased in individu-
als with insulin resistance and obesity [41,42]. Leptin levels are strongly associated with
BMI, but in pregnancy levels may also be influenced by factors including parity [43]. The
studies included in the current review showed increases in circulating maternal leptin may
be associated with LGA infants. Three separate studies with a combined sample size of
1650 pregnancies (including 199 LGA infants) found an association of increased leptin with
LGA, with this sample size giving a reasonable level of confidence in this association. An
additional study also reported nonsignificant elevated maternal leptin in cases of macro-
somia [27]. In contrast, adiponectin was inversely correlated with fetal/infant growth
and birthweight, with maternal levels decreased in cases of LGA and macrosomia in a
total of 508 women from two studies [23,27]. Maternal leptin increases placental nutrient
transport to the fetus by stimulating amino acid uptake, which could be the mechanism of
the increased fetal growth when maternal leptin levels are increased [9].

In contrast to the positive association of leptin with fetal growth discussed above,
Schoots et al. [25] and Stefaniak and Dmoch-Gajzlerska (2022) [26] reported increased
maternal leptin associated with fetal undergrowth (IUGR and SGA), and Kyriakakou et al.
found an association of increased maternal leptin and decreased maternal adiponectin with
FGR [29]. Although a 2019 meta-analysis reported no significant differences in maternal
leptin concentrations between SGA and AGA neonates [44], there may be an association of
elevated maternal leptin with growth restriction under certain conditions. Leptin is pro-
duced by the placenta during pregnancy (in addition to adipose tissue production) and has
pleiotropic effects on placental function including promoting the proliferation and survival
of trophoblast cells [30], but in vitro studies have shown that overstimulation of placental
leptin receptors has negative effects related to changes in signaling pathways [45] that may
lead to placental dysfunction. The placenta does not produce endogenous adiponectin,
and adiponectin in the maternal circulation also does not cross the placenta; however,
the placenta does express adiponectin receptors, and as a consequence placental function
could impact nutrient transport and fetal growth [1]. Animal models and in vitro studies
have found that low adiponectin can induce placental dysfunction, in particular influ-
encing intracellular signaling pathways that affect mitochondrial function and nutrient
transport [34], although this may not affect fetal growth [46,47]. As placental dysfunction
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is a common cause of growth restriction, further research in this area should concentrate
on how leptin and adiponectin can affect placental signaling pathways in vivo, and how
pathway changes may relate to placental (dys)function associated with growth restriction.

The assessment of fetal growth/size used in the different studies may also have
affected these results. The size of a fetus is determined through biometric evaluations
using various formulae, and controversies exist in defining fetal growth/size [3]. A fetus
is classified as SGA when its size falls below a predefined threshold for its gestational
age, typically indicated by an estimated fetal weight or abdominal circumference below
the 10th percentile of reference ranges, although alternative thresholds (e.g., 5th or 3rd
percentiles) are also used, whereas FGR refers to a fetus that fails to achieve its genetically
predetermined growth potential. Unlike SGA, which simply indicates a smaller size, FGR
implies that the fetus is not growing as expected. A consensus-based definition for FGR
including both biometric and functional parameters was published in 2016 [48], but in
practice, SGA is often used as a surrogate for FGR [49]. The specific definitions of FGR or
SGA were not included in all studies in this review; additionally, some studies used the
older and less well-defined term IUGR. A complete picture of how maternal leptin and
adiponectin affect fetal growth, especially impaired fetal growth associated with adverse
outcomes, requires accurately reported definitions. Further, although impaired fetal growth
is associated with an increased risk of poor outcomes [50], FGR definitions have limited
success in predicting adverse neonatal outcomes [51]. The measurement of other parameters
that may indicate uteroplacental function (e.g., maternal leptin and adiponectin or markers
of the placental response to these factors) could improve the prediction of FGR and adverse
perinatal outcomes by reporting directly on the function of fetoplacental unit.

4.2. Maternal Leptin and Adiponectin Influences Placental Nutrient Transporters

To identify the potential placental-mediated mechanisms for the association of ma-
ternal leptin and adiponectin levels with fetal growth changes, we summarized data on
placental transporters involved with nutrient transfer and growth. Maternal stimuli influ-
ence placental function, and our results suggest that there is also placental adaptation to
stimuli that may modulate effects on fetal growth. Nogues et al. [31] reported a decrease
in the GLUT1 glucose transporter, in addition to structural and functional changes, in the
placentae of obese patients (these changes may be related to the increased circulating leptin
found in obesity [52]), and other workers found a decrease in both SNAT1 and SNAT2 in
placentae of obese individuals with increased leptin and decreased adiponectin [23,31]. An
increase of SNAT transporters can increase nutrient transport to the fetus and lead to fetal
overgrowth [18], whereas decreased placental SNAT transporter levels are associated with
IUGR and fetal undergrowth [53,54]. As GLUT1 and SNAT transporters transfer glucose
and amino acids to the fetus, decreased levels of these transporters may be a compensatory
mechanism in the placenta that helps limit fetal overgrowth [55]. However, Shang and Wen
(2018) found an increase in SNAT transporters in the placentas of infants with macroso-
mia [56], suggesting that the specific mechanisms involved in placental response need to
be further explored.

