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Abstract: The field of Unmanned Aerial Vehicles (UAVs), or drones, is encountering quick develop-
ment in the areas of air transportation and computerization. Progress in innovation has prompted
more noteworthy capacities and highlights in UAVs, which are currently broadly involved by the
military and flying industry for an assortment of high-end generally safe errands. Highly advanced
UAVs that can be controlled remotely via a controller, mobile phone, or ground station cockpit
have been developed through the integration of automation technology and machine vision, which
includes thermal imaging, cameras, sensors, and other sensors. The three primary characteristics
of UAVs will be investigated in this study, namely power-source technology, deep-learning neural
networks for computer vision, and some of the applications that are used the most. The goal is to
thoroughly examine these characteristics and offer suggestions for addressing some of the difficulties
of optimizing UAV performance and also exploring potential future trends.
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1. Introduction

UAVs, or drones, are aircraft that do not have human pilots on board. They can be
controlled from a ground station remotely or independently, using sensors and actuators [1].
The historical backdrop of UAVs can be traced back to the Second World War; however,
it was only after the 1980s that their innovation progressed fundamentally, basically for
military applications. Aeronautics, mechanical engineering, computer science, mechatron-
ics, robotics, and power electronics are just a few of the engineering fields that have been
combined to create advanced UAVs with a wide range of capabilities and applications.
Depending on the application, modern UAVs are outfitted with sophisticated surveillance
systems, digital and infrared cameras, thermal sensors, radar, and GPS. They have acquired
ubiquity in late years because of their different non-military personnel applications, for
example, payload conveyance, traffic checking, aiding risky regions, catastrophic event
reaction, and salvage activities. UAVs are also used for more private, hobby-like activities,
like photography [2,3]. In this paper, we will break down a cutting-edge sort of robot and
its condition of the cutting-edge circumstance. We will discuss future UAV industry trends
and compare the most recent sources on the subject. From their early emergence in the
20th century to the present, unmanned air vehicles have introduced novel engineering
technologies to a vast field of study. Three criteria were used to select the references used
in this paper: the significance of content, its popularity, and chronological release.

The key contribution of our research paper endeavors to undertake a comparative
analysis of power supply technologies for drones and machine vision applications to
identify and forecast future trends in the UAV technology sphere.
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The seamless incorporation of automation technology and machine vision, including
cameras, sensors, and thermal imaging, has led to the development of highly sophisticated
UAVs that can be remotely controlled via various mediums such as a controller, mobile
phone, or ground station cockpit. As it directly affects the UAV’s flight time and payload
capacity—both of which are crucial elements for both military and commercial applica-
tions—power source technology continues to be a key component of UAVs. To further
improve UAV capabilities, particularly in high-risk missions, machine vision applications,
such as cameras and sensors, are being used increasingly. This analysis is indispensable in
making informed decisions regarding the selection of power sources and machine vision
technologies for specific UAV applications. Additionally, our research endeavors to identify
future trends in UAV technology, which is crucial considering the rapidly evolving nature
of the UAV industry. By identifying these trends, we can obtain valuable insights into
the direction of UAV technology and make informed decisions regarding investments in
research and development. Consequently, our research paper offers valuable insights into
the intricate interplay between power supply technologies and machine vision applica-
tions, two fundamental components of UAV technology. UAVs have been exhaustively
studied with the help of machine vision applications. The utilization of machine vision
in UAVs enables cutting-edge technologies such as visual navigation algorithms, obstacle
detection and avoidance, and aerial decision-making [4]. Vision-based algorithms have
been devised for a myriad of applications, encompassing visual surveillance, aim systems,
recognition systems, collision-avoidance systems, and navigation [5]. Recent research
endeavors have primarily concentrated on applying machine vision to control unmanned
underwater vehicles (UUVs) [6]. These applications have undergone progressive evolution,
with distinct projects categorizing and evaluating the performance of strategies [7]. The
integration of computer vision technologies in UAVs has precipitated advancements in
autonomous positioning, aerial collision avoidance, and other intelligent applications [8].
This undertaking [9] presents an in-depth examination of the deployment of computer
vision systems by UAVs, with a particular emphasis on its myriad applications, facilitated
through data search, information storage, and chiefly, data processing and analysis. A
machine vision system tailored for aerial surveillance [10] is capable of interpreting and
processing data acquired by a UAV’s on-board infrared camera, which is configured for
automatic fire detection applications, wherein an alarm is triggered upon fire identifica-
tion. The implementation of an open-loop control algorithm is demonstrated to precisely
position the TVS laser ray within the UAV’s Field of View (FOV), leveraging the theoretical
concept of a continuous FOV [11]. In [12] the attitude, altitude, and motion of a UAV can be
estimated using a camera mounted on the UAV, employing either catadioptric or fish-eye
sensors. The machine vision component of a system devised to enable Unmanned Aerial
Systems (UAS) to autonomously maneuver around civil aerodromes, relying solely on a
monocular camera, is expounded upon [13].

