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Abstract: Heteroepitaxial growth of Ge films on Si is necessary for the progress of integrated Si pho-
tonics technology. In this work, an in-house assembled plasma enhanced chemical vapor deposition
reactor was used to grow high quality epitaxial Ge films on Si (100) substrates. Low economic and
thermal budget were accomplished by the avoidance of ultra-high vacuum conditions or high temper-
ature substrate pre-deposition bake for the process. Films were deposited with and without plasma
assistance using germane (GeH4) precursor in a single step at process temperatures of 350–385 ◦C
and chamber pressures of 1–10 Torr at various precursor flow rates. Film growth was realized
at high ambient chamber pressures (>10−6 Torr) by utilizing a rigorous ex situ substrate cleaning
process, closely controlling substrate loading times, chamber pumping and the dead-time prior to
the initiation of film growth. Plasma allowed for higher film deposition rates at lower processing
temperatures. An epitaxial growth was confirmed by X-Ray diffraction studies, while crystalline
quality of the films was verified by X-ray rocking curve, Raman spectroscopy, transmission electron
microscopy and infra-red spectroscopy.

Keywords: epitaxial growth; germanium; plasma enhanced chemical vapor deposition

1. Introduction

Germanium has played a crucial role as a semimetal for its attributes to enable
electronic–photonic integration with silicon [1]. Germanium is superior to silicon in several
properties, including higher carrier mobility than Si, a smaller delta between the Γ point
and the L/X point of 136 meV, and longer cut-off wavelength than Si (at 1.55 µm) [2,3].
Germanium thin films find applications in waveguides in integrated photonic circuits [4,5].
Ge thin films also act as buffers for the growth of group IV alloys such as GeSn and SiGeSn
on Si substrates to counter the issue of the large lattice mismatch between the alloys and
Si substrate [6]. These group IV alloys can then be bandgap and lattice engineered by
varying their atomic compositions to achieve active photonic components such as light
emitting diodes, lasers, and detectors [7]. The addition of a thin hydrogenated Ge layer
was also seen to enable carbon-doped a-Si:H solar cells by the avoidance of the drop in
the fill factor (FF) and the elimination of the Schottky barrier [8]. This resulted in a 25%
efficiency enhancement for the a-Si:H solar cells in presence of the a-Ge:H interfacial buffer.
For these reasons, the hetero-epitaxial growth of Ge on Si has been studied extensively in
the last two decades.

Molecular beam epitaxy (MBE) and ultra-high vacuum chemical vapor deposition
(UHV-CVD) [9] are among the most widely adopted techniques for Ge epi growth. How-
ever, these techniques involve expensive reactors, cryogenic pumps, and/or complicated
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unit-processes [10,11]. These enable chamber background pressures of <10−8 Torr. Such
low chamber pressures are essential to ensure partial pressures of oxygen and water va-
por in the chamber are lower than the critical value to ensure the Si substrate surface
is not oxidized. Additionally, such techniques involve the use of exotic precursors (like
higher-order hydrides), two step low-temperatures/high-temperature (LT/HT) growth
and high temperature annealing to attain high film growth rates and low defect densities
in the films [12,13]. Hence, they result in a high thermal budget, and therefore the cost of
fabrication. The high temperatures involved have the potential to adversely affect films
with low thermal budgets used in the device process flows [14]. A low temperature single
step deposition process solves these challenges as it leads to significant cost reduction and
limits the thermal strain arising from the difference in thermal coefficients of expansion
between Ge and Si [15]. For the aforesaid reasons, Ge film growth at relatively lower
temperatures (<400 ◦C) were studied in this work.

Plasma enhanced chemical vapor deposition is being extensively used in the industry
to grow a wide variety of thin films for solar cells and photovoltaics such as hydrogenated
silicon nitride (SiNx) and aluminum oxide (AlOx), intrinsic and doped amorphous silicon
(a-Si), etc. [16]. Industrial PECVD reactors deploy either direct or remote systems. The
substrates are placed between two parallel plates in direct contact with the electrodes
and the excited plasma for the former, while the opposite holds true for the latter [17].
Radio-frequency (RF) discharge-based PECVD utilizes the capacitive coupling between
the electrodes, which excites the precursor gases, induces a chemical reaction, and results
in the deposition of the reaction products [18]. PECVD is known to provide a higher film
deposition rate compared to conventional CVD through the interaction of the precursor
sources with the highly energetic ions and radicals generated in the plasma [13,15,19]. In
this work, Ge films were deposited using an in-house assembled simplified RF PECVD
reactor by the use of the substrate–electrode direct-contact approach described above.

2. Experimental

A. Apparatus: The assembly consisted of a cylindrical quartz growth chamber with
an industrial showerhead system (for uniform precursor gas delivery) at the top and a
vacuum system (employing a turbomolecular pump and a mechanical pump) at the bottom
connected through flanges. Germane (GeH4) was chosen as the Ge precursor for film
growth, as it is the most commercially available and the most economical precursor for
Ge film growth [20]. The need for ultra-high vacuum conditions during film growth was
circumvented by the deployment of an ex situ chemical cleaning procedure comprising
of HF solution and H2SO4-H2O2 solution baths to etch away the native oxide and get a
hydrogen-terminated surface [17]. Thus, high quality films were deposited at a relatively
higher chamber background pressure (>10−6 Torr) and background oxygen. The exper-
imental details and the results from film characterization are provided in the upcoming
sections.

B. Coupon preparation: Lightly n-doped (phosphorous) Si (100) wafers (resistivity,
ρ = 4–16 Ωcm) were used as templates for Ge growth. The samples were diced into
1 cm × 1 cm coupons for the runs. The cleaning procedure employed in the study was
adopted from Carroll et al. (2000) to etch away native oxide from the coupons [21]. This
procedure enabled the avoidance of an in situ pre-deposition H2 bake process. Firstly, the
coupons were washed by acetone, isopropyl alcohol (IPA), and DI water for the removal
of organic residues. Then, a 1:100 HF (50% In DI water) aqueous solution bath was used
for native oxide etch. The metal contaminants were removed from the substrate using a
bath of H2SO4:H2O2 (35%) 1:1 ratio at 70 ◦C for about 20 min. The coupons were then
re-introduced to the HF bath for 20 min to remove the oxide formed by H2O2 and render
H-terminated surfaces. The coupons were then rinsed with DI water, dried with a nitrogen
gun, and instantaneously transferred to the PECVD chamber.

C. Ge epi-growth: The in-house assembled reactor as shown in the schematic (Figure 1)
was comprised of a tubular chamber made of quartz, a gas flow-control and delivery
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system, and a vacuum system with a series of mechanical pumps and a turbomolecular
pump connected by flanges. The cleaned Si coupons were placed on a molybdenum (Mo)
susceptor inside the reactor, the flanges were screwed, and the chamber was pumped
down using a mechanical pump. Higher levels of vacuum were created by means of a
turbomolecular pump which was operated for about ~20 min. A combination gage was
used to measure the vacuum levels. Once the turbomolecular pump was able to establish
the target levels of ~10−5 torr, it was disconnected by valves and a rotary pump was
used to maintain the target levels with a blower pump in series over the course of the epi
growth runs. H2 gas flowed into the chamber, and a throttle valve was used to attain the
desired pressures. Induction coils were used to heat the Mo susceptor to toggle coupon
temperatures. The induction heating method ensured that the chamber walls stayed cold,
which was necessary to limit gas-phase reactions to the surface of the substrate. The H2 flow
also ensured that the gases generated from the side walls of the quartz chamber are pushed
down into the vacuum system, and thus avoided contamination of the Si coupons. The
temperature of the Si coupons was measured by means of an Optris pyrometer suited for
the range of 300–800 ◦C. The input current on the induction coil was modulated to toggle
the Si coupon temperatures between the runs. On achieving the desired temperatures, a
showerhead was used to inject GeH4 gas (10% in Ar) to minimize concentration gradients
across the radius of the chamber, which aided with uniformity in deposition. Hydrogen
was used as a carrier gas and the partial pressure of the precursor was varied as required by
changing the precursor flow rate rates. Plasma was generated in the chamber during film
growth using RF plasma induction coil placed between injection and susceptor powered by
a 250 kHz 1 kW RF power supply. The reactor pressure was controlled by a throttle valve.
Ge films were deposited at substrate temperatures of 350 ◦C and 385 ◦C. The chamber
pressures were varied between 1 and 10 torr. GeH4 precursor flow rates of 20–160 sccm
were studied. Films were deposited with and without plasma assistance. GeH4 in Ar
precursor flowed for 60 min for each experiment. At the end of each run, GeH4 in Ar gas
was disconnected and H2 gas flowed through the quartz chamber to cool down the surface
of the Si coupons. The film growth conditions for different attempted runs are summarized
in Table 1.

Electron. Mater. 2021, 2, FOR PEER REVIEW 3 
 

 

C. Ge epi-growth: The in-house assembled reactor as shown in the schematic (Figure 
1) was comprised of a tubular chamber made of quartz, a gas flow-control and delivery 
system, and a vacuum system with a series of mechanical pumps and a turbomolecular 
pump connected by flanges. The cleaned Si coupons were placed on a molybdenum (Mo) 
susceptor inside the reactor, the flanges were screwed, and the chamber was pumped 
down using a mechanical pump. Higher levels of vacuum were created by means of a 
turbomolecular pump which was operated for about ~20 min. A combination gage was 
used to measure the vacuum levels. Once the turbomolecular pump was able to establish 
the target levels of ~10−5 torr, it was disconnected by valves and the a rotary pump was 
used to maintain the target levels with a blower pump in series over the course of the epi 
growth runs. H2 gas flowed into the chamber, and a throttle valve was used to attain the 
desired pressures. Induction coils were used to heat the Mo susceptor to toggle coupon 
temperatures. The induction heating method ensured that the chamber walls stayed cold, 
which was necessary to limit gas-phase reactions to the surface of the substrate. The H2 
flow also ensured that the gases generated from the side walls of the quartz chamber are 
pushed down into the vacuum system, and thus avoided contamination of the Si coupons. 
The temperature of the Si coupons was measured by means of an Optris pyrometer suited 
for the range of 300–800 °C. The input current on the induction coil was modulated to 
toggle the Si coupon temperatures between the runs. On achieving the desired tempera-
tures, a showerhead was used to inject GeH4 gas (10% in Ar) to minimize concentration 
gradients across the radius of the chamber, which aided with uniformity in deposition. 
Hydrogen was used as a carrier gas and the partial pressure of the precursor was varied 
as required by changing the precursor flow rate rates. Plasma was generated in the cham-
ber during film growth using RF plasma induction coil placed between injection and sus-
ceptor powered by a 250 kHz 1 kW RF power supply. The reactor pressure was controlled 
by a throttle valve. Ge films were deposited at substrate temperatures of 350 °C and 385 
°C. The chamber pressures were varied between 1 and 10 torr. GeH4 precursor flow rates 
of 20–160 sccm were studied. Films were deposited with and without plasma assistance. 
GeH4 in Ar precursor flowed for 60 min for each experiment. At the end of each run, GeH4 
in Ar gas was disconnected and H2 gas flowed through the quartz chamber to cool down 
the surface of the Si coupons. The film growth conditions for different attempted runs are 
summarized in Table 1. 

 
Figure 1. Schematic diagram of the simplified PECVD reactor used for deposition of the Ge thin 
films. 

Figure 1. Schematic diagram of the simplified PECVD reactor used for deposition of the Ge thin films.



Electron. Mater. 2021, 2 485

Table 1. Film growth conditions for different runs.

Run No. Substrate
Temperature (◦C)

Chamber
Pressure (Torr)

GeH4 Flow Rate
(sccm)

(GeH4 Partial
Pressure (mTorr))

Plasma
Enhancement

1 385 1 20 (4) No
2 385 10 20 (4) No
3 385 10 80 (16) No
4 385 10 160 (32) No
5 350 1 20 (4) No
6 350 10 20 (4) No
7 350 10 80 (16) No
8 350 10 160 (32) No
9 350 1 20 (4) Yes

10 350 10 20 (4) Yes
11 350 10 80 (16) Yes
12 350 10 160 (32) Yes

D. Epi-film Characterization: The structural properties and deposition rates of the Ge
epi films were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM),
and transmission electron microscopy (TEM), and their optical properties were character-
ized by Raman spectroscopy and infra-red (IR) spectroscopy. The film structure and quality
were characterized using XRD spectra and X-ray rocking curves, using PANalytical XPert
Pro MRD diffractometer with Cu Kα radiation. X-section SEM images of the films were
captured using a Hitachi S-4700-II SEM tool and were used to calculate the thicknesses
of the obtained films. Raman spectroscopy measurements were performed by a 532 nm
50 mW green laser beam coupled to a WiTec Alpha300R Confocal Raman Imaging system.
The strain present in the films were analyzed by a Princeton Instruments Acton SP2300
imaging spectrograph. Infrared spectroscopy (IR) runs were carried out at room temper-
ature using a Perkin Lambda 950 UV/Vis/NIR spectrometer for the wavelength range
of 1500–2200 nm for film absorbance characteristics. Transmission Electron Microscopy
was performed using a Philips CM200-FEG high resolution TEM at an accelerating voltage
of 200 kV to analyze crystalline structure and defects in the films. Surface height maps
and roughness were measured using a Zygo ZeGage 3D optical surface profile at 20×
magnification.

3. Results and Discussion

It was seen that runs 1 and 5 at substrate temperatures of 385 ◦C and 350 ◦C, respec-
tively, with chamber pressure = 1 torr did not result in film deposition. Increasing the
chamber pressure to 10 torr led to film deposition. This observation is explained by the
concept of mean free path, which is the average distance that the precursor molecules
travel before colliding with other molecules [22,23]. The mean free path, λ, is given by

λ =
kT√

2 ∗ π ∗ d2 ∗ P

where k is the Boltzmann constant = 1.38 × 10−23 m2kg s−2K−1;
d is the effective diameter of the molecules (in the order of 1 nm);
T is the temperature of the chamber (K);
P is the chamber pressure (Pa).
By estimating the chamber temperature to be 523 K and diameter to be ~1 nm, it was

observed that the mean free path at 1 torr is ~1.22 um and that at 10 torr is ~0.122 um. The
higher pressure should thus result in a much higher probability of collisions between the
precursor gas molecules causing more dissociation and hence resulting in film deposition.
Higher pressure would also lead to higher residence time at the substrate surface.
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X-ray diffraction spectra of the films (collected between 2θ of 20◦ and 75◦) confirmed
that all the films have been deposited in an epitaxial manner irrespective of the high
chamber background pressure (>10−6 torr). This was achieved through the optimization
of the process steps and process times before initiating film growth. The use of turbo
pumping substantially reduced the concentration of oxygen and water vapor during the
onset of the crystal growth. The turbo pump was used to achieve a background pressure
of ~5 × 10−5 torr. Thus, the partial pressure of oxygen in the background after pumping
was 8 × 10−6 torr (20% of atmosphere). However, as per Greve (1998), the partial pressure
of oxygen needs to be below 1.94 × 10−13 torr at deposition temperature of 385 ◦C and
below 4.69 × 10−14 torr at deposition temperature of 350 ◦C [23]. The value of oxygen
partial pressure during the process was therefore much higher than the required values.
To overcome this, the silicon substrate surface was terminated with hydrogen by ex situ
cleaning to considerably decrease its’ reactivity with oxygen. Additionally, hydrogen flow
was maintained continuously after the turbo pumping was stopped and the substrate was
only heated to a low temperature (<400 ◦C). Additionally, the film growth was performed
at high Ge/O partial pressure ratios. These steps ensured that the desorption of hydrogen
from the surface was inhibited till the first few monolayers of Ge were deposited and
consequently allowed the Ge films to be deposited at high background chamber pressures
(>10−6 Torr) [23–25]. The optimized process flow is shown in Figure 2.
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Figure 2. Optimized process flow for deposition of epitaxial Ge films at high background chamber pressure.

Figure 3a shows the impact of GeH4 partial pressure on the Ge film growth rate at
385 ◦C and at 350 ◦C with the chamber pressure maintained at 10 torr. It can be seen that
the film growth rate increases with increase in the GeH4 partial pressure, for both substrate
temperatures. This is explained by the higher flux of precursor molecules available for
dissociation and deposition at higher partial pressures. The film growth rate is higher
at 385 ◦C than at 350 ◦C for the same GeH4 partial pressure. Amongst the factors that
determine the growth rate of Ge are the availability of free sites for adsorption of reactant
species and the rate of the surface reactions (i.e., dissociation and migration) [25]. With
increasing substrate temperature, the coverage of surface by H decreases and the number
of sites for adsorption increases [26,27]. Additionally, the higher thermal energy at higher
substrate temperature increases the rate of the surface reactions. Thus, the film growth
rate increases with increase in temperature. However, at 350 ◦C, the film growth rate
increases linearly with partial pressure while at 385 ◦C, it increases rapidly initially and
then saturates. This is theorized to be due to the GeH4 decomposition reaction kinetics.
This reaction is primarily first order with the reaction rate expressed as:

rdecomposition of GeH4 = k ∗ pGeH4

where pGeH4 is the partial pressure of GeH4 in the chamber.
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section of the Run 8 film.

k is the reaction rate constant, which has an exponential relation to temperature
expressed by:

k = A ∗ e
−Ea
RT

where A is Arrhenius constant, Ea is the activation energy of decomposition, R is the
universal gas constant (8.314 JK−1mol−1), and T is the reaction temperature in K.

At the lower substrate temperature and partial pressure, the rate of decomposition is
more controlled, and primarily occurs close to the substrate due to the highest temperatures
available in that area of the chamber for the reaction to occur. The higher temperature of
385 ◦C provides a higher volume of reaction sites in the chamber. The higher temperature
coupled with high partial pressures of GeH4 molecules can result in a larger number of
collisions at more reaction sites that could result in the deposition of a significant amount
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of Ge atoms on the chamber side-walls [28,29]. This explains the dual slope observed for
385 ◦C in Figure 3a where the deposition rate is seen to be linear at lower partial pressures
and tends to attain saturation at higher partial pressures of GeH4.

Figure 4a shows the film growth rate as a function of GeH4 partial pressure with
plasma enhancement (red) and without plasma enhancement (black). It is seen that the
film growth rate is substantially higher with plasma enhancement. This is explained by a
higher precursor cracking rate in presence of the plasma. This is due to the kinetic energy
provided by the high energy ions and radicals present in the plasma leading to enhanced
precursor dissociation [30]. Additionally, the growth rate increases linearly with increase in
partial pressure attributed to the lower substrate temperature (i.e., 350 ◦C), which results
in reactions primarily on the substrate and follows first order kinetics as described in the
previous section.
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Electron. Mater. 2021, 2 489

From Figure 5a, it is seen that the full-width half max (FWHM) of the X-ray rocking
curves of the films deposited at 385 ◦C decreases with increasing GeH4 partial pressure.
FWHM of the rocking curve is a measure of the crystalline quality of deposited films:
sharper the rocking curve or lower the FWHM, better the crystalline quality [31,32]. This
observation implies that higher partial pressures greatly improve the material quality of the
films deposited at 385 ◦C [33]. This is due to the difference in films growth rates obtained
under different growth conditions. Lower growth rates would allow for impurities such
as background oxygen to incorporate in the depositing film due to the non-UHV CVD
conditions [34,35]. This would cause imperfections in the crystal lattice such as point
defects and dislocations leading to the degradation of the crystal quality. This phenomenon
would be limited at the higher growth rates and would thus result in a film with better
crystalline quality. However, for the films deposited with plasma enhancement, the FWHM
of the X-ray rocking curves (and thus the material quality) does not change with the change
in GeH4 partial pressure. While the increase in growth rate at the higher partial pressure
should restrict the inclusion of background impurities in the films, the bombardment of
the crystal lattice from the high energy species present in the plasma could lead to lattice
defects (such as broken bonds), and thus result in material quality degradation [11,36,37].

Electron. Mater. 2021, 2, FOR PEER REVIEW 8 
 

 

From Figure 5a, it is seen that the full-width half max (FWHM) of the X-ray rocking 
curves of the films deposited at 385 °C decreases with increasing GeH4 partial pressure. 
FWHM of the rocking curve is a measure of the crystalline quality of deposited films: 
sharper the rocking curve or lower the FWHM, better the crystalline quality [31,32]. This 
observation implies that higher partial pressures greatly improve the material quality of 
the films deposited at 385 °C [33]. This is due to the difference in films growth rates ob-
tained under different growth conditions. Lower growth rates would allow for impurities 
such as background oxygen to incorporate in the depositing film due to the non-UHV 
CVD conditions [34-35]. This would cause imperfections in the crystal lattice such as point 
defects and dislocations leading to the degradation of the crystal quality. This phenome-
non would be limited at the higher growth rates and would thus result in a film with 
better crystalline quality. However, for the films deposited with plasma enhancement, the 
FWHM of the X-ray rocking curves (and thus the material quality) does not change with 
the change in GeH4 partial pressure. While the increase in growth rate at the higher partial 
pressure should restrict the inclusion of background impurities in the films, the bombard-
ment of the crystal lattice from the high energy species present in the plasma could lead 
to lattice defects (such as broken bonds), and thus result in material quality degradation 
[11,36,37]. 

 
Figure 5. (a) X-ray rocking curve of Ge films deposited at 10 torr and different GeH4 partial pressures 
at substrate temperature of 385 °C. (b) X-ray rocking curve of Ge films deposited at 350 °C with 
plasma enhancement. 

The Raman spectra of the films deposited at low partial pressure (4 mTorr) and high 
partial pressure (32 mTorr) at different substrate temperatures is shown in Figure 6a. A 
sharp peak corresponding to the Ge–Ge phonon mode can be seen in all the spectra indi-
cating the high material quality of the films [38]. The strain present in the films can be 
calculated from the peak shift using the following equation: 

𝜀 =  
𝜔ீିீ − 𝜔

ீ

𝑏ீିீ

 (1)

where 𝜀 is the strain in the film, 𝜔ீିீ  is the observed Raman peak shift for the Ge−Ge 
bond, 𝜔

ீ  corresponds to the peak shift for the Ge–Ge bond in bulk Ge, i.e., 𝜔
ீ =

301 cmିଵ and 𝑏ீ =  −415 cmିଵ [39]. The observed peak position and the calculated 
strain for the films are given in Table 2. 
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The Raman spectra of the films deposited at low partial pressure (4 mTorr) and high
partial pressure (32 mTorr) at different substrate temperatures is shown in Figure 6a.
A sharp peak corresponding to the Ge–Ge phonon mode can be seen in all the spectra
indicating the high material quality of the films [38]. The strain present in the films can be
calculated from the peak shift using the following equation:

ε =
ωGe–Ge −ωGe

0
bGe–Ge

(1)

where ε is the strain in the film, ωGe–Ge is the observed Raman peak shift for the Ge–Ge bond,
ωGe

0 corresponds to the peak shift for the Ge–Ge bond in bulk Ge, i.e., ωGe
0 = 301 cm−1

and bGe–Ge = −415 cm−1 [39]. The observed peak position and the calculated strain for
the films are given in Table 2.
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Table 2. Raman peak positions and calculated strain for Ge films.

Run No. Film Thickness (nm) Ge–Ge Peak
Position (cm−1) Calculated Strain %

2 75 300.27 0.17
4 600 300.87 0.03
6 60 300.14 0.21
8 200 300.88 0.03
10 210 300.88 0.03
12 400 300.97 0.007

It is noted that the films obtained from runs 2 and 6 have a larger strain present
(0.2%), while the remaining films have negligible strain (<0.05%). This is most likely due
to the difference in the thickness of the deposited films. The films from runs 2 and 6 have
thickness ≤ 100 nm, while the remaining films are much thicker. The thicker films relieved
the strain arising from the difference in the lattice parameter between Ge and Si substrate
through the formation of misfit dislocation at the film-substrate interface, and thus are
completely relaxed [36,40]. On the other hand, the films for runs 2 and 6 were not thick
enough for strain relief through misfit dislocations and hence show higher %strain as seen
with Raman spectroscopy.

Figure 6b shows the absorption spectrum of the films. This was obtained by collecting
the reflectance (%R) and transmittance (%T) spectra of the film and then subtracting the
sum of the values from 100. It is seen that all the films have a cut-off wavelength of
~1600 nm, which is close to bulk Ge [41]. It can also be seen that the films from runs 2
and 6 have much lower absorption than the remaining films. This can be attributed to the
difference in thicknesses of the films as absorbance is directly proportional to the thickness
of the films [42]. Films grown by runs 2 and 6 are substantially thinner compared to those
grown by the other runs.

Figure 7 shows the dark and bright field TEM images of the epitaxial Ge film deposited
in Runs 4, 8 and 12 at different magnifications along with the electron diffraction pattern.
As seen from the TEM images, the Ge layer has high crystallinity with periodic atomic
arrangement. Some regions in the images have a dark contrast, which is because of the
electron clouding process and stress distribution [36]. A high concentration of lattice
imperfections, such as dislocations and stacking faults, are concentrated near the interface
between the Si substrate and Ge film. Some of the stacking faults (SFs) are observed in the
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high magnification TEM image, as marked in Figure 7c,f,i. The stacking faults occur to
relieve the strain in the film due to the large lattice mismatch between the Si and Ge and
the difference in their coefficients of thermal expansion [36,40]. A clear improvement in
the crystalline quality is observed moving away from the interface towards the surface,
corresponding to decreasing strain in the lattice. The diffraction patterns confirm the cubic
symmetry of the Ge films and the absence of any rings in the pattern confirm the absence
of any polycrystalline or amorphous growth.
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diffraction pattern (inset in (f)) of Ge film deposited in Run 8. (g–i) TEM image and diffraction pattern (inset in (i)) of Ge
film deposited in Run 12. The TEM images confirm the epitaxial growth and good crystalline quality of the deposited films
with electron diffraction pattern of the Ge layer showing cubic symmetry.
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Figure 8 shows the optical profile of the surface of the films deposited in Runs 4, 8 and
12. The average roughness of the films (Ra) is less than 1 nm in all cases. This shows that
the deposited films are highly smooth, which is essential for their application as buffers
or waveguides. This further confirms that the films are deposited in a planar manner
even with high energy plasma enhancement, and no 3D island growth takes place during
film deposition. This is likely because of the low temperatures maintained during film
deposition. It is seen that the film from run 4 shows a relatively higher roughness in the
nanoscale, which could be attributed to the additional reaction sites on the substrate due to
higher H-desorption at the higher temperature of 385 ◦C, as explained in a prior section.
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Figure 8. Optical profile of the surface of the Ge films deposited in (a) run 4, (b) run 8, and (c) run 12 showing highly smooth
surfaces.

4. Conclusions

A simplified in-house assembled PECVD reactor was used to deposit Ge films epitaxi-
ally on Si (100) substrates. Films were deposited at low substrate temperatures (350–385 ◦C)
and low chamber pressure (10 Torr) using GeH4 as Ge precursor at various precursor partial
pressures with and without plasma enhancement. Using a meticulous ex situ substrate
cleaning process to get a hydrogen terminated surface, optimizing times for wafer loading,
chamber pumping using turbomolecular pump and commencement of film deposition
and low temperature growth (<400 ◦C) allowed heteroepitaxial growth of Ge films at
high chamber background pressures (>10−6 Torr). Thus, a low economic and thermal
budget technology to deposit Ge films epitaxially on Si was successfully realized. The high
crystalline quality of the obtained films was confirmed by X-ray rocking curve analysis
and optical characterization. Plasma enhancement was shown to result in a higher rate of
film deposition (2–3 times higher), and thus can be coupled with the use of low growth
temperatures. Growth rate was also found to increase with an increase in the substrate
temperature and precursor partial pressure. Improvement in the film material quality
was observed with increasing GeH4 partial pressure due to higher growth rates. Strain in
the films was shown to be dependent on the film thickness, with fully relaxed Ge films
achieved for film thicknesses ≥ 200 nm. The process reported in this work can be used to
deposit epitaxial Ge films and possibly other Group IV materials in a cost-effective way.
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