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Abstract: The data used during training in any given application space are directly tied to the
performance of the system once deployed. While there are many other factors that are attributed to
producing high-performance models based on the Neural Scaling Law within Machine Learning,
there is no doubt that the data used to train a system provide the foundation from which to build.
One of the underlying heuristics used within the Machine Learning space is that having more data
leads to better models, but there is no easy answer to the question, “How much data is needed to
achieve the desired level of performance?” This work examines a modulation classification problem
in the Radio Frequency domain space, attempting to answer the question of how many training
data are required to achieve a desired level of performance, but the procedure readily applies to
classification problems across modalities. The ultimate goal is to determine an approach that requires
the lowest amount of data collection to better inform a more thorough collection effort to achieve the
desired performance metric. By focusing on forecasting the performance of the model rather than the
loss value, this approach allows for a greater intuitive understanding of data volume requirements.
While this approach will require an initial dataset, the goal is to allow for the initial data collection
to be orders of magnitude smaller than what is required for delivering a system that achieves the
desired performance. An additional benefit of the techniques presented here is that the quality of
different datasets can be numerically evaluated and tied together with the quantity of data, and
ultimately, the performance of the architecture in the problem domain.

Keywords: data analysis; data collection; Machine Learning; neural networks; pattern recognition;
physical layer; RF signals; RFML; signal synthesis; software radio; wireless communication

1. Introduction

Machine Learning (ML) is “the capacity of computers to learn and adapt without
following explicit instructions, by using algorithms and statistical models to analyze and
infer from patterns in data” [1]. No matter the field, ML begins and ends with the data
available to use during training. Without relevant data to learn from, ML is effectively a
“garbage in, garbage out” system [2]. The application of ML to problems within the Radio
Frequency (RF) domain is no exception to this rule, yet within the scope of intentional
human-made emissions, data are easier to synthesize than within more prolific domains
such as image processing [3]. Due to the readily available tools for developing ML-based
algorithms (TensorFlow [4], PyTorch [5], etc.) and this ease of synthesis for establishing
comprehensive datasets, there has been an explosion of published work in the field. Adding
to the ease of training models, the RF domain has the availability of open-source toolsets
for synthesizing RF waveforms such as GNU Radio [6] and Liquid-DSP [7], to name a few.
However, going from a purely synthetic environment to a functional application running in
the real world has a number of considerations that must be addressed. A brief explanation
about the gaps from synthetic data to functional application data is discussed in Section 1.2.

This paper focuses on providing an applied understanding of working with ML in
the RF spectrum, with particular regard to understanding the training data in applications
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that fall in the domain space of Radio Frequency Machine Learning (RFML). To better
clarify this, RFML is a subset of ML that overlaps communications, radar, or any other
application space that utilizes the RF spectrum in a statistically repeatable manner, where
ML algorithms are applied as intelligently close to the digitized samples of the RF spectrum,
or the physical layer in the Open Systems Interconnection (OSI) model, as possible [8].
For simplicity within this work, focus will be given to the field of Deep Learning (DL) as
the particular subset within ML due to the well-suited nature of DL systems at extracting
inference from raw data [9]. Two fundamental questions for developing a DL architecture
for a given application are

• What data should be or are available to be used in order to train the system;
• How many data are needed for the current approach to achieve the desired

performance level?

These two questions are systematically addressed within this work, providing a
blueprint for how they can be answered in general.

The two most common problems in regard to datasets with DL systems are having a
large enough quantity of data, and having those data be of a high enough quality, in order
to develop a well-generalized model [9]. In fact, answering the question of how many
data are needed is a fundamental unknown that relies on the developers’ experience and
insight into the problem space. The end results of attempts at answering this question
are the common rule of thumb answers of “ten times the feature space” or “as many data
as are available”, which is an issue across all domains [10–19]. The desire to understand
how the final performance of a system is linked with the available training dataset size
is in the domain of research looking at Neural Scaling Laws (NSLs) [20–24]. The NSLs
tie the final loss of a network to the number of parameters in the architecture, training
dataset size, and available computing budget [21]. In this work, the number of parameters
is fixed and the available compute budget is assumed to be infinite, directly evaluating
the loss of the trained network to its available training dataset size; however, the metric of
interest is actually the performance of the network rather than its loss. The driving force
of this approach allows the network and dataset size to be tied directly to an operational
goal, rather than the less intuitive values of loss, which in the problem space used in this
work greatly deviates from the typical power-law relationship as the performance reaches
a functional limit, let alone the fluctuations seen in the empirical relationships [22].