The paper’s organizational structure follows this outline: Section 2 provides an
overview of UAV classification, followed by Section 3 which delves into the applications
of AI, Deep Learning, and Computer Vision in UAV sensing. Section 4 comprehensively
covers UAV power sources, including batteries, fuel combustion engines, solar power,
hydrogen fuel cells, methanol fuel cells, supercapacitors, and laser charging technologies.
Section 5 focuses on the energy management system, while Section 6 highlights various
UAV applications. Lastly, Section 7 addresses current challenges and future trends.

2. UAV Classification

Understanding the drone’s technical characteristics is essential. UAVs are identified
by their physical components, such as the aircraft configuration and propulsion system,
just like conventional aircraft. However, unlike conventional aircraft, UAVs do not have
windows or a cockpit. However, some UAVs are built with the option of pilot or unmanned
working modes. Because there is no human pilot, there is more room for experimentation
and design, especially with the airframe and engine configurations, which has led to a
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wide range of UAVs. Weight, wing configuration, and rotor configuration have all been
used to classify UAVs in the past. Chaurasia et al. [1] categorized UAVs according to
their weight as micro (less than 2 kg), mini (more than 2 kg and less than 20 kg), small
(more than 20 kg and less than 150 kg), and large (more than 150 kg). UAVs are also
categorized by wing configuration, with fixed-wing, rotary, and flapping wings being the
most common. Flapping wings are extremely rare. Furthermore, rotor classification [14]
is another method of categorizing UAVs, in which they are classified by the number of
rotors and their configuration [1], such as quadcopter, hexacopter, single-rotor, and so on,
as shown in Figure 1.

Figure 1. Drone chart distribution based on UAVs’ weight and wingspan size (Reprint with permis-
sion from Ref. [15]. Copyright 2022 IEEE).

Helicopters are not just designed for human-occupied, large aircraft purposes. They
can also be produced in the form of small, unmanned drones. These drones come in various
sizes, ranging from toys for children to larger drones equipped with cameras. The price of a
drone increases as its size grows. Some single-rotor drones can be purchased in stores for as
little as 20$, while others cost thousands online. A characteristic of single-rotor commercial
drones is that they run on fuel instead of electricity, depending on their size. Although they
are more efficient than multi-rotor drones, they are not as efficient as fixed-wing drones.
Both single-rotor drones and fixed-wing drones are challenging to fly and require proper
balance. Single-rotor drones are not as versatile as multi-rotor drones, but they can carry
heavier payloads. They are commonly purchased by individuals seeking a new hobby [14].
In addition to fixed-wing and multi-rotor drones, several other types of UAVs cannot be
classified as one or the other. Some UAVs possess characteristics of both multi-rotor and
fixed-wing systems, and these are referred to as hybrid systems. An example of such a
drone is a hybrid quadcopter, which utilizes multiple rotors for vertical takeoff and landing,
while also incorporating wings to allow for longer-range flight. Less commonly seen are
UAVs that cannot be classified as either fixed-wing or multi-rotor systems. One example of
this type of drone is the ornithopter, which flies by mimicking the wing movements of birds
and insects. These drones are still largely in the developmental stage and are not widely
used in practical applications. Some well-known ornithopters include the Delfly Explorer,
which mimics the flight of a dragonfly, and the Micromechanical Flying Insect, a drone
in development designed to resemble a fly in both size and movement. Another type of
UAV that falls outside of the fixed-wing or multi-rotor classification is the jet-engine drone.
The T-Hawk drone is a well-known example, utilizing a turbofan to give the appearance
of an unmanned jetpack rather than a fixed-wing or multi-rotor drone. Additionally, it
is important to note that unmanned balloons, such as hot air, helium, or hydrogen-filled
balloons, can also fly by heating the air inside; however, they are generally not considered
drones. This also applies to rockets and jetpacks [16–18].
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3. AI, DL and Computer Vision in UAV Sensing
3.1. Artificial Intelligence

The goal of artificial intelligence, a rapidly developing field, is to enable machines to
carry out tasks that would typically require human intelligence, like those made possible
by new information and technological communication systems like the Internet of Things
(IoT). Teaching machines to mimic human behavior is the field’s main goal. Key ideas in
AI include machine learning and deep learning, which entail the construction of multiple
artificial neural network layers. Numerous industries have advanced significantly as a
result of these methods [19–21].

3.2. Deep Learning and Computer Vision

Computer vision is the field of artificial intelligence that enables computer systems to
extract important information from visual inputs such as images and videos and respond
accordingly. Machine vision uses AI to allow computers to perceive, observe, and under-
stand their surroundings. Image processing is used to automate tasks that the human visual
system can perform. To work properly, computer vision requires a large amount of data, as
it analyzes these data to identify and recognize specific inputs, such as frames or images.
To instruct a computer on identifying automobiles, it requires a substantial amount of car
illustrations to enable it to acquire the ability to distinguish and discern cars, including
those that are free from any physical impairment or blemish [22]. Neural networks (NNs)
are machine learning techniques that are influenced by biological neural networks. NNs use
nodes (also known as neurons) to transmit information in the same way as human bodies
do. The most frequent type of NN in UAV technology is the convolutional neural network
(CNN). CNNs are a particular kind of NN that is designed for the exclusive purpose of
identifying images. Convolution, as the title suggests, is the technique through which the
initial image at the input of a machine vision application is altered with filters that identify
significant image features like boundaries (Figure 2). The system shall acquire knowledge
about the screened data it identifies independently and correspond it with the anticipated
result. A distinguishable instance is identifying the label of an entity in a specific picture
that serves as an input. Typically, filters consisting of 3 × 3 or 5 × 5 squares are employed
to detect the orientation of the boundary or characteristic: leftward, rightward, upward,
or downward.