A potential mechanistic role regulated by adipokines may be played by altered in-
tracellular signaling. AMPK plays a role in embryonic and placental development [57].
AMPK signaling contributes to cell growth, differentiation, and nutrient transport in the
placenta and fetus [57]. Additionally, mTOR is responsible for regulation of the transport
of nutrients, oxygen, and growth factors [58]. The current study reported AMPK enzyme
activation and mTOR protein inhibition with increased leptin and decreased adiponectin in
SGA placentas [22]. An association between increased maternal adiponectin with increased
placental AMPK enzyme activation has been proposed [34]. Adiponectin increases activa-
tion of placental AMPK, which regulates glucose metabolism, insulin sensitivity, and fetal
growth [59], although the mechanisms differentiating each type of activator and timing are
not fully understood [60].
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4.3. Maternal Leptin and Adiponectin in Gestational Diabetes and Preeclampsia

GDM is a metabolic disorder of pregnancy commonly associated with fetal overgrowth.
The link between maternal leptin and adiponectin levels with disease pathologies in the
current study corresponds with a previous systematic literature analysis that reported
significant increase in leptin in GDM patients independent of BMI [61]. Additionally, Bal-
achandiran et al. reported an increase in GLUT1 levels in the placentae of GDM patients
with increased maternal leptin [33], and Stanirowski et al. reported increased placental
GLUT1 levels in GDM patients but did not report on maternal leptin directly [62]. This
suggests that GDM may impact the placental adaptive response that can help limit fetal
overgrowth, with the increase of placental GLUT1 transporters in GDM patients playing a
potential role in the three-fold increased incidence of macrosomic infants from GDM preg-
nancies [63]. It has also been proposed that the increase in GLUT1 placental transporters
could be due to insulin therapy in GDM patients [64], suggesting that this therapy may
have underappreciated side effects on fetal growth.

PE pathogenesis is not fully understood, but likely involves placental dysfunction and
is commonly associated with fetal undergrowth. All three of the studies that investigated
PE found that increased maternal leptin levels were also associated with PE. It has been
hypothesized that maternal leptin’s role in angiogenesis and control immune function during
implantation could affect the establishment of maternal–placental–fetal circulation [65]. There-
fore, the elevated maternal leptin could potentially modulate trophoblast activity leading to
alterations in maternal–placental–fetal circulation system and subsequent PE development.

5. Limitations

This review did not assess the amount of the changes in leptin and adiponectin or
directly compare these across studies with a meta-analysis, which is a limitation as these
features may relate to some of the variability in associated effects. Another limitation is
the potential for terms such as LGA and FGR to be defined differently in different studies,
as there is inconsistency in the definitions of these terms [3] and we have accepted the
authors’ definitions. This study is also limited through not assessing additional placental
features that may relate to function, such as placental efficacy (placental weight compared
to neonate weight) and in not investigating how pre-existing features such as maternal
BMI and epigenetic changes such as cell-free methylation profiles [66] may have roles
in metabolic changes that affect fetal growth. The focus of the review on two specific
pregnancy complications (GDM and PE) is also a limitation, as diabetes in pregnancy and
hypertensive disorders of pregnancy have variable pathophysiologies that are likely to be
differentially affected by leptin and adiponectin.

Future work should compare absolute and relative leptin and adiponectin levels and
use consistent definitions across studies, as well as include additional measures of placental
function, pre-existing maternal features, and a wider range of pregnancy complications
that may influence the effects and function of leptin and adiponectin in pregnancy.

6. Conclusions

A majority of reported studies associated elevated maternal leptin and reduced
adiponectin with fetal overgrowth, although this relationship was not consistently found
and may be complicated when other pathologies such as GDM are present. The effects of
maternal leptin and adiponectin on fetal growth may be driven by placental adaptation
that modifies features including nutrient transporters and the function of placental mito-
chondria. Future studies should use consistent definitions of fetal growth and determine if
the effects of leptin and adiponectin on placental signaling pathways that have been found
in in vitro and animal models have mechanistic roles in human pregnancy.
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