The work of Chen et al. [25] describes the concept of quality in three ways: Comprehen-
siveness, Correctness, and Variety.In this work, the primary focus is on understanding the
aspect of Variety in terms of the origin of the data, Captured (received spectral samples by
a sensor), Synthetic (samples generated from formulae), and Augmented (a mixture of the
previous origins), while the other two aspects are more concerned with the information
being both present in the dataset as well as being correctly labeled, which is given for the
datasets used. More details about the origin of the data are presented in Section 1.2.2, while
data quantity and quality are discussed in more detail in Section 2.

The discussion of characteristics inherited in the application of ML is given in
Section 1.1, along with the RFML problem of Automatic Modulation Classification (AMC),
which is discussed in more detail in Section 1.1.3. The more well-discussed problems and
nuisances inherent to the RF spectrum are discussed in Section 1.2. Examining the effects of
data quantity, along with the concept of how data quality can be quantified, are presented
in Section 2. The problem of estimating the data needs from a minimal set are contrasted to
the full availability of data in Section 3 where a combination of two metrics offers a more
balanced estimate than either metric alone. Finally, conclusions about how the presented
AMC approaches can be well generalized to RFML at large are presented in Section 4.

1.1. Machine Learning Concepts

ML, in the most general form, is the process of creating a function that maps an
observable in the form raw data, meta data, and/or extracted features of the data to
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some more convenient form for an applied task through observations available during
training [9].

Therefore, given a training dataset (Y) with N samples, {Y}N
1 ∼ Y , drawn from an

observation space, T , where T is a subset of the generalized problem space, T ⊂ S . The
application of ML works to create a particular mapping f : Y 7→ T . The ultimate goal of
the learned mapping is to be well generalized so that the mapping can also be applied to
the whole S with the same performance as within the T . A visualization of the relationship
between the generalized problem space, S , and the observation space from which training
data are collected, T , is shown in Figure 1a with the training dataset, Y , shown in Figure 1b.

Figure 1. (a) A visualization of how the generalized problem space, S , encompasses the application
space, V , as well as all possible data collection methods, T . (b) The process of sampling from a
collection method, T , in order to produce a training dataset, Y . (c) The sampling of data from the
application space to produce an evaluation dataset, X , for estimating a trained model’s performance
if used within the application space. (d) The training process, g(·), with a given architecture, f (·),
and training set, Y , to produce the parameters, θ, that can be used for inference with the architecture,
f (·; θ) ≡ ϕ(·). (e) The inference process using a trained model on the evaluation dataset, l̆y|x.

The mapping is learned through a training procedure, g : f ,Y 7→ Θ, which produces
the parameter space, θ, which defines the behavior of f and is visualized in Figure 1d.
Given the focus on DL systems, θ is a set of weights and biases that are used within the
DL architecture, f . Applying the trained network on unseen data, it becomes fθ : X 7→ T .
For conditions where the unseen data are a sample from T , the best performance of this
network is expected; however, if X comes from some other subset X ∈ V ⊂ S (Figure 1c),
the generalization of the trained model is being tested, as shown in Figure 1e.

The DL architecture used in this work, shown in Figure 2, is the architecture that was
shown to be well suited to the AMC problem space in the work of West and O’Shea [26].
The regularization added to the network is incorporated from the work of Flowers and
Headley for the increased convergence rate [27]. The challenges and discussion within
AMC are discussed in further detail in Section 1.2.

A brief overview of concepts utilized in this work with regard to ML is given below.
In particular, the concepts of DL and Transfer Learning (TL) are fundamental to the setup
and analysis of the crux of this work.
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Figure 2. DL NN image representing the CLDNN architecture used in this work as the DL approach
for the 10-class waveform AMC problem space.

1.1.1. Deep Learning

Goodfellow et al. [9] goes into great detail in developing an understanding of the
complexities surrounding DL. A brief explanation is as follows. DL is a subset of ML that
makes use of multiple layers of processing that can, in theory, approach the problem with
simple computations. The accumulated simple computations allow for solving a complex
problem [9]. The DL approach used in this work uses Deep Neural Networks (DNNs),
which make use of three sequential layers consisting of convolutional layers, a recurrent
Long Short-Term Memory (LSTM) layer, whose hidden size is tied to the dimension of the
classification space, and two successive linear layers, before producing the model output.
After each convolutional and linear layer that is not the final layer of the network, a Rectified
Linear Unit (ReLU) non-linear activation is used followed by the Batch Normalization
regularization layer. The final layer is followed by a softmax activation to give the output
as an estimate of the probability that the current observation is one of the classes specified
during training. A visualization of this architecture is shown in Figure 2 for the 10-class
AMC classification problem. In this work, ϕ(x) is substituted out for the more general
f (x; θ) to indicate a particular trained network for simplicity. The estimated probability
is then written as l̆ = ϕ(x) ∈ RC, where C is the number of classes in the classification
problem. By making a hard decision on the inferred estimate, it provides the decision of
the network, c̆ = argmax(l̆) ∈ Z1.