Deep artificial neural networks frequently acquire more efficient data representations
than shallow ones. Nevertheless, incorporating many layers in a CNN can lead to the
problem of vanishing or exploding gradients, which can make optimization challenging [23].
In reality, the back-propagation technique is utilized to comprehend the significance of the
filter parameters’ weights utilized in the convolution process.

Figure 2. Training process of a CNN [24].

The utilization of an activation function is a crucial step in the convolution procedure.
Within a neural network, activation functions determine how the input’s weighted sum is
transformed into an output from a node or group of nodes in a specific layer of the network.
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Although there are diverse options for activation functions, the non-linear function ReLU
(Rectified Linear Unit) is the most commonly employed [23,25]:

σ(x) = max(0, x) (1)

Tanh:

σ(x) =
ex − e−x

ex + e−x (2)

and Sigmoid:

σ(x) =
1

1 + ex (3)

Non-linear activation functions are especially suitable for constructing multi-layer artificial
neural networks as they can consistently approximate all functions, as demonstrated
by the universal approximation theorem. The ReLU function is particularly favored in
unmanned aerial vehicle applications owing to its uncomplicated mathematical expression
and derivative:

f (x) =

{
x, if x > 0
0, if x ≤ 0

(4)

f ′(x) =


1, if x > 0
0, if x < 0
undefined, at x = 0

(5)

The ReLU activation function is effective in preventing the vanishing gradient problem that
can occur during the training of a neural network. In this process, the weight of each layer
receives an update based on the error function. Pooling layers, such as max-pooling layers,
are frequently placed between two convolutional layers to minimize the spatial volume
of the input image. The max-pooling layer has no parameters; however, it does have two
hyper-parameters: the filter (F) and the stride (S).

Generally, if we have the following dimensions:

W1 × H1 × D1, then
W2 = (W1−F)

S+1

H2 = (H1−F)
S+1

D2 = D1
Where W2, H2 and D2 are the width, height and depth of output. The final stages of

a CNN structure for computer vision contain fully connected layers that respond to the
input activation function [26]. These layers are made up of weights, biases, and neurons
that are linked together and used to categorize images into numerous categories through
training. The SoftMax activation function is often used for multi-class classification and is
situated at the end of the fully connected layer in a CNN, whereas the Logistic activation
function is used for binary classification. The final output layer displays labels that have
been one-hot encoded.

Two well-known types of CNNs commonly used on UAVs are VGG-16 and AlexNet:

• VGG-16 is a highly accurate object identification and classification system, identifying
1000 photos from 1000 different categories with 92.7% accuracy. It is a popular picture
classification technique that may be simply applied to transfer learning [27].

• In contrast, AlexNet is proficient in identifying objects that are not centered, as demon-
strated by the fact that most of its top 5 classifications are appropriate for each frame.
In 2012, AlexNet emerged as the winner of the ImageNet contest, boasting a top 5 error
rate of only 15.33%, which was significantly lower than the 26.2% achieved by the
runner-up. Additionally, AlexNet is acknowledged for pioneering deep learning in
fields like medical image analysis and natural language processing [28].
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Now, let us explore some examples and real-world applications of computer vision in
tasks involving UAVs Various object detection benchmarks have been used to evaluate ob-
ject detection algorithms. These benchmarks include datasets like the Daimler dataset [29],
captured by a vehicle in an urban environment, with thousands of annotated pedestrians
for training and testing. The Caltech dataset [30] consists of hours of videos recorded from
a vehicle in regular urban traffic, with annotated bounding boxes representing pedestrians.
The KITTI-D dataset focuses on evaluating detection algorithms for cars, pedestrians, and
cyclists in autonomous driving scenarios. Mundhenk et al. [31] created a dataset with
diverse car images from different locations, while the UA-DETRAC benchmark [32] pro-
vides a large dataset for vehicle detection. PASCAL VOC is a pioneering dataset [33] that
standardized object detection, image classification, object segmentation, person layout,
and action classification tasks. ImageNet [34] expanded on this work, significantly increas-
ing the number of object classes and images available for training and evaluation. The
MS COCO dataset, introduced by Lin et al. [35], includes a vast number of images with
manually segmented objects across various categories, offering more detailed annotations
compared to ImageNet. Single-object tracking is a foundational challenge in computer
vision, involving the estimation of a target’s trajectory in a video sequence, given its initial
state. Over the years, numerous datasets have been curated for evaluating single-object
tracking algorithms. Wu et al. [36] have developed a standardized platform to assess these
algorithms, significantly increasing the dataset size from 50 to 100 sequences. Multi-object
tracking, on the other hand, is a crucial research problem with diverse applications in
surveillance, behavior analysis, and autonomous driving. Prominent multi-object tracking
evaluation datasets include PETS09, PETS16, and KITTI-T [35]. Crop health monitoring
is a crucial task performed by farmers daily to identify potential threats such as diseases,
pests, and slow growth rates. Traditional methods involved visual inspection and manual
collection of ground samples from random locations. For more than 50 years, color and
infrared photography captured by various platforms have been employed to monitor crop
growth. Advanced image data analysis tools enable drones equipped with mounted cam-
eras to identify crops with diseases or deficiencies. Drones are extensively utilized in the
agricultural sector for field mapping and crop monitoring. By utilizing images captured
by drone-mounted cameras, a vegetation indices map can be generated. These indices
provide valuable information about crop conditions, including disease presence, nutrient
requirements, and water stress levels [37]. Drones in agriculture facilitate various activities
that contribute to crop health monitoring, allowing for timely corrective actions to prevent
crop spoilage. Here are a few examples of drone applications in crop health monitoring [38].

3.3. Deep Reinforced Learning

Deep reinforcement learning (DRL) is a field of machine learning that merges the
principles of deep learning (DL) and reinforced learning (RL) to generate an optimal
solution through experience. Through multiple iterations, this experience evaluates a
reward system to determine the most suitable actions for an agent. The interaction occurs
at each discrete time step t in the series. The agent receives a state St from the state space S
and chooses an action At from a collection of feasible actions in the action space A(St) at
each time step. As a result of the previous action, the agent receives a numerical reward
Rt+1 ⊂ R from the environment one time step later. The agent has now entered a new state
St+1 [39]. The incorporation of DRL into UAV management was implemented to tackle
particular challenges encountered in that field (see Figure 3). DRL supports the undertaking
of UAV control by enabling it to operate with algorithms that do not require a model when
the UAV model is excessively intricate to determine, to accommodate non-linearities in
the system, to learn how to attain the objective without explicit training, and to operate in
unfamiliar environments [40].
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Figure 3. Taxonomy graph of DRL Algorithms for UAV Tasks [40].

4. UAV Power Sources

UAVs can be classified based on their power source [15]. Different types of UAVs are
used for different applications, and there is a suitable power source for each application.
Some options include fuel cells, combustion engines, batteries of various technologies, and
more. These power sources are crucial for the operation of UAVs and must meet certain
requirements such as size, weight, cost, and power density. Power density is the amount of
energy contained in a power source, measured as energy per unit weight, typically in Joules
per cubic meter (J/m3) or watts per cubic meter (W/m3, W = J/s). One way to evaluate
power sources is through the Ragone diagram of a supercapacitor [41], which can have
high specific power but low specific energy (Wh/kg), which limits its ability to operate for
extended periods.

4.1. Batteries

There are various types of batteries suitable for different UAVs based on their size and
application. Some of the commonly used battery types for UAVs include lead-acid, lithium-
polymer (Li-Po), alkaline, nickel-metal hydride, and lithium-ion (Li-Ion). Among these,
Li-Po and Li-Ion batteries are the most popular for drones due to their high energy density
and lightweight, which enables them to be manufactured in different sizes and shapes, and
have high discharge rates. However, these batteries are also relatively expensive and may
have safety hazards such as overheating and explosions. Additionally, they require special
chargers and are not always readily available on the market. To determine the best battery
for a specific UAV application, it is crucial to compare the specifications of different power
supplies. For example, power density is important for aircraft acceleration, energy density
is crucial for range, and cycle life is critical for battery life. Additionally, factors such as size,
weight, and cost also play a role in determining the suitability of a battery for a specific
UAV application [42–44].

4.2. Fuel Combustion Engines

The drones that run on gasoline-powered fuels produce amazing results because they
can operate for almost a day on a single tank. Due to its many benefits, two-stroke piston
engines are typically seen in UAVs. It is affordable, sturdy, user-friendly, and extensively
available as it is a recognized technology. Diesel engines are superior to petrol engines in
several ways, including being more durable, efficient, and fuel-flexible. The weight of these
engines is a huge plus. The UAV’s fuel amount lowers as it operates, making the aircraft
lighter and giving it more speed and range [45]. The most efficient turbo engines are those
that are more state-of-the-art, such as turbofans, turbojets, or turboprops. However, their
use is ruled out due to their weight, price, and numerous intricate systems that demand
pompous upkeep. Some UAVs with military uses do, however, use turboprop engines.

4.3. Solar Power

Solar electricity is a well-established technology that utilizes photovoltaic panels, as
shown in Figure 4, to convert sunlight into electrical energy [46]. Specifically, the panels
use the Maximum Power Point Tracker (MPPT) method to efficiently capture the maximum
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amount of power possible from the photovoltaic cells. The MPPT algorithm continuously
monitors the voltage and current of the panel and adjusts the duty cycle of the DC-DC
converter to maintain the optimal operating point for the cells. This process is controlled by
a microcontroller or more advanced computer system. Solar panels are frequently utilized
in stationary unmanned aerial vehicles and are significantly impacted by environmental
factors like sunlight and temperature.

Figure 4. The I-V curve of a photovoltaic solar cell is where the line intersects the knee of the curve
with the point of maximum power transfer.

4.4. Hydrogen Fuel Cells

A hydrogen fuel cell is an electrochemical cell that turns hydrogen’s chemical energy
into electricity via two redox processes. As a byproduct of combining hydrogen and oxygen,
the process generates power, heat, and water [47]. Fuel cells that utilize proton exchange
membranes (PEMFCs) are highly appropriate for transportation purposes owing to their
lower pressure and temperature ranges, as well as their reliance on specialized electrolyte
membranes that conduct protons. They are considered the upcoming major innovation
in power technology and have the potential to replace the Space Shuttle’s alkaline fuel
cells. Jiao et al.’s recent study [48], a new PEMFC technology was proposed that increases
power density by reducing the film thickness of commercial membranes and incorporating
a cerium salt to improve the thin film’s stability (see Figure 5). However, PEMFCs also
have some disadvantages, such as a short lifespan, a high cost, and the requirement for
large or heavy fuel storage.

Figure 5. Diagrams for energy and power density of various energy storage devices [49].
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4.5. Hybrid Energy Sources

A hybrid system combines two or more power sources, each of which has its advan-
tages depending on the circumstances. The strength and energy efficiency of the system is
enhanced by this strategy [45]. One common example is the integration of fuel cells and
batteries. The functioning of fuel cells necessitates the utilization of apparatus like fuel and
air pumps, valves, and compression systems, which can cause delayed responses and prob-
able fuel insufficiency leading to decreased efficiency, reliability, and durability. However,
the combination with batteries can overcome these drawbacks and offer advantages to the
hybrid system, as noted in [42,50].

4.6. Methanol Fuel Cells

The typical method for producing hydrogen involves splitting water and natural gas,
which results in a high production cost. The methods for storing hydrogen by compression
and liquefaction, however, are considerably more expensive. To increase the amount of
hydrogen for the compression process, the storing pressure rises from 200 bar to 700 bar.
It is required to use more durable tanks, whose weight is meant to be high, under such
high pressure. When hydrogen is controlled by a cryogenic system at 20.4 K, it is in liquid
condition and ready for the liquefaction process. As a result, liquid fuel-feeding Direct
Methanol Fuel Cells (DMFCs), which provide higher specific energy and possibly longer
endurance, have been utilized by UAVs. Additionally, because of its liquid phase, methanol
is considerably simpler to transport, store, and handle. As a result, elaborate and expensive
auxiliary facilities are avoided, which in turn lowers the cost. Because of the resources from
biomass, methanol is also more accessible than hydrogen, which further reduces the cost.
The use of DMFCs in UAVs is being hampered by two problems, though. One is the poorer
energy efficiency compared to hydrogen fuel cells, which is caused by the slow kinetics of
the methanol oxidation process (MOR), and the other is the issue of CO species poisoning
the catalyst during MOR, which leads to performance degradation over time [51].

Proton exchange membrane fuel cells (PEMFCs), which have an anode DL, an anode
CL, a PEM, a cathode CL, and a cathode DL, can simply be used as a model for how DMFCs
should be constructed. Liquid methanol is given to the DL and diffuses to the CL, where it
is oxidized in the presence of water to produce carbon dioxide, protons, and electrons:

CH3OH + H2O→ CO2 + 6H+ + 6e− (6)

E0
a = 0.02V (7)

Following that, the produced protons are delivered by PEM to the cathode, where they
participate in the ORR process:

3/2O2 + 6H+ + 6e− → 3H2O (8)

E0
c = 1.23V (9)

When the previous two equations on the anode and cathode are combined, the overall
reaction can be represented as follows:

CH3OH + 3/2O2 → CO2 + 2H2O (10)

E0 = 1.21V (11)

DMFCs have a theoretical voltage that is lower than that of hydrogen fuel cells. Similarly,
activation, Ohmic, and concentration losses lead a DMFC’s real voltage to be significantly
lower than its theoretical value. Furthermore, the practical operating voltage of DMFC
is substantially lower than that of hydrogen fuel cells due to the methanol crossover
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phenomenon. The oxygen on the cathode reacting with the methanol delivered from the
anode to the cathode resulting in low voltage and mixed potential .

4.7. Hydrogen Fuel Cell and Super Capacitor Combination

Previous studies and experimental combinations that employed supercapacitors (SC)
and hydrogen fuel cells (HFC) had several limitations. These constraints will be crucial in
this experiment. Bauman and colleagues create an HFC car by combining an SC bank and a
35 kW HFC. The HFC employs a boost DC-DC converter to achieve the required voltage for
the motor (250–400 V). As a result, a smaller HFC can be employed, resulting in less vehicle
mass and lower total expenses. The SC bank contains 27, A. Townsend et al. [45], where
two SC-packs with a capacity of 405 V, 2 F are made up of six 2.5 V, 350 F cells connected
in series.

Because it makes the system lighter, cheaper, and more efficient, the SCs do not utilize
a DC-DC converter. The SCs store the energy produced by regenerative braking and supply
additional power only when necessary (during accelerations). The best fuel economy is
achieved when the kinetic energy of the vehicle and the potential energy of the SCs remains
constant. This study reveals that the HFC and SC combination cannot compete with the
HFC and battery combination because the SC bank lacks adequate energy storage to meet
peak power demand. Combining a few SC banks in parallel is recommended to boost
energy storage capacity; however, this greatly increases system weight and reduces fuel
consumption to an infeasible level below that of the HFC and battery combination [52].

Thoungthong and colleagues hypothesized that an SC bank of 292 F, 500 A, 30 V, and
a proton exchange membrane fuel cell of 500 W, 40 A, 13 V might power an HFC car. The
HFC will use a single-direction boost converter to meet power requirements and store
regenerative braking energy, while the SCs will use a two-direction boost converter. The
HFC will provide most of the power for this configuration, with the SC bank being used
when peak power needs are noted, or regeneration breaking energy exceeds zero. The HFC
will also be utilized to recharge the SCs throughout the operation.

This configuration allows for a reduction in the amount of HFC utilized, increased
efficiency over only using HFC, and energy recovery via regenerative braking. Because
the HFC requires 5–10 min of steady power, the system may fail at startup if just SCs are
used as an auxiliary power source. Future improvements to either of these case studies
would be to improve the energy characteristics of the SCs or to investigate the possibility
of a hybrid system that uses a battery to absorb the majority of these constant power
requirements [53,54].

4.8. Supercapacitors

The polarization of the electrolyte solution can be used to store supercapacitor en-
ergy [55]. The ions are separated in a supercapacitor using the dielectric interface, as shown
in Figure 6:

Figure 6. (a) Structure of electrostatic capacitor, (b) structure of SC, (c) equivalent circuit model of
SC [56].

Electrochemical double-layer capacitors, or supercapacitors, offer numerous benefits
compared to conventional capacitors. One of these advantages is their ability to store a lot
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of energy in a small volume due to their high capacitance and large surface area. Another
advantage is that they can release energy faster due to their high-power rating. In addition,
their capacitance value is higher than that of conventional capacitors.

4.9. Laser Charging Technology

Laser beaming is a technique used frequently in military intelligence and surveillance
operations to extend missions [57]. The laser receives energy from an external source and
generates a narrow, focused beam of light with a specific frequency and wavelength. This
is aimed at the photovoltaic cell that was made just for a UAV. The laser beam is converted
back into usable energy by this photovoltaic cell, which is used to recharge the drone’s
battery. On a UAV, a maximum power point tracking device can be installed to improve
energy transfer efficiency. The experiment was carried out using laser beaming technology
on a quadrotor UAV with a modified solar cell array that could receive energy from an
infrared laser as shown in [48]. The experiment, which was carried out at the Future of
Flight Museum in Everett, Washington, ultimately revealed that the given quadcopter,
which had a total mass of one kilogram, was able to remain in the air for more than 12 h in
a row. This technology works with both fixed-wing and multi-rotor UAVs of different sizes
and does not care what the environment is like. However, the most significant drawback of
this method is that a source of energy must always be mobile and close to the UAV, making
it unsuitable for some long-range applications. Another issue is safety in the workplace. In
general, lasers are thought to pose a risk to human health, and working with high-intensity
lasers can only be done with protective gear on. Also, lasers are not allowed in all places,
especially in urban areas where they can be very disruptive to people’s lives [58,59].

Battery-powered commercial UAVs are widely used for a variety of applications,
including aerial photography, surveying, inspection, and delivery. There are several types
of battery-powered commercial UAVs, including fixed-wing UAVs, multi-rotor UAVs, etc.
The most popular examples which are widely on the market are depicted in the first row of
Table 1.

Table 1. Categorized Commercial UAVs by Energy Source.

Battery Powered UAVs

• DJI Phantom 4 Pro: The most popular quadcopter out there.
Mainly used for photography and videography.

• Parrot Anafi: A fixed-wing UAV that is used for surveying and
mapping.

• Matternet M2: This is a quadcopter UAV that is used for medical
delivery.

Fuel Powered UAVs

• Yamaha RMAX: A multi-rotor UAV that is used for agricultural
purposes.

• Aeryon SkyRanger: A quadcopter UAV that is used for aerial
inspection and monitoring.

Solar-Powered UAVs

• Sunbird Solar-Powered UAV: A fixed-wing UAV by BAE Systems.
• Airbus Solar UAV: A fixed-wing UAV powered by solar cells and

lithium-ion batteries.
• Zephyr Solar-Powered UAV: also an Airbus Product.

Hybrid source UAVs

• Boeing Insitu Integrator: A fixed-wing UAV that is powered by
a combination of a gasoline engine and electric motors.

• Honeywell T-Hawk: This is a vertical takeoff and landing
(VTOL) UAV.

• MMC HyDrone 1800: A multi-rotor UAV that is powered by a
combination of batteries and a hydrogen fuel cell.

Drones with traditional motorization, typically powered by diesel or gasoline are
presented in the second row of the above table. On the other hand, the advantages of
commercial solar-powered UAVs include long flight times and low operational costs since
they do not require any fuel. The following examples of commercial solar-powered UAVs
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are depicted in the third row above, which are in development or an experimental phase.
Finally, the main advantage of hybrid-powered UAVs is that they have the benefits of both
the power sources that are being used. Some suitable examples are shown in the last row
of the table.

5. Energy Management System

UAVs require a reliable and efficient energy management system to operate effectively.
UAV energy management systems typically consist of a battery or a combination of batteries,
a power converter, and a control system. One important aspect of UAV energy management
is maximizing the energy efficiency of the system. This can be done through several
techniques, such as optimizing the flight path, adjusting the power output of the motor,
and using regenerative braking to recover energy during descent [60].

The estimation of the battery’s remaining capacity and the monitoring of its health are
two important aspects of UAV energy management. Algorithms are used to predict the
state of charge and remaining capacity of the battery by analyzing the temperature, voltage,
and current data. Overall, the efficient and dependable operation of UAVs depends on a
well-designed and effective energy management system. It has the potential to shorten
flight times, improve safety, and lower operational costs [50].

6. UAV Applications

Automated unmanned airplanes are not generally restricted to military use, as the
market and innovation keep on advancing. Even for tasks that could be risky for humans
to perform, they are increasingly being used for everyday tasks. For instance, the fully
autonomous UA known as the General Atomics MQ-9 Reaper was initially developed
solely for the use of the United States Air Force. Because it is equipped with neutralization
systems, its primary function is air defense. The IAI Eitan, an unmanned reconnaissance
aircraft primarily tasked with collecting and providing intelligence imagery, signals, mea-
surement, and signature information, is another example of a similar aircraft. In their
respective nations, these aircraft represent cutting-edge technology. Precision Agriculture
(PA) is a significant use of UAVs, which is a harvest efficiency board framework in light of
cutting-edge aviation, data, and correspondence innovations. Crop production can now
be managed more precisely and effectively thanks to these technologies [61–65]. Experts
in the field of archaeology have the option to employ UAVs to survey a particular region
of importance and establish three-dimensional representations of historical landmarks, as
opposed to depending on traditional two-dimensional maps. This is an exciting utiliza-
tion of drone capabilities in this industry. As an illustration, in 2014, drone technology
was utilized to renovate the aged remains of Aphrodisias, a diminutive Hellenistic Greek
municipality situated in Turkey.

Additionally, drones can also be used to enhance cultural tourism by providing
guided tours of historical sites, a feature that has been utilized during the COVID-19
pandemic and can be beneficial for remote students. The potential of Unmanned Aerial
Vehicles (UAVs) extends beyond just tourism and archaeology, encompassing a variety
of uses including photography, freight transportation, scientific exploration, monitoring,
and civic defense. The emergence of Swarm Unmanned Air Vehicles (SUAVs), a fleet of
UAVs that collaborate to achieve a shared objective, is broadening the horizon of UAV
applications even further. SUAVs rely on autonomous decision-making rather than human
operation [66,67]. Despite the continued use of military applications, there is an increasing
fascination with civilian uses of drones. Inexpensive drones and their groups have the
potential to become an encouraging foundation for groundbreaking research initiatives and
forthcoming commercial applications that can aid in a variety of tasks. The advancements
in sensor technology installed on UAVs are creating new opportunities for unmanned
operations, resulting in entirely novel kinds of applications and services.

A suitable accurate application of the swarm formation is around rescue operations.
In certain emergencies, such as floods, using multiple UAVs can be more helpful than just
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one. Floods are becoming more common due to environmental changes, and a swarm
of UAVs can be used to search for people more efficiently during high water flow [68].
If one UAV carries a life jacket for someone affected by the flood, a group of UAVs can
make a significant impact on search and rescue efforts. The swarm can also share location
and photo data to make better use of resources. By assigning different roles to different
UAVs, such as one collecting data and others dropping supplies, a swarm can work together
effectively. Overall, a swarm of UAVs can be highly effective in emergencies when searching
for and rescuing people [69]. The are multiple techniques of UAV swarm formation and
most of them are based on triangle shape figures.

7. Current Challenges—Future Trends

A challenge the industry faces is the production of hydrogen fuel cell-powered UAVS
for commercial usage. Commercial UAVs driven by hydrogen fuel cells are still in the
experimental and development stages and are not yet widely available. However, several
businesses are striving to create fuel cell-powered UAVs for a range of uses, including
surveillance, inspection, and mapping. One illustration is the “Alpha 800” UAV created
by UAVOS Inc., (https://www.uavos.com/, Redwood City, CA, USA) which uses a hy-
drogen fuel cell and has a maximum flight time of 2.5 h [70]. Another example is Horizon
Unmanned Systems’ (HUS) “Hycopter”, a multi-rotor UAV with ultra-light fuel cells that
convert hydrogen in the aircraft frame into electricity to power the rotors. According to
citehorizon, the technology will transform existing 20–30 min multi-rotor operations into
flights lasting several hours, allowing for cheaper/faster aerial surveys and making drone
delivery more realistic [71].

The aerospace industry has shifted its focus towards UAVs, as they strive to improve
their operational efficiency, power management, and application versatility in the future.
This way, air vehicles can become more effective and adaptable to various use cases.

The aerospace industry is exploring new power-source solutions, one of which is
the integration of lithium-sulfur batteries (Li-S). These batteries offer several advantages,
including cost-effectiveness due to the use of low-cost materials such as sulfur as opposed to
nickel or cobalt. Additionally, Li-S batteries have a higher power density with a theoretical
energy of 2700 Wh/kg [72]. This has been demonstrated by the successful use of Li-S
batteries in a UAV by the chemical department of LG in South Korea, which completed a
stable high-altitude flight test. Furthermore, Li-S batteries have been integrated with a solar
cell-powered drone and have proven to be effective in a broad-wing UAV [73]. Dalhousie
University and Tesla’s battery partner conducted research on advanced battery technologies
with a focus on cells with higher energy density (Figure 7). They highlighted that such cells
hold promise for not just electric cars but also drones and electric planes. The stability of
their cycles remains a significant hurdle for these cells. Although the target was to attain
50 rotations in the past year, the utilization of a refined electrolyte has the potential to
prolong longevity up to 200 rotations. Nevertheless, this advancement might not meet the
commercialization standards, as the present industry demands 800 to 1000 rotations [74].
The cell has a gravimetric energy density of 360 Wh/kg and a volumetric energy density of
1000 Wh/kg [74].

When utilizing drones to enhance network connectivity and IoT applications, safe-
guarding security and privacy is of utmost importance. Hostile user attacks on drones can
compromise the confidentiality, privacy, and integrity of data. To ensure the protection
of drones, advanced technologies such as distributed ledger and wireless physical layer
security must be thoroughly examined and evaluated. Along with security, forthcoming
research must also strive to strike a balance between the level of security offered by these
technologies and the necessity to sustain top-notch service and reliability. Energy con-
sumption is a critical challenge faced by swarm UAVs. A swarm of UAVs may impede the
successful completion of missions due to their size, which increases with battery capacity.
Therefore, for the successful deployment of swarm UAVs, it is essential to find means
of reducing the size and improving energy efficiency. The battery capacity of a swarm

https://www.uavos.com/
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of UAVs is crucial to the successful completion of their missions. The size of the UAVs
also increases with the battery capacity. A review by Yongkun Zhou et al. [75], discusses
the use of autonomous battery maintenance mechatronics systems as a potential solution
to this problem. With this method, a dead drone battery can be replaced quickly with a
fully charged replacement while multiple other batteries are being charged simultaneously.
Additionally, this system can be set up to provide optional uptime expansion and a compact
footprint, allowing for battery maintenance with minimal drone downtime. One more huge
test confronting UAVs is the issue of network safety. Security remains a major issue that
must be addressed, as a growing number of UAV-related cyberattacks are being reported.

Figure 7. Gravimetric energy density of Li-S batteries compared to the state-of-the-art alternative
battery technology (Reprint with permission from Ref. [15]. Copyright 2022 IEEE).

The danger is especially significant in military scenarios like combat missions, where
falsification and Sybil attacks on UAVs present a considerable hazard. The matter of
location privacy is also closely connected to localization and should be taken seriously. To
avoid revealing their exact location to unintended parties, users can use various techniques,
such as obfuscation. These issues are particularly pertinent when dealing with Cyber-
Physical Systems (CPS) and the IoT. Another viable option is to utilize identity and site
validation protocols that incorporate public-key-based authentication mechanisms and
motion validation to confirm the authenticity of a group of UAVs.

8. Conclusions

This research investigates the three essential aspects of UAV technology that present
the most technical challenges: energy sources, computational vision utilizing NNs, and
applications. The classification of UAVs can be a complex endeavor due to various factors
such as dimensions, weight, power supply, and intended use. It is crucial to take a system-
atic approach when determining the appropriate power source for a specific application.
The amalgamation of computer vision, artificial intelligence, and neural networks are cru-
cial advancements in the advancement of smart processes, therefore rendering unmanned
aerial vehicles (UAVs) a valuable resource in military as well as civilian domains.

Our work examined thoroughly different power supply technologies for drones and
machine vision applications. We have gained valuable insights into the technical challenges
by studying energy sources, computational vision with neural networks, and their practical
uses in UAVs. Classifying UAVs is complex due to various factors like size, weight, power
requirements, and intended purposes. Therefore, it is crucial to approach power-source se-
lection systematically, considering the specific needs of each application. Our comparative
analysis deepened our understanding of the strengths and limitations of different power
supply technologies. Moreover, the integration of computer vision, artificial intelligence,
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and neural networks has greatly advanced intelligence processes. This combination has
made UAVs highly valuable in both military and civilian uses. The use of computational
vision and neural networks has enhanced UAV capabilities in surveillance, object detection,
and autonomous navigation, among other applications. Looking ahead, ongoing advance-
ments in power supply technologies will continue driving innovation in the field of drones
and machine vision. Exploring new power sources like fuel cells and solar panels is crucial
to improve the endurance and efficiency of UAVs. In summary, this comparative analysis
has contributed to our understanding of power supply technologies for drones and ma-
chine vision applications. It emphasizes carefully considering specific requirements when
selecting a power source. The integration of computational vision and neural networks
has created new possibilities, making UAVs indispensable tools in various industries. With
continued research and development, the future of drone power supply technologies looks
promising, shaping the potential and capabilities of these autonomous systems.
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