
Citation: Pham, T.; Bui-Thanh, T.;

Nguyen, Q. Microseismicity-Based

Modelling of Induced Fracture

Networks in Unconventional

Reservoirs. Fuels 2024, 5, 839–856.

https://doi.org/10.3390/

fuels5040047

Received: 8 July 2024

Revised: 22 August 2024

Accepted: 7 November 2024

Published: 25 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Microseismicity-Based Modelling of Induced Fracture Networks
in Unconventional Reservoirs
Tri Pham 1, Tan Bui-Thanh 2 and Quoc Nguyen 1,*

1 Hildebrand Department of Petroleum and Geosystem Engineering, The University of Texas at Austin,
Austin, TX 78705, USA; triminhpham@utexas.edu

2 Oden Institute for Computational Engineering and Sciences, The Department of Aerospace Engineering and
Engineering Mechanics, The University of Texas at Austin, Austin, TX 78705, USA; tanbui@oden.utexas.edu

* Correspondence: quoc_p_nguyen@mail.utexas.edu

Abstract: A single planar hydraulic fracture is typically the primary component used to simulate
hydraulic fracturing stimulation in conventional reservoirs. However, in ultra-low-permeability
shale reservoirs, a large system of fracture networks must be generated to produce hydrocarbons
economically. Therefore, traditional modeling approaches centered on single planar fractures are
inadequate for accurately representing the intricate geometry and behavior of fractures in these
reservoirs. In previous works, 2D fractal fracture networks (FFNs) have been used to generate sets of
hydraulic and natural fractures based on microseismic event (MSE) data. Since microseismic data
are retrieved in 3D space, the aforementioned model cannot accurately represent induced fracture
properties. The objective of this paper is to study in detail the recently developed 2D FFN model and
propose a novel solution by expanding the previous model to accommodate real 3D microseismic
data. First, the definitions of the 2D FFN model are described, and associated calibration mechanisms
are proposed. Next, the 3D FFN model and its calibration system are demonstrated. While the
novel 3D calibration solution utilizes an identical matching concept to the 2D methodology, the
residual distances between the nodes and the MSE are calculated in 3D spaces. Finally, a set of real
microseismic data are used to calibrate the generation of 3D fractals using the proposed workflow. The
interactions between microseismicity and fractured reservoir dynamics are represented through the
integration of fractal fracture models and microseismic data. This work contributes to advancing the
current understanding of hydraulic fracturing in unconventional reservoirs and provides a valuable
framework for improving fracture modeling’s accuracy in reservoir engineering applications.

Keywords: microseismic; hydraulic fracturing; fracture modeling; unconventional reservoirs; 3D
fractal fracture network

1. Introduction

In the past, organic-rich rocks with low permeability, such as shale, were classified by
the petroleum industry as purely hydrocarbon source rocks. This classification stemmed
from their uneconomical use in production. Hydraulic fracturing made it possible to
economically produce oil and gas directly from these low-permeability source rocks. This
relies on extensive horizontal wells, spanning from 3000 to 10,000 feet, combined with
multistage hydraulic fracture strategies [1]. During hydraulic fracturing, highly pressurized
fluids and proppants are injected into the source rock. This process continues until the
pressure gradient exceeds the threshold at which the rock first fractures [2]. After the rock
ruptures, tensile and shear failures propagate throughout the elastic matrix, which creates
a permeable hydraulic fracture network [3,4]. This resulting hydraulic fracture network
permits and enhances the flow of hydrocarbons from the reservoir through fractures in the
rock that were not present prior to stimulation [5]. Some of these mechanical failures in
rock induce MSEs, which are small-scale events with a low magnitude, typically less than
zero [6].
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The elastic rebound theory states that stress and strain around a fault accumulate
gradually due to deformation, and are then released suddenly during an earthquake
by relative motion along the fault [7]. Within a given stratum, stress is anisotropic and
shear stress is concentrated along the naturally fractured surfaces. Before completion, the
anisotropic ground stresses generated by natural fractures maintain an equilibrium state,
stabilizing the fracture surfaces [8]. During hydraulic fracturing, the original stresses are
disturbed. Stress concentrations expand into areas of existing fractures, generated fractures,
and activated fractures, increasing strain energy. When stress increases to a certain degree,
deformations such as fault slip occur and stresses relax. The associated energy is released
in the form of elastic waves and induced microseismic events, as shown in Figure 1.
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Figure 1. An illustration of MSE generation in the hydraulic fracturing process, showing hydraulic
and natural fractures (blue) and MSEs induced by stress variation and energy release (red). The black
circle represents the wellbore in a gun-barrel view.

Microseismic monitoring has been utilized in previous studies to analyze and predict
the general shape and spatial extent of the induced fracture network [5,9–11]. Additionally,
numerical methods have been developed to predict and evaluate the relationship between
hydraulic fractures and observed microseismicity. In the Bossier Sands of Texas, the distri-
bution of microseismicity was found to depend on the regional stress state as well as the
heterogeneity of the elastic media [3]. Urbancic et al. collected and studied 994 MSEs with
11 triaxial geophones during three separate phases of the hydraulic treatment plan [12].
Time-differentiated seismic waves (longitudinal and transverse waves) recorded by differ-
ent sensors were utilized to determine the location, magnitude, and timing of microseismic
events. The findings revealed that the occurrence of microseismic events can provide
insight into the geometry of the hydraulic fracture. Moreover, the parameters relating to
frequency and magnitude can elucidate differences in fracture propagation and failure
mechanisms in the rock. Generally, the rate of microseismic events per unit of time varies
with the stress state, the fracture distribution, the strength of the rock, and the geometric
shape of the reservoir. It is important to note that microseismic events induced by fluid
injections may not all be related to fractures that are connected with each other.

In most commercialized fractured reservoir modeling, models consisting of a sin-
gle planar hydraulic fracture have been the primary models utilized to analyze stimu-
lation performance [13]. These models assume a fixed fracture geometry and utilize a
symmetric partially open fracture with a hyperbolic crack law to replace the tortuous
fracture [11,14]. This simplification allows for the approximation of fracture properties
using a modified Reynolds flow law. For ultra-low-permeability reservoirs, a large system
of fracture networks must be generated by hydraulic fracturing to economically produce
hydrocarbons [15]. Furthermore, in enhanced geothermal systems (EGSs) for geothermal
energy production, fractured reservoirs must contain an interconnected system of predomi-
nantly shear fractures [16]. Thus, the simplification of a single, planar hydraulic fracture
model used in industry software is inadequate for evaluating its performance in most
unconventional and geothermal reservoirs.

While current 2D models are useful, they fall short in terms of accurately representing
the nature of fracture networks due to their inability to capture the spatial complexity and
interactions between fractures in three-dimensional space. This limitation results in less
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reliable predictions of fracture behavior and, ultimately, suboptimal hydraulic fracturing
strategies. To address this gap, this study proposes an extension of the FFN model that
incorporates 3D microseismic data to offer a more precise and detailed representation of
fracture networks in unconventional reservoirs.

The proposed 3D fractal fracture network (FFN) model is an enhancement of the
previously examined 2D model and is specifically designed to incorporate the complexities
of 3D space. This advancement includes refined calibration mechanisms that extend the
capabilities of the 2D FFN model to accommodate 3D microseismic data. Furthermore,
MSE field data were employed to calibrate the generation of the 3D FFN model, demon-
strating the potential of this modeling approach in terms of characterizing real-world
fracture networks.

2. Background on Fracture Network Modeling

Accounting for fracture network complexity is critical to properly manage hydraulic
fracture architecture and available monitoring technologies. The discrete fracture network
(DFN) is utilized to model fracture propagation and fluid flow in hydraulically fractured
reservoirs. In DFN, hydraulic and natural fractures are explicit, and all individual ele-
ments are contained within the modeling space. The geometric and physical properties
of these discrete elements are statistically assigned to each specific fracture element based
on measured and interpreted data. While fracture geometry behavior can be assessed by
modeling the fluid flow for each fracture using DFN, localized fracture stress and heat
transfer in reservoir fluid flow are often neglected [3,17]. Additionally, concurrent simula-
tions must be performed as the fracture network is randomly generated based on statistical
data [18]. Pham and Weijermars developed the time-stepped linear superposition method
(TLSM) to observe the propagation behavior of multiple hydraulic fractures by modeling
the induced localized stresses of pressurized fractures and boreholes [19–21]. Because the
TLSM is purely based on elastic rock deformation, this approach neglects fluid flow and
proppant transport. Diaz-Acosta et al. explored the use of shear wave splitting to investi-
gate fracture properties in carbonate reservoirs in order to enhance the understanding of
reservoir heterogeneity [22]. Similarly, Bouchaala et al. examine azimuthal compressional
seismic wave attenuation to characterize fracture orientations and anisotropic properties in
fractured reservoirs, aiding in the improvement of hydrocarbon recovery strategies [23].
Other prior works using boundary element methods (BEM) and finite element methods
have successfully coupled fluid flow, proppant transport, and elastic rock deformation
with model fracture propagation and stress interference [24–26]. Since BEM solves for
the unknowns of the fracture boundary and FEM solves for the unknowns inside the
fracture, their integration allowed for the number of unknowns on the fracture’s surface to
be reduced. However, both BEM and FEM require one grid block to be in communication
with another, and the accuracy of the calculation depends on grid properties. Consequently,
the utilization of these methods heavily relied on the quality of the grid refinement process
in order to deliver robust solutions [27].

In addition to the previously mentioned methods, fractal theory can be employed to
model the complexity of fracture networks [28]. The Lindenmayer system (L-system) has
previously been used to explore organic growth, simulate developmental rules, and repre-
sent topological structures by creating complex shapes with simple rules [29]. This system
is a parallel rewriting system used to define complex structures by successively replacing
the parts of a simple initial object using a set of rewriting rules. The fundamental principle
of fractal geometry generation is recursion, which achieves successive results through
the repeated application of rules. The rewriting concept used within the L-system is an
effective method for applying recursion to achieve organic, complex geometries. Complex
geometries can be observed in natural phenomena, such as in the fractal nature of drainage
basins, plant growth, and lightning. In petroleum engineering, earlier fractal models have
been utilized to accurately represent the pore space in sandstone cores [30]. In 2017, the
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concept of utilizing the L-system was expanded to capture the complex characterization of
fracture networks [31].

The flexibility of developmental rules allows complex fracture networks to be char-
acterized by L-system fractals. Therefore, the propagation and branching of a complex
fracture network, resulting from the interaction of natural fractures and hydraulic fractures,
can be represented as a flexible sequence of rule adjustments. Previous works based on the
combination of fractal theory with MSE data allowed fracture network complexity to be
captured [31,32]. In these modeling strategies, the rewriting sequence and its components
are guided by the occurrence and location of detected MSEs during well stimulation. Zhang
et al. modified the classical 2D L-system to represent fractures in natural rocks [33]. Figure 2
shows a computed tomography (CT) image of a fracture in natural rock, accompanied
by a proposed fractal fracture illustration. Intuitively, the representative fractal closely
resembles the image of the fracture. The larger main fracture bifurcates into a series of self-
similar micro-fractures, which can be represented by fractals generated using the L-system.
Modifications to the L-system model parameters allow for an adequate match between the
fractal and the fracture to be achieved. The modeling of the 2D FFN is demonstrated and
discussed in Section 3. Subsequently, Section 4 introduces the 3D calibration system, which
is built upon the general concepts of the 2D FFN system. Additionally, the software used
for development in this work is MATLAB.
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Figure 2. An illustration of (a) a computed tomography image of a fracture in a natural rock [32], and
(b) a representative fractal fracture, where l is the fractal length, d is the width, k is the iteration, and
θ is the bifurcation angle.

3. Modeling of 2D FFN

L-system fractal fractures are generated by defining their variables and then calibrated
to MSEs with two objective functions. Previous works have described and generated
L-system fractals with three primary components: an alphabet, an axiom, and generating
rules [29]. Appendix A provides detailed explanations of how the L-system’s parameters
relate to physical fracture properties. As such, this work focuses on the calibration of the
L-system fractal to MSE data to generate an induced fractal fracture network. When the
generating rules are applied to the alphabet, each letter of the composed string can be
replaced with an action, and the whole string is then updated. The number of possible
rules is constrained by the number of valid letters within the alphabet. By extending the
alphabet, axiom, or rules, any possible combination of fractals can be generated. Figure 3
shows examples of fractals generated at different complexities by altering the system’s
rules. Evidently, this type of flexibility is useful for matching complex spatial datasets when
the proper matching criteria are applied.
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3.1. Calibration of MSE to L-System Fractal Models

The fractal fracture network (FFN) can be calibrated through the fractal nodes, as MSEs
often occur at the point of bifurcation or changes in fracture propagation direction [32]. The
MSEs can be considered to be data points, while the nearest fractal node serves as a query
point. It is assumed that fracture bifurcations or changes in propagation direction may
induce stress concentrations and strain redistributions, which could lead to microseismic
activity. This assumption warrants further investigation to fully comprehend the relation-
ship between microseismic events and fractal structures. A geometric representation of this
process is shown in Figure 4, and the workflow is illustrated in Figure A1 of Appendix A.
The matching problem can be solved using the following process:

• For each MSE, employ the nearest point search method to locate the nearest fractal node
based on Euclidean distance. Then, couple the nearest MSE with its corresponding
fractal node.

• Determine the total number of MSEs coupled to fractal nodes.
• Calculate the distance between each coupled MSE and its respective fractal node. Sum

these distances for all pairs of coupled MSEs and fractal nodes.
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node (point of bifurcation) to the microseismic event (red) in order to calibrate the FFN; (b) the
maximization of the number of coupled MSEs to the number of nodes in the fractal fracture.
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Using this process, two important metrics are established for a set of MSEs and a
fractal network:

• The total distances from MSEs to nodes.
• The number of matched MSEs to nodes.

Subsequently, the following criteria were employed as objective functions for the
matching process:

Objective 1 : max(n) =
n
m

> Threshold 1, (1)

Objective 2 : min

(
n

∑
i=1

Lij

)
< Threshold 2. (2)

where
Lij: distance between the coupled ith MSE and jth fractal node;
n: total number of coupled MSEs and fractal node pairs;
m: total number of MSEs.
The first objective function involves calibrating the fractal geometry to MSEs using

nodes, where the task is to calculate and minimize the total distance with each fractal
generation. The second objective function involves maximizing the amount of available
MSEs and constraining the number of generated nodes in the FFN. The threshold values
were established through empirical calibration and statistical analysis, based on observed
data, in order to ensure a satisfactory match using an optimization technique. In this study,
the objective was to achieve at least 80% matching of microseismic events to fractal nodes
and to keep the average residual distance to less than 3 times the average fractal length.

3.2. Demonstration of 2D FFN Calibration with Synthetic MSE Data

A synthetic case was generated to demonstrate the 2D L-system described in Section 3.1.
A set of synthetic 2D MSE data was generated to resemble field MSEs, utilizing a point
cloud algorithm, specifically, to initiate the calibration process in this study. This set of
data is contained within boundaries defined by the well, which acts as the starting point
for all hydraulic fractures. The starting positions of the fractals are determined by the
perforation location in the well, with the initial orientation constrained to be perpendicular
to the well. These fractals are then generated randomly away from the initiation point,
representing induced microseismic events as the fracture network grows from the wellbore.
The generated data only include spatial coordinates in the x, y, and z directions, while
additional information such as uncertainties and magnitudes are disregarded. Additionally,
it does not involve a fully physical model that considers isotropy, anisotropy, elasticity, or
viscoelasticity. These MSEs started at the wellbore and extended laterally (up to 700 ft)
away from the perforation cluster. The calibration workflow outlined in Section 3.1 was
used to match the generated fractal to the synthetic MSE data. The resulting 2D fractal
fracture network is shown in Figure 5b, and is denoted in blue. Additionally, the wellbore
with associated bi-wing perforations is shown in bold black lines, and the MSEs are plotted
in red. While an adequate match was achieved, not all the MSEs were coupled to fractal
nodes. These events occurred in closer proximity to the wellbore, where the segment of the
2D fractal is least complex.

Previous works aimed to generate FFNs and calibrate them to 2D microseismic
data [31,34–36]. These 2D calibrations of fractals to microseismic data restrict all MSEs to
2D space; hence, they are coplanar. However, this is an inaccurate representation when
considering real MSEs, where the 3D spatial coordinates of events are obtained. Figure 6
shows a set of open-source field microseismic data obtained from the Halliburton Laredo
Sugg 171-A HFTS Project. Visually, the data possess three dimensions: the x direction (east-
ings), y direction (northings), and z direction (depth). The front view denotes the x–z axes,
the top view denotes the x–y axes, and the side view denotes the y–z axes. Additionally, the
data were filtered with a signal-to-noise ratio (SNR) higher than 2 to ensure high certainty
and accuracy.
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Evidently, performing calibration in only two dimensions for a set of microseismic
data would yield conflicting results. As indicated by Figure 6, the front, side, and top
views revealed disparate perspectives. A 2D FFN result calibrated using data from the
x–y axes would greatly differ from that of the y–z axes. It is apparent that, instead of
having multiple disparate 2D FFNs, a single 3D FFN incorporating all spatial dimensions
is more appropriate. Additionally, removing a third dimension would render any results
counterintuitive as this method is data-driven. Therefore, we outline a 3D L-system in the
next section that can accommodate the spatial quality of MSE data.
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4. Modeling of 3D FFN
4.1. Three-Dimensional FFN System Description

In a similar manner to 2D L-system fractals, the same drawing framework is applied in
3D space [37,38]. The generated strings command the turtle to move in varying directions,
enabling the fractal to grow. In addition to turning left and right, as in the 2D system, the
3D turtle can pitch up/down and roll left/right, as shown in Figure 7. The starting vector
is composed of a rotation matrix, R. H represents the head of the turtle, L indicates the
left direction, and U indicates the up direction. Then, the new coordinates of the turtle are
obtained by multiplying the starting vectors with the rotation matrix. An example of a 3D
FFN is shown in Figure 8, illustrating the x–y plane, x–z plane, and y–z plane.
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4.2. Three-Dimensional FFN Conceptual Model

The 3D FFN model described in this study adopts a semi-infinite boundary. More
precisely, the boundaries are defined by the well, which acts as the starting point for all
hydraulic fractures. These fractures have the potential to extend deeper into the reservoirs,
while generating microseismic events. A conceptual model for a section of a horizontal
well is formulated with perforation clusters and the induced fracture network using a
system of 3D FFNs. Figure 9a illustrates a plug-and-perf fracturing treatment schematic
involving four perforation clusters. Fluid is injected through the inlet region and then
flows through the outlet region and the perforations. When the fracturing fluid encounters
the rock, the original stresses are disturbed, causing stress concentrations to expand into
areas of existing fractures, generated fractures, and activated fractures. When the pressure
reaches the fracture pressure, the associated energy is released in the form of elastic waves,
inducing microseismic events [17]. The 3D spatial coordinates of the MSEs produced from
the hydraulic fracturing process are used to calibrate the FFN. Additionally, the location of
the cluster spacing for each well constrains the starting position of each fractal. Figure 9b
depicts a conceptual model consisting of a wellbore (black) and induced fracture networks
(blue). Different perforation schemes are also shown to demonstrate the flexibility of the
3D FFN model.
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4.3. A Case Study of 3D FFN

A set of field microearthquake records is used to calibrate the generation of fractals
using the calibration workflow proposed in Section 3.1. The field data selected for this
process are taken from the publicly available Laredo Sugg 171-A HFTS Project [39]. The pur-
pose of the hydraulic fracturing test site (HFTS) project was to investigate fracture network
interactions within several multi-well completion schemes. Microseismic event (MSEs) data
were obtained by monitoring arrays during the hydraulic fracturing process for all wells.
The monitoring arrays consisted of 12 to 18 DDS-250 electrodynamic digital downhole shut-
tles. The DDS-250 is a four-channel, digital downhole shuttle, specializing in multi-level,
real-time, continuous, and high-definition borehole microseismic data [40,41]. Additionally,
the ultra-low-noise digitizer enables the recording of low-amplitude microseismic events.
These microseismic monitoring arrays were constantly repositioned to minimize the listen-
ing distance, thereby increasing the quality and quantity of high-certainty microseismic
data. The tomographic inversion process assessed velocity variations within the solid
media of the study area. Moreover, the algorithm used for determining the coordinates
of the microearthquakes foci incorporated the parameterization of discontinuous vertical
layering with a simple two-dimensional Chebyshev polynomial representation for surfaces
and velocities [42]. Both P waves and S waves were used to determine the location and
magnitudes of the microearthquakes. The errors seen in determining the coordinates and
depth of earthquake foci are vertical positioning errors, coming from seismic sources and
receivers; horizontal positioning errors, coming from well spacing; deviation survey errors,
based on accelerometer measurements or multi-shot surveys; and anisotropy, induced
by positioning errors. Figure 10 illustrates the well pad configuration and completion
sequence, while the monitoring array configuration used in the well pad is shown in
Figure 11. This HFTS comprises 11 wells completed with a zipper fracturing sequence,
multiple perforation schemes (3 and 5 perforation clusters per stage), multiple ranges of
fracturing stages (37, 47, 45, 49), 3 horizontal observation wells for microseismic detection
(Wells 3SU, 5SM, 6SM), and 1 vertical observation well for use in a tiltmeter.

Following the zipper fracturing sequence, detailed in Figure 10, the initial completion
was conducted in well 7SU. To analyze high-certainty microseismic (MS) data without
interference from other fractures and wells, data from the first stage of well 7SU were
selected. In well 7SU, the associated MS events were detected and recorded using the mon-
itoring array in well 5SM. The distinction between microseismic events (MSEs) and noise
is pivotal for ensuring the reliability of any analysis, particularly in noisy environments
like carbonates. Therefore, the MSEs were filtered to have a signal-to-noise ratio (SNR)
greater than 2 in order to differentiate between MSEs and noise events. An SNR threshold
value of 2 would result in a false alarm probability of approximately 2.5% [43]. The total
number of MS events after applying the filter was 147, compared to the unfiltered count
of 222 events. The size of the circles in Figure 12a does not indicate the magnitude of the
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microearthquakes. Additionally, the magnitude type is local, with a maximum magnitude
of −1.61 and a minimum of −2.57. Using the calibration workflow depicted and the criteria
detailed in Section 3.1, the FFNs calibrated with the 3D microseismic data results are shown
in Figures 12 and 13. Additionally, key parameters are shown in Table 1. While most MS
events could be matched to a fracture, there were many events that could not be matched.
Out of 142 microseismic events (MSEs), 121 were matched to fractal nodes, resulting in a
matching ratio of 0.82. The average residual distance was calculated to be 104.63 ft and the
standard deviation was 44.50 ft. Table 2 provides quantitative metrics on the quality of fit
between the 3D and field microseismic data. Although the residual distance is relatively
high, it accounts for all MSEs, including observed outliers. Empirically, the unmatched
events are located far away from areas where a high number of MS events occurred in close
proximity to each other. Additionally, the unmatched MS events are spatially located away
from the main cluster, where the event density is higher.
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and (c) side view.

Table 1. Parameters used in the calibration of 3D FFN to field microseismic data.

Fractal Property Value

Starting position (ft) (−1500, −10,337, −7697)
Starting orientation (◦) 0◦ (Parallel to x-axis)
Number of iterations 5

Length of segment (ft) 35 to 70 ft
Deviation angle 30◦ to 60o

Table 2. Summary of resulting calibration parameters.

Quality of Match Property Value

Total number of MSEs 147
Total number of matched MSEs 121

Percentage of MSEs matched 82.31%
Sum of residual distance 12,660 ft

Average residual distance 104.63 ft
Standard deviation of residual distance 44.50 ft

4.4. Four-Dimensional Microseismic Events Observations

The proposed methodology allowed for the calibration of 3D fractals to 3D MSEs,
which was an extension of current 2D methods [31,34,35]. Figure 14 shows the 20 min
interval time slices from different perspectives of the real MSE dataset from the Halliburton
Laredo Sugg 171-A HFTS Project. Empirical observations indicate that MSEs are spatially



Fuels 2024, 5 850

constrained near the wellbore relative to their occurrence time. This suggests that a longer
stimulation period does not necessarily lead to a larger stimulated fracture network, as the
spatial extent of the MSE remains unchanged with time. However, the density of MSEs
increases over time in the vicinity of the fracture cluster, indicating that the complexity of
the fracture network is growing.
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The observation that MSEs are spatially constrained near the wellbore, even as stim-
ulation time increases, can be explained by stress concentration and energy dissipation.
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Hydraulic fractures tend to be localized near the wellbore where the stress is applied
during fluid injection [44]. While shales are generally considered brittle, they can exhibit
ductile behavior under certain conditions. Under elevated temperatures and pressures,
shale exhibits ductile behavior. This ductility allows the rock to absorb more energy before
cracking, which contributes to the development of a more intricate and interconnected
fracture system over time [45].

The highest stress concentrations are typically seen near the wellbore where hydraulic
pressure is applied, leading to the most intense fracturing activity occurring in this re-
gion [46]. As fractures form and propagate, they dissipate the energy created by hydraulic
fracturing. Beyond a certain distance from the wellbore, the energy is insufficient to initiate
new fractures, limiting the spatial extent of MSEs. The increasing density of MSEs near
the fracture cluster over a longer stimulation period suggests that while new fractures are
not necessarily propagating further from the wellbore, the existing fracture network is
becoming more complex. Initial fractures create new stress fields that can induce secondary
fractures, increasing the density of the fracture network [47]. As induced fractures interact
and collide, more pathways and branches are created, enhancing the network’s complexity.

Understanding these spatiotemporal patterns can significantly inform fracturing oper-
ations. The insight that MSE density increases near the fracture cluster over time allows
operators to focus on maximizing fracture network complexity rather than merely extend-
ing stimulation periods. Additionally, the concentration of MSEs near the wellbore due to
stress concentration informs better management of hydraulic pressure and fluid injection
rates to minimize the risk of excessive fracturing or wellbore instability. Additionally,
understanding the role primary fractures in inducing secondary fractures aids in the design
of treatments to promote secondary fracture development. By leveraging these insights, the
effectiveness of fracturing operations can be enhanced, leading to improved hydrocarbon
recovery and operational efficiency.

4.5. Three-Dimensional FFN Model Discussions

The 3D FFN model is a significant advancement compared to the 2D FFN model,
providing a more complete and nuanced understanding of fracture networks and their
behavior within the reservoir. Unlike 2D models, which overlook propagation in a single
direction, d, 3D modeling offers insights into fracture growth in all directions, leading to a
comprehensive view of how fractures develop and connect. This enables more precise stress
and strain analyses, enhancing the understanding of how applied stresses influence fracture
formation and interactions. The improved accuracy in fracture network representation
and reservoir characterization also leads to better predictions of fluid flow and resource
recovery. By refining stimulation and production strategies based on the detailed 3D model,
fracturing operations and overall reservoir management can be significantly improved.

However, the calibration of generated fractal fracture networks using microseismic
events (MSEs) has several limitations. The first limitation is that fractal models assume self-
similarity as they grow, which may not fully capture the heterogeneity of natural fracture
networks. Another major limitation is the quality and quantity of microseismic data. The
availability of MSE data can be limited, particularly in low-permeability reservoirs and
high-temperature reservoirs, limiting the resolution and accuracy of the fracture network
model. The deployment and maintenance of microseismic monitoring equipment can be
challenging and costly, limiting continuous data collection [45]. Moreover, MSE data can be
noisy, making it difficult to distinguish between real events and noise [48].

Temporal constraints and resolution are also significant limitations. Fracture networks
evolve over time, and static models based on MSEs do not account for these dynamic
changes. Additionally, the temporal resolution of MSE data might not capture rapid
changes in the fracture network during hydraulic fracturing [46]. The heterogeneous
physical and mechanical properties of rocks, such as variations in brittleness and ductility,
are not always accurately represented in MSE-based models. The existence of natural
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fractures may significantly influence the propagation of new fractures, which further
complicates the calibration of fractals to MSE data.

Spatial resolution is also a concern. MSE data generally offer insights into fractures
near the wellbore, potentially facing reduced accuracy or overlooking distant fractures.
Additionally, the spatial resolution of MSE data may not be sufficient to capture micro-
fractures, which leads to incomplete network models. As such, calibrating fractal models
to match MSE data can be complex and requires robust datasets and validation techniques.
Addressing these limitations requires the integration of MSE data with other geophysical,
geological, and operational data to create a more comprehensive fracture network model.

Lastly, while the computational demands of the 3D FFN model in this study are rel-
atively manageable due to its focus on a single fracturing stage, extending the model to
a larger multi-well scenario would significantly increase its computational requirements.
This heightened demand could restrict the model’s applicability to large-scale projects and
hinder the real-time analysis and calibration of microseismic events. Moreover, as the com-
plexity of the model grows with more L-system iterations, it may face scalability challenges,
making it more difficult to apply in extensive or highly detailed reservoir studies. Ad-
dressing these challenges will require advanced computational resources and optimization
techniques to ensure effective application and scalability in more complex scenarios.

5. Conclusions

While the 2D FFN approach is valuable, it fails to accurately depict fracture networks
because it cannot capture the spatial complexity and interactions of fractures in three dimen-
sions. This limitation results in less reliable predictions of fracture behavior and suboptimal
hydraulic fracturing strategies. To address this issue, this study introduces an advanced
3D fractal fracture network (FFN) model that integrates 3D microseismic data to achieve a
more precise and detailed representation of fracture networks in unconventional reservoirs.
This novel model enhances the traditional 2D FFN by incorporating the complexities of
three-dimensional space and provides a calibration method designed to accommodate
three-dimensional microseismic data. Field microseismic event data were used to validate
the 3D FFN model’s effectiveness and compatibility with real-world fracture networks.

The results generated from this study reveal the following insights:

• The proposed novel solution successfully calibrated the 3D FFN using field microseis-
mic event data for a single fracturing stage.

• The areal extent of MSE occurrence did not increase with time, suggesting that longer
injection periods do not enhance the general size of the fracture network.

• The density of MSE occurrence increased with time in conditions of proximity to
the wellbore, indicating that fracture network complexity and connectivity increase
with time.

Future research should focus on several key areas to further advance the current 3D
FFN model. These include integrating physical phenomena such as stress shadow effects,
volume distribution, and proppant placement in order to provide a more comprehensive
understanding of fracture growth and network complexity. Additionally, incorporating
data from geological, geophysical, and production sources, along with high-resolution
and real-time microseismic data, will enhance model accuracy and reliability. Field testing
and validation through long-term studies and comparative analyses with other advanced
models will further validate predictions and performance. Applying insights from the
3D FFN model to develop and optimize hydraulic fracturing techniques and reservoir
management practices will lead to more efficient fracturing operations.
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Appendix A

Utilizing the objective functions shown in Figure 4, a general workflow is formulated
to match the successive generation of fractals to the MSE. A flowchart of the proposed
workflow is presented in Figure A1. The steps in the workflow are described in detail below:

1. Input microseismic data coordinates for each microseismic event.
2. Set a range of initial fractal properties.

a. Starting fractal position: this is the point at which the fractal begins, such as
the perforation point along the wellbore.

b. Starting fractal orientation: this is the direction in which the fractal propagates,
and is typically perpendicular to the minimum principal stress direction.

c. Number of iterations: This determines the complexity of the fractal fracture.
This corresponds to the scale of the fracture network, with higher iteration
numbers representing more complex fracture patterns. As such, it relates
to the number of branching events within the fracture network as the latter
propagates through the rock.

d. Length of segment: The length of each segment in the fractal correlates with
the fracture lengths in the subsurface. Longer segment lengths represent longer
fractures, which are typically associated with higher energy release during the
fracturing process.

e. Deviation angle: This is the angle at which the fracture segment deviates at
a fractal node. This parameter is responsible for modeling the tortuosity or
complexity of the fracture path. It reflects the variations in fracture orientation
due to heterogeneities in the subsurface, such as changes in stress fields or
material properties.

f. Starting axiom: this is the initial state of action for the fractal fracture.

1. Set a rewriting rule for the starting axiom.
2. Generate the corresponding fractal fracture using the first set of indices from the range

of fractal fracture properties and the rewriting rule.
3. Associate each microseismic event with its nearest neighbor using a nearest neigh-

bor search.
4. Count the number of coupled MSEs and fractal nodes.
5. Calculate the sum of the distances between an MSE and its coupled fractal node.
6. Perform conditional statements.

a. Ensure that the ratio of coupled MSEs to total MSEs exceeds a given thresh-
old value.

b. Verify that the total distance between coupled MSEs is lower than a given
threshold value.

1. If the condition in step 8 is false, proceed to step 10.
2. Choose the next set of indices from the range of values in the proposed fractal proper-

ties and repeat steps 3–8.
3. If none of the range of set fractal properties satisfy the condition outlined in step 8,

adjust the rewriting rule and repeat steps 3–8.
4. Output the corresponding fractal fracture if the condition in step 8 is true.

https://edx.netl.doe.gov/group/hfts-1-phase-1-group
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