1.1.2. Transfer Learning

TL is the practice of training a model on one dataset/domain (i.e., source), or otherwise
taking a pretrained model, and training with a new dataset/domain (i.e., target) instead of
starting from a random initialization [28]. Depending on assumptions between the source
and target, the TL application can be categorized as homogeneous, where differences exist
in the distributions between source and target, or heterogeneous, where the differences are
in the feature space of the problem [28,29]. A valuable discussion for understanding the
concepts of homogeneous and heterogeneous within the RFML domain is provided by Wong
and Michaels [30]. By explaining the different datasets in use, this works as a change in the
dataset’s collected/generated domain. The feature space of the problem can be associated
with the intended task the source model is trained on and can be contrasted with the task of
the target problem. The two most common types of TL include retraining the classification
head, where early layers are frozen during training, preserving feature extraction, or fine-
tuning of the whole model [31]. In this work, TL is applied in a homogeneous problem space
where the underlying distributions of the data vary, but the generalized problem space
is the same between datasets. The subset of TL is notated as Domain Adaptation in [30],
and more specifically, an Environment Platform Co-Adaptation. Additionally, wherever the
retraining is carried out in this work, the fine-tuning approach is utilized, allowing for
adjustments to the feature space, which might not be observable in the source dataset. An
important note here is that this work does not evaluate any aspect of TL on the problem
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space (i.e., the evaluation dataset X does not change) but rather makes use of metrics
developed for the purpose of TL. Understanding how TL is best used within RFML is
beyond the scope of this work.

The study of TL is complex and well explored [28–33], and from the effort to under-
stand how to choose an optimal pretrained model for a desired application, the metrics
Negative Conditional Entropy (NCE) [32], Log Expected Empirical Prediction (LEEP) [31],
and Logarithm of Maximum Evidence (LogME) [33] are repurposed to analyze the relation-
ship between available data quantity during training and system performance for a given
evaluation set.

In this paper, the evaluation set has the same labels as the training set, but the distribu-
tions are not assumed to be equivalent. Therefore, the evaluation set, {X}N

1 ∼ X , is drawn
from an observation space, V , which is inherent to the generalized problem space, V ⊂ S ,
visualized in Figure 1a,c. For clarity going forward, due to the shared labels between
source and target in this work, the source labels are found through a forward pass of the
evaluation set through the network; therefore, the ith observation’s source label is given by
l̆y|xi = ϕ(xi) ∈ RC, with the inference given as c̆y|xi = argmax(l̆y|xi) ∈ Z1. The process of
extracting the evaluation inference of a trained model is visualized in Figure 1e. By contrast,
the target label directly gives cx,i ∈ Z1 by the truth of the ith observation and can be one-hot
encoded to provide lxi = OH(cxi, C) ∈ RC. Given the above notation, NCE is given as

NCE(c̆y|x, cx) =
C

∑
j=1

P̂(c̆y|x = j)

·
C

∑
k=1

P̂(cx = k|c̆y|x = j) log(P̂(cx = k|c̆y|x = j)),

(1)

where P̂(·) are the empirical distributions found as

P̂(c̆y|x = j) =
1
N

N

∑
i=1

c̆y|xi = j, (2)

P̂(cx = k|c̆y|x = j) =
1
N

N

∑
i=1

(c̆y|xi = j) · (cxi = k). (3)

The source labels are iterated over with j, while k iterates over the target labels. LEEP is
given as

LEEP(l̆y|x, cx) =
1
N

N

∑
i=1

log
(

l̆y|xi · P̂(cx = k|l̆y|x)
)

, (4)

where the empirical conditional probability P̂(cx = k|l̆y|x) is given as

P̂(cx = k|l̆y|x) =
[
P̂(k|j = 1), . . . , P̂(k|j = C)

]T

P̂(k|j) = P̂(k, j)/
C

∑
k′=1

P̂(k′, j)

P̂(k, j) =
1
N

N

∑
i=1

l̆y|xi[j] · (cxi = k).

(5)

The LEEP score, for the combination of the model and evaluation set, is given as the
average log of all probabilities of obtaining the correct label in the evaluation set given the
empirical probability of the labels provided by the model being tested [31]. LogME is given as
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LogME(l̆y|x, cx) =
1

NC

C

∑
k=1

log(p(cx = k|l̆y|x, α, β)), (6)

where α and β are iteratively solved to maximize the evidence, p(cx = k|l̆y|x), for a linear
transform applied to l̆y|x, which is then averaged over the number of classes, C, and
normalized by the number of observations, N, in the evaluation set [33].

In the most general sense, the importance of these metrics is how well correlated,
either positively or negatively, the metric is with the desired performance of the network
after being retrained on the target dataset. Within this work, the explanation provided
by You et al. [33] for using Kendall’s τ coefficient [34] is utilized as the most significant
relationship between performance, and the metric of choice is a shared general monotonicity
that allows for a trend in the metric to indicate a trend in performance as well.

1.1.3. Automatic Modulation Classification

The RF problem presented in this work is then the classification of the modulation
present in the original transmitted waveform sBB(t). AMC is then the problem of being
able to identify how information (or lack thereof) is being applied to a specific time and
frequency slice of the overall spectrum. When coupled with the problem of signal detection,
whether a waveform present or not in a time and frequency slice, the problem space is often
referred to as Automatic Modulation Recognition; however, in this work, the trained net-
work is determining what is there, rather than the additional task of where is it, so AMC is a
better category for the task. While AMC is one of the oldest disciplines within RFML, tradi-
tional approaches have relied on expert analysis and feature extraction [35–38], though over
the last three decades, heavier reliance on ML has been used for feature fusion and decision
-making [39], as well as direct application to raw waveforms [40,41].

To help understand how data quantity and quality affect the performance of the system,
there are three primary datasets used while training, and one unique evaluation set for
evaluating the performance of all models that are trained. The four datasets are described in
Table 1. Captured data make up the first dataset (ΩC), along with the evaluation set (ΩTC)
such that the two sets are disjoint (ΩC ∩ ΩTC = ∅). This dataset was collected at Virginia
Tech’s Kentland Farms in 2019 over a four-month window. It consists of narrowband
transmissions between two Ettus Research B210s stationed at two setup points, which were
approximately 110m and 1km apart in their locations, with the first being line-of-sight and
the latter having natural occlusions in between them. Data generation occurred using the
out-of-tree module “gr-signal_exciter” [42], producing collections of over 20 waveforms
with more than 2.1 million examples per class of 1024 complex-baseband samples with
sample separations between any two observations being another 1024 samples apart in
time. The second set is a synthetic dataset (ΩS) that makes the waveforms in their pure
form, as shown in (7) using the same setup as with the captured dataset’s transmissions
except saved to a file rather than transmitted. To increase the practical usage of the synthetic
data, synthetic errors are added to the saved data that can be associated with detection
algorithms such as Frequency Offset (FO) and Sample Rate Mismatch (SRM), as well as
varying the SNR to indicate different received power levels in the dataset. The second
and third datasets make use of a Joint Kernel Density Estimate (KDE) on ΩC to mimic
the distortions of FO, SRM, and SNR within them to attempt to minimize changing the
distributions in the data to any extreme. The third dataset, by contrast with ΩS, applies
synthetic permutations to observations from ΩC, thereby creating an augmented dataset.
These permutations are similar, if not identical, to the synthetic errors introduced in the
synthetic dataset.

Additionally, in order to observe greater diversity in the application of dataset quality
and quantity, the work shows the classification performance of three classification groups
given in Table 2. These waveforms are selected for the typical usage in qualifying AMC
approaches, with the comparison in Φ3 between BPSK (Binary Phase-Shift Keying) and
QPSK (Quadrature PSK) being considered the simplest problem as BPSK carries information
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only on the in-phase, or real, component while QPSK makes use of both the in-phase and
quadrature (IQ) components of a complex baseband signal. The inclusion of Quadrature
Amplitude Modulation (QAM) waveforms with 16 and 64 constellation points in Φ5
increases the difficulty of classification significantly under the same power constraints, with
lower SNR values typically completely obscuring the difference between the two QAM
modulations. The final waveform set, Φ10, further increases the difficulty by introducing
analog waveforms with amplitude and frequency variations, as well as Frequency-Shift
Keying (FSK) {BFSK, BGFSK,GMSK}, that prevent typical constellation-based reasoning
from being the determining factor.

Table 1. Description of datasets used within this work.

Training

Symbol Source Description

ΩC Capture Consists of only capture
examples

ΩS
Synthetic generation using
KDE

Consists of simulated
examples using the KDE of
the capture dataset

ΩA Augmentation using KDE
Consists of augmented
examples from the capture
dataset using the KