
Citation: Schütz, L.F.; Batalha, I.M.

Granulosa Cells: Central Regulators

of Female Fertility. Endocrines 2024, 5,

547–565. https://doi.org/10.3390/

endocrines5040040

Academic Editor: Osamu Hiraike

Received: 17 October 2024

Revised: 23 November 2024

Accepted: 25 November 2024

Published: 27 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Granulosa Cells: Central Regulators of Female Fertility
Luis Fernando Schütz * and Isadora M. Batalha

Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
* Correspondence: lschutz@unr.edu

Abstract: Background: Granulosa cells are somatic cells within the ovarian follicle. As the primary
site of estradiol production, they are critical regulators of several aspects of female reproduction.
This review aims to provide an overview of the physiology of mammalian granulosa cells and their
importance for female fertility. Methods: the literature about the function and regulation of granulosa
cells was reviewed. Results: a comprehensive summary and discussion of the role of granulosa
cells on ovarian steroidogenesis and folliculogenesis, as well as factors that control granulosa cells
function, are presented. Conclusion: The functions of granulosa cells are regulated by a plethora of
intra- and extra-ovarian factors via autocrine, paracrine, and endocrine pathways, which creates a
complex regulatory network. A comprehensive understanding of granulosa cells’ physiology is vital
for the development of innovative strategies to enhance reproductive outcomes in several species.
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1. Introduction

Female fertility involves the biological processes of ovarian folliculogenesis, ovarian
steroidogenesis, ovulation, fertilization, embryo development, and early pregnancy main-
tenance. The ovaries are critical regulators of these complex processes, and ovarian follicles
are the basic functional units of the ovaries. Within ovarian follicles, granulosa cells (GC)
communicate with the oocyte and surround theca cells (TC) to regulate ovarian function in
autocrine and paracrine manners. Outside the follicles, the functions of GC are affected
by a plethora of extra-ovarian factors in an endocrine manner to regulate female fertility.
The aim of this review is to summarize the functions and regulation of mammalian GC in
response to intra- and extra-ovarian factors. An emphasis will be given to the regulation of
GC in ovarian antral follicles of mammals.

2. Ovarian Steroidogenesis

A major function of GC is to synthesize and regulate the production of sex steroids by
the ovaries. Estradiol, the main steroid produced by GC, is a critical regulator of reproduc-
tion. Estradiol promotes female sexual behavior [1,2], development of female secondary
sex characteristics [3], ovulation [4], and uterus preparation for embryo implantation [5,6].
Also, estradiol exerts important functions inside and outside the ovaries to regulate GC
function during ovarian folliculogenesis, including through exerting control over the re-
lease of gonadotropins by the anterior pituitary [7,8] and through direct binding to GC
to induce proliferation and maturation [9–11]. In GC, estradiol acts primarily via the re-
ceptor Erβ, which has different isoforms, to determine cellular function during ovarian
folliculogenesis [11].

Steroidogenic tissues, including the ovaries, require cholesterol as a precursor for the
production of steroids [12]. Steroidogenic cells obtain cholesterol from plasma lipoproteins
or via de novo cholesterol biosynthesis from acetate [13]. Ovarian follicular cells utilize
both low-density lipoprotein (LDL) and high-density lipoprotein (HDL) for cholesterol
uptake via the LDL receptor (LDLR) and the scavenger receptor class B member I (SR-
BI), respectively, and these receptors are under hormonal regulation in the ovary [14–16].
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Indeed, several in vitro studies have shown that GC of humans, cattle, pigs, and murine
species can synthesize progesterone in response to the addition of both HDL and LDL in
the medium [13,15,17–21]. Nevertheless, differences exist between species in the preference
for HDL or LDL for cholesterol uptake by GC: bovine GC primarily utilizes cholesterol
derived from LDL uptake to synthesize progesterone, whereas murine and porcine GC
primarily use cholesterol delivered by HDL [13,15,18,19,22]; in humans, LDL is the main
circulating lipoprotein, but follicular fluid of preovulatory follicles contains primarily HDL
and human GC efficiently utilizes both lipoproteins for cholesterol uptake and progesterone
production [17].

The first step of steroidogenesis is the conversion of cholesterol into pregnenolone,
which is catalyzed by the cholesterol side-chain cleavage enzymes (P450scc), encoded by
the gene CYP11A1, in the mitochondria [12]. Thus, cholesterol must be transported from
the outer membrane to the inner membrane of mitochondria. A well-established regulator
of this transport is the steroidogenic acute regulatory protein (StAR) enzyme and this is
a rate-limiting step in steroidogenesis [23–25]. Other proteins have been recognized to
transfer cholesterol into the mitochondria of steroidogenic cells, including StarD4, which
belongs to a subfamily of StAR-related lipid transfer proteins [26,27].

Pregnenolone will be converted into progesterone by the action of the enzyme 3β-
hydroxysteroid dehydrogenase (3β-HSD), which has been located in the endoplasmic
reticulum, as well in the mitochondria, of steroidogenic cells [12,28,29]. Progesterone
serves as a precursor to androgens, which, in turn, serve as substrates for estrogen syn-
thesis. Progesterone will be converted to androgens by the enzyme cytochrome P450
17α-hydroxylase/17,20-lyase, encoded by the gene CYP17A1, and this enzyme is expressed
by TC, but not GC [30–32]. Androgens are then converted into estradiol by the enzyme
aromatase, which is encoded by the gene CYP19A1 and is located exclusively in GC in
the ovary [31,32]. Therefore, the communication between TC and GC is essential for the
synthesis of estradiol [28,31,33].

It is important to note that GC express the genes that encode StAR and all steroidogenic
enzymes for the production of steroids in vitro [18,28,34], and the expression of genes
that encode P450scc, 3β-HSD, and aromatase will change according to the stage of the
reproductive cycle in vivo, but the expression of StAR has been detected only in TC and
not in GC in vivo [35–37]. Furthermore, research in ruminants shows that the expression of
steroidogenic genes in ovarian follicular cells is regulated by the nutritional and metabolic
status of the female [38,39]. This shows that the gene expression of steroidogenic enzymes
depends on the status of GC during ovarian folliculogenesis, and this will be further
discussed in this review.

3. Ovarian Folliculogenesis

Ovarian folliculogenesis is a highly regulated process in which the female gamete
(oocyte) matures within the follicle surrounded by somatic cells, ultimately developing
into a fertilizable egg. The first follicles formed in the ovary are called primordial follicles,
and these consist of an immature oocyte arrested at the diplotene stage of meiosis I and
surrounded by a single layer of flattened pre-GC [40,41]. After their formation, the majority
of primordial follicles will remain dormant for months or years, and only a small number
are recruited to keep growing through the process of ovarian folliculogenesis [42,43].
Primordial follicles remain dormant via the action of inhibitors of oocyte maturation, and
their activation to keep developing is under the influence of a balance between inhibiting
and activating factors [40,44,45]. Follicular activation results in the transition of follicles
from the primordial stage to the primary stage. At this time, the oocyte begins to enlarge
and is surrounded by a single layer of cuboidal GC [40,46]. The first pool of primordial
oocytes will be activated to keep developing during the fetal life of some mammalian
species, such as ruminants and humans, whereas this process will start during the early
neonatal period in rodents, and pools of primordial follicles will be continuously activated
throughout the entire reproductive life of the female [9,47,48].
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GC are critical regulators of ovarian folliculogenesis. The exchange of growth factors
between the oocyte and the surrounding somatic cells via exchange of growth factors is
crucial for follicular development throughout the primordial, primary, secondary, and ter-
tiary (antral) stages [40,46,49–52]. The development of preantral follicles, namely primary
and secondary follicles, is characterized by the growth of oocytes, proliferation of GC,
and development of TC [40,53]. It has been established that the development of preantral
follicles occurs independently of the actions of the gonadotropins derived from the pitu-
itary, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which are critically
important for the development of antral follicles [51]. Nevertheless, preantral follicles do
respond to FSH, which stimulates follicular development [51,54,55].

During the female reproductive cycle, pools of antral follicles will grow, develop, and
one or a small group will ultimately ovulate, whereas the great majority will degenerate
during the process of follicular atresia [56]. The cyclic follicular development encompasses
the processes of recruitment, selection, dominance, and ovulation or atresia, and this occurs
in follicular waves during the reproductive cycle in ruminants and horses [36,47,57–60].
Recent observations show evidence that ovarian follicular development also occurs in
waves during the menstrual cycle of women [61]. The effects of gonadotropins on GC are
determinants for the control of the development of antral follicles. The term recruitment
may refer to the process whereby a cohort of dormant primordial follicles are recruited to
grow and develop (initial recruitment) or can refer to the process where a group of small
antral follicles is rescued from atresia in response to subtle increases in circulating FSH and
begins to grow during each reproductive cycle or follicular wave [43,62,63]. Selection refers
to when one or more growing antral follicles, depending on the species, will be selected
to continue to grow and become the dominant follicle, which will acquire functional
characteristics that will allow it (or them) to ovulate [36,47,53,62]. The antral follicles that
are not selected for dominance are called subordinate follicles and will undergo atresia like
the majority of follicles in all stages of folliculogenesis [47].

During antral follicular growth, GC proliferate under the control of intra- and extra-
factors, including estradiol and FSH [9,28,64]. GC proliferation is especially important
for initial follicular growth, but the growth of larger follicles during the later stages of
folliculogenesis seems to depend more on antrum development [65]. As follicles keep
growing and developing, GC and TC will undergo molecular and functional changes to
determine the fate of antral follicles. This process of differentiation involves an enhance-
ment of the steroidogenic capacity of follicular cells that occurs as follicles are selected
to dominate and approach the preovulatory stage [66]. To enhance their steroidogenic
capacity, GC of dominant and preovulatory follicles will increase the mRNA expression
of the FSH receptor and the steroidogenic enzymes involved in the production of proges-
terone and estradiol [36,53,67]. Additionally, TC of the dominant follicles will increase
their synthesis of androgens through an increase in the LH receptor and CYP17A1 mRNA
expression [37,53,68]. Furthermore, under the synergistic stimulus of FSH and increased
estradiol, GC differentiation in dominant and preovulatory follicles involves the acquisition
of LH receptors to induce terminal GC differentiation, stop cellular proliferation, and
prepare follicles for ovulation [11,28,36,53,69–72].

Another important function of GC during ovarian folliculogenesis is the control of
follicular degeneration. Several studies have reported that GC death via apoptosis is the
main underlying mechanism of follicular atresia [73–76]. An important factor for induction
of GC apoptosis is the deprivation of hormones that promote GC survival, including
estradiol, insulin-like growth factors (IGFs), and FSH [77]. Additionally, a death-ligand
receptor system is known to activate GC apoptosis [77,78].

4. Factors That Regulate Function of Granulosa Cells

The role of extra- and intra-ovarian factors on function of GC during ovarian fol-
liculogenesis will be further discussed in this review. These include the IGFs system,
fibroblast growth factors (FGFs), adipokines, and factors derived from the gastrointestinal
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system. A plethora of other factors are known to regulate GC function and have been
the focus of previous reviews, including the bone morphogenetic protein system [79],
the angiotensin system [80], prohibitin [81], endothelins [82], insulin [83], anti-Müllerian
hormone (AMH) [84], and several others.

4.1. The Insulin-like Growth Factor System

Insulin-like growth factor 1 (IGF1) and insulin-like growth factor 2 (IGF2) are single-
chain polypeptides with a similar molecular structure to insulin that were first identified
in the plasma of humans in the 1970s [85,86]. These growth factors are mainly produced
by the liver and released in the circulation to stimulate endocrine actions in target cells,
but they are also locally produced in tissues to exert a paracrine or autocrine action. For
IGFs to elicit their actions, they bind to IGF receptor type 1 (IGF1R) and insulin receptors in
various tissues (for reviews, see [87,88]. Current evidence shows that another receptor for
IGFs, IGF receptor type 2 (IGFR2), also called cation-independent mannose-6-phosphate
receptor, serves to prevent the action of IGF2 by degrading it upon activation and, therefore,
controlling its availability rather than eliciting its action [89]. The affinity of IGF1R is
greater for IGF1 than for IGF2, whereas the IGF2R has a higher affinity for IGF2 than
for IGF1 [87,90,91]. The IGF1R receptor is a glycoprotein that possesses two extracellular
α-subunits linked via disulfide bonds and two transmembranal β-subunits with tyrosine-
kinase activity [90,92,93]. The binding of the ligand to the extracellular subunits of IGF1R
in target cells results in intracellular signal transduction through several mechanisms,
including kinase signaling, G protein signaling, and β-arrestin signaling [94].

The effects of IGFs in the ovaries are critically important and have been extensively
studied (for previous reviews, see [66,83,95,96]. It has long been established that IGFs are
synthesized by ovarian follicular cells of preantral and antral follicles to elicit autocrine and
paracrine actions. In antral follicles, specifically, IGF1 mRNA is present in both ovine GC
and TC, but it is predominantly expressed in GC of other mammalian species, including
bovine, porcine, and murine [97–105]. Also, in these species, IGF2 mRNA is predominantly
detected in TC [98,100,103,105]. In the antral follicles of humans, differences in expression
of IGFs exist according to the stage of folliculogenesis: IGF1 and IGF2 mRNA expression
is restricted to TC in small follicles while no IGF1 mRNA has been detected in human TC
or GC and IGF2 mRNA has been detected exclusively in human GC [106]. It is important
to note that IGF2 has a greater mRNA expression than IGF1 in the bovine ovary [107],
and thus, IGF2 is considered the main intrafollicular IGF ligand, eliciting autocrine and
paracrine effects, while most of the IGF1 comes from the liver to perform endocrine actions
in this species [108]. In terms of expression of the type 1 receptor, IGF1R mRNA has been
detected in both the GC and TC of ruminants [100,107] while being mainly detected in the
GC of mice [109] and humans [106,110].

As observed in primary cell culture studies, both IGFs 1 and 2 are mitogens of GC
of several mammalian species, including humans, cattle, pigs, and rats [101,111–117].
Additionally, based on primary cell culture studies, IGFs are recognized to promote GC
differentiation by amplifying the stimulatory effects of FSH on the production of estra-
diol and progesterone by GC of several species, including bovine, porcine, murine, and
human [101,117–120]. Furthermore, IGF1 stimulates the acquisition of the LH recep-
tor induced by FSH and mRNA expression of steroidogenic enzymes, including StAR
and aromatase, in GC in vitro [117,118,121,122]. The effects of IGFs on stimulation of
GC proliferation and differentiation are dependent on the expression of IGFR1 in these
cells [109,117,123].

Insulin-like binding proteins (IGBPs) represent an important component of control of
IGFs actions. To date, six IGBPs (IGFBP-1 to IGFBP-6) have been identified, and they are
known to bind to IGFs in order to transport them through circulation and regulate their
bioavailability and function, as previously reviewed [124,125]. Although no differences
in total IGF intrafollicular concentrations between dominant and subordinate follicles
have been detected in cattle [126], the bioavailability of IGFs in follicular fluid changes
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during ovarian folliculogenesis in cattle, horses, sheep, pigs, and humans due to changes in
levels of IGFBPs [66,95,96,127–131]. Thus, IGFBPs are considered important intra-ovarian
factors to regulate the fate of follicles during folliculogenesis. As IGFs actions on GC are
considered important for the selection of dominant follicles, changes in IGFBPs levels are
required for the selection of dominant follicles in several species, including ruminants,
horses, and pigs [66,95,96,102,127,132]. Interestingly, the pregnancy-associated plasma
protein-A (PAPP-A) was identified in cattle as a protease that reduces IGFBPs in the follicles
selected for dominance [66,95], and recent studies suggest that PAPP-A is derived from
GC and is a marker of follicle selection and dominance in several mammalian species,
including bovine, ovine, murine, and human [96,133,134].

4.2. Fibroblast Growth Factors

FGFs were initially reported to induce proliferation of fibroblasts [135,136], but the
effects of these polypeptides go way beyond what the name implies and it is now well-
established that not all FGFs affect fibroblasts [137,138]. FGFs have been detected in many
tissues, eliciting various effects on development and metabolism, with some members
acting exclusively during embryogenesis and others affecting both embryonic and adult
tissues [139].

Several FGFs are synthesized by the different compartments of ovarian follicles.
Among twenty two known FGFs, eleven have been detected within the ovaries of mammals,
including FGF1 [140], FGF2 [141], FGF7 [142], FGF8 [143], FGF9 [144–146], FGF10 [147],
FGF16 [148], FGF17 [149], FGF18 [150], FGF21 [151], and FGF22 [147]. In bovine antral folli-
cles, FGF1, FGF2, FGF7, FGF18, and FGF22 are primarily produced by TC [140–142,147,150,152];
FGF8 is produced by oocytes, GC, and TC [143]; FGF9 is produced in greater concentrations
by GC than TC [153]; FGF10 is produced by oocytes and TC [152]; FGF16 is produced by
the oocyte [148]; and FGF17 is detected mainly in oocytes, but also in GC [149]. FGF21 is
detected in porcine GC and TC [151].

To elicit their intracellular actions in target cells, FGFs must bind to high-affinity
single-chain transmembrane tyrosine kinase receptors (FGFRs), which have different ligand-
specificities and are encoded by four different genes in vertebrates, namely FGFR1, FGFR2,
FGFR3, and FGFR4 [154,155]. The diversity of these receptors is further increased by the
occurrence of alternative mRNA splicing of the sequence of the immunoglobulin domain III
of the genes FGFR1, FGFR2, and FGFR3, resulting in isoforms IIIb and IIIc [138,139,154,156].
The localization of FGFRs in the different compartments of ovarian follicles is important
for the FGFs to control ovarian physiology [140,149,152]. According to the ligand-binding
specificity of FGFs synthesized in the ovary, FGF1 and FGF2 bind with high specificity
to both FGFR1c and FGFR3c, and the latter also binds FGF8, FGF9, FGF16, FGF17, and
FGF18 with high specificity [139,155]. Additionally, FGFR2b binds to FGF10 with high
specificity, FGFR2c is the second preferred receptor for FGF9 and FGF16, and FGFR4 is the
second preferred receptor for FGF8, FGF17, and FGF18 [139,155]. The mRNA expression
of FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3c, and FGFR4 has been detected in GC
of cattle, although the expression of FGFR4 is very low or absent according to different
studies [140,147,149,152,157].

The synthesis of FGFs and their receptors by ovarian follicular cells varies according to
the size of follicles and the stage of ovarian folliculogenesis in cattle. In terms of FGFs, FGF2
mRNA expression is greater in TC of dominant follicles than that of subordinate follicles,
FGF7 and FGF10 mRNA expression is greater in TC of future subordinate than that of future
dominant follicles, and FGF9 mRNA expression is greater in GC of subordinate than that of
dominant follicles [140,141,146,147]. In terms of receptors present in bovine GC, mRNA
relative abundance of FGFR1b and FGFR2b mRNA expression is greater in dominant than in
subordinate follicles, while FGFR1c and FGFR2c are greater in subordinate than in dominant
follicles [140,143,157]. In terms of FGFR3c, a positive association has been established
between estradiol concentrations in follicular fluid and FGFR3c mRNA expression in bovine
GC of ovaries obtained from slaughterhouse [143], but when FGFR3c mRNA was analyzed
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in bovine GC from ovaries obtained following estrous synchronization, no differences were
detected between subordinate and dominant follicles [157].

FGFs regulate ovarian physiology through autocrine, paracrine, and endocrine actions
(for reviews, see [158,159]). Their actions were first reported in the ovary in 1977, when
FGF1 was found to stimulate proliferation of bovine GC [160]. Since then, at least five FGFs
have been shown to stimulate bovine or porcine ovarian follicle cell proliferation, namely
FGF1, FGF2, FGF7, FGF9, and FGF21 [145,151,161–165].

FGFs also regulate mammalian GC steroidogenesis and differentiation, and this may
differ according to the species and stage of follicular development depending on the
FGF. FGF1 does not affect progesterone production by bovine GC, but it does inhibit
progesterone production by porcine GC [166,167]. FGF2 suppresses FSH- or FSH plus
IGF1-induced estradiol production by murine and bovine GC [168–171], but it enhances
FSH-induced progesterone production and LH-induced production of both estradiol and
progesterone by rat GC [168,169]. FGF7 inhibits FSH-stimulated estradiol production and
aromatase activity by bovine and rat GC and suppresses hCG-stimulated progesterone
production by bovine and human GC [142,172]. FGF8 suppresses FSH-induced estradiol
production by rat GC [173]. FGF9 increases FSH- or FSH plus IGF1 stimulated estradiol
production in murine and porcine GC but suppresses FSH plus IGF1-stimulated estradiol
and progesterone production in bovine and porcine GC [145,171,174]. FGF10 suppresses
FSH-stimulated estradiol production while FGF17 and FGF18 decrease FSH-stimulated
estradiol and progesterone secretion by bovine GC [149,150,152]. A summary of the actions
of FGFs on bovine GC steroidogenesis is presented in Table 1.

Table 1. Effects of fibroblast growth factors on steroidogenesis of bovine granulosa cells.

Fibroblast
Growth Factor

Main Source Within
Ovarian Follicles

Effects on Steroidogenesis of
Granulosa Cells References

FGF2 Theca cells
FGF2 suppresses FSH- and

FSH plus IGF1-induced
estradiol production

[141,170,171]

FGF7 Theca cells
FGF7 suppresses FSH-induced

estradiol and
progesterone synthesis

[142,149]

FGF9 Granulosa cells

FGF9 suppresses FSH plus
IGF1-induced estradiol and
progesterone synthesis and

mRNA expression of CYP19A1
and FSHR

[145,153,171]

FGF10 Theca cells
and oocytes

FGF10 suppresses
FSH-induced

estradiol synthesis
[152]

FGF18 Theca cells

FGF18 suppresses
FSH-induced estradiol and
progesterone synthesis and

mRNA expression of CYP19A1,
CYP11A1, FSHR, STAR,
HSD3B1, and HSD17B1

[150]

Based on observations of effects of FGFs and the RNA expression of their receptors
in GC, it is clear that some of these intra-ovarian factors modulate the fate of follicles
during ovarian folliculogenesis, at least in cattle. As previously mentioned, several FGFs
decrease FSH- or FSH plus IGF1-induced estradiol secretion by GC in vitro, including
FGFs 9, 10, 17, and 18 and, thus, suppress an important characteristic of the dominant
follicle. The observation that the mRNA abundance of FGF9 and FGFR2c is greater in GC of
subordinate follicles further supports the hypothesis that this polypeptide is important to
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stimulate GC proliferation during early folliculogenesis but serves as an anti-differentiation
factor in GC of subordinate follicles in an autocrine manner [145,146,171]. Moreover,
theca-derived FGF18 is considered a pro-atretic factor that induces the apoptosis of bovine
GC [150,175]. Among other factors, it seems that IGF1, a pro-differentiation factor of
GC [117,118], is important to keep levels of FGF9 and FGF18 low in bovine GC during GC
differentiation [145,175].

4.3. Adipokines

Adipose tissue is a multifunctional organ that serves as a major energy reservoir
and is involved in a wide range of physiological processes [176,177]. The adipose tissue
secretes adipokines, which regulate several biological processes, including reproduction
through endocrine actions [176,178–181]. To date, several adipokines are known to affect
female fertility, as previously reviewed [178,180–183]. As circulating levels of adipokines
change according to the nutritional and energetic status of female mammals [183–187],
adipokines represent an important link between energy metabolism and female fertility,
although further research is still required to fully unveil how energy metabolism affects
ovarian function.

The effects of adipokines on ovarian function have been receiving attention of re-
searchers, as the effects of novel adipokines keep being characterized. To date, sev-
eral adipokines have been recognized to elicit actions in GC of mammals. Additionally,
adipokines or their precursors, as well as their receptors, are synthesized by ovarian fol-
licular cells (Table 2). Furthermore, mRNA expression of some adipokines and receptors
change according to the stage of the reproductive cycle (Table 2). Discrepancies exist in
reports of mRNA and protein expression of adipokines and their receptors in GC. Some
of this variation between studies may be explained by possible differences in the stage of
folliculogenesis when samples were collected, especially in cattle, because most follicular
cells came from ovaries obtained at slaughterhouse without control of the estrous cycle.
Further investigation is still necessary to fully unveil the impact of locally synthesized
adipokines as autocrine and paracrine regulators of ovarian function.

Table 2. Expression of adipokines and their receptors in ovarian follicular cells.

Adipokine Expression of Ligand or Receptor Species Reference

Adiponectin

AdipoR2 mRNA is predominantly present in theca cells
but also in granulosa cells and is greater in theca cells of

larger follicles with no differences in expression in
granulosa cells according to size of follicles.

Bovine [188]

AdipoR1 and AdipoR2 mRNA is greater in granulosa cells
of dominant than subordinate follicles. Bovine [189]

mRNA expression of adiponectin is greater in granulosa
cells of large follicles and in theca cells of small follicles,

while adipoR1 and adipoR2 mRNA is expressed in
granulosa and theca cells of large follicles.

Bovine [190]

Adiponectin and receptors adipoR1 and adipoR2 mRNA
and protein expression are predominantly expressed in

theca cells, but also in granulosa cells.
Murine [191]

AdipoR1 and AdipoR2 mRNA and protein are expressed
in granulosa cells, but AdipoR2 expression is greater. Human [191]

AdipoR1 and AdipoR2 mRNA is expressed both in
granulosa and theca cells. Human [192]
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Table 2. Cont.

Adipokine Expression of Ligand or Receptor Species Reference

Apelin

mRNA and protein expression of apelin and receptor is
greater in granulosa and theca cells of large follicles than

in cells of small follicles.
Bovine [193]

mRNA and protein expression of apelin and its receptor is
expressed in granulosa and increases according to

follicular size.
Bovine [194]

mRNA expression of apelin was not detected in granulosa
cells and apelin receptor mRNA was greater in granulosa
cells of large estradiol-inactive (subordinate) follicles in
comparison to small subordinate and dominant follicle

Bovine [195]

mRNA expression of apelin and its receptor in granulosa
cells does not change according to follicular size and

estradiol levels in follicular fluid.
Bovine [196]

mRNA and protein expression of apelin and its receptor is
expressed in granulosa and theca cells. Human [197]

Asprosin

FBN1 mRNA 1 expression is greater in theca cells than in
granulosa cells, and it varies in theca cells but not

granulosa cells, according to the size of the follicle. mRNA
expression of the asprosin receptor (OR4M1) is greater in
granulosa cells than theca cells and is greater in both cells

of small follicles in comparison to large follicles.

Bovine [198]

FBN1 mRNA is greater in granulosa cells of medium
subordinate follicles than dominant follicles and other

sizes of subordinate follicles; OR4M1 mRNA is greater in
granulosa cells of small subordinate follicles than

dominant follicles and other sizes of subordinate follicles.

Bovine [199]

Chemerin

Chemerin mRNA and protein expression is greater in
granulosa cells of small follicles than of large follicles,

whereas there is no influence of follicular size in
expression of chemerin receptors (CMKLR1, GPR1, and

CCRL2).

Bovine [200]

mRNA and protein expression of chemerin and its
receptor, CMKLR1, is greater in granulosa cells than in

theca cells.
Human [201]

Chemerin mRNA abundance is expressed in
granulosa cells. Murine [202]

Irisin FNDC5 2 and irisin receptors (ITGAV and ITGB1) mRNA
is expressed by granulosa cells.

Bovine [203]

Leptin

Leptin protein expression is greater in granulosa cells of
subordinate than of dominant follicles, whereas no

differences exist in protein expression of leptin receptor
(LEPR) in granulosa cells according to size of follicles.

Bovine [189]

mRNA and protein expression of leptin and its receptor is
detected in granulosa cells of preovulatory follicles. Human [204]

mRNA and protein expression of leptin is greater in theca
cells than in granulosa cells. Murine [205]

Resistin

Resistin mRNA is detected in granulosa cells. Bovine [206]

Resistin mRNA and protein is detected in granulosa cells. Human [207,208]

Resistin mRNA is not detected in granulosa cells. Murine [206]
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Table 2. Cont.

Adipokine Expression of Ligand or Receptor Species Reference

Omentin

INTL1 3 mRNA is detected in granulosa–lutein cells. Human [209]

INTL1 protein expression was observed in granulosa and
theca cells. Omentin gene and protein expression in

follicles changed throughout the estrous cycle.
Porcine [210]

Visfatin Visfatin mRNA and protein is expressed by
granulosa cells. Human [211]

1 Asprosin is a product of the cleavage of profibrilin 1, encoded by the gene FBN1. 2 Irisin is the product of the
cleavage of precursor encoded by gene FNDC5 3. Omentin is also described as intelectin1 (INTL1).

Several adipokines are known to regulate GC steroidogenesis, and these effects depend
on species and interaction with other hormones. In bovine GC, the adipokines asprosin,
resistin, visfatin, apelin, gremlin, leptin, adiponectin, chemerin, and irisin alter estradiol
synthesis in vitro (Figure 1) [193,200,203,206,212–218]. In human GC, leptin decreased
LH-induced estradiol synthesis, resistin suppressed FSH- and IGF1-stimulated estradiol
production, and chemerin suppressed estradiol synthesis stimulated by IGF1, whereas
visfatin and apelin enhanced estradiol synthesis stimulated by FSH and IGF1, respectively,
in vitro [197,201,207,211,219,220]. In rat GC, leptin suppresses FSH plus IGF1-stimulated
estradiol production while adiponectin and resistin enhance IGF1-stimulated estradiol
production, but resistin suppresses estradiol synthesis in basal conditions [191,206,221].
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Due to their impact on GC functions, adipokines are likely to be important regulators
of ovarian folliculogenesis. Adipokines that enhance in vitro estradiol synthesis in the pres-
ence of FSH or FSH plus IGF1, for example, may act as contributors to GC differentiation
during dominance and the preovulatory stage, while adipokines that suppress estradiol
production under the same conditions may be preventing this process. An example of
adipokine that may act as an anti-differentiation factor in bovine GC is chemerin because
it is a suppressor of estradiol synthesis, and its receptors are predominantly expressed in
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small follicles [200]. Another example of adipokine that may be especially important to GC
function during early folliculogenesis in cattle is asprosin; its receptor mRNA expression is
greater in GC of subordinate than dominant follicles, it stimulates GC proliferation, and
it enhances FSH-stimulated estradiol synthesis, whereas it suppresses IGF1-stimulated
estradiol production by GC in vitro [199,218]. Still, the observation that the intrafollicular
injection of asprosin increased the ovulatory rate of buffalo cows suggests that the actions
of asprosin may be timely regulated, and further research is necessary to fully unveil its
role in GC regulation and female fertility [222].

4.4. Factors Derived from Gastrointestinal Tract

Peptide hormones derived from the gastrointestinal tract are important regulators of
energy metabolism (for reviews, see [223,224]). Recent studies have reported actions of
these peptides on mammalian GC regulation. Ghrelin, a hormone known to be secreted by
the stomach, has been reported to reduce estradiol and progesterone synthesis by human
granulosa–lutein cells and estradiol synthesis by bovine GC in vitro [225,226]. Incretins,
hormones derived from the intestine, have been shown to suppress FSH-stimulated proges-
terone, but not estradiol, in rat GC in vitro [227]. These findings highlight the importance of
further research to elucidate how GC and other metabolic organs communicate to regulate
female fertility in mammals.

5. Conclusions

GC orchestrate female fertility through autocrine, paracrine, and endocrine manners.
The regulation of GC functions is crucial to determine the fate of ovarian follicles during
folliculogenesis through the modulation of cell proliferation and the secretion of sex steroids.
The specific role of several regulators of GC function requires further investigation for a
complete understanding of how GC are affected by metabolism.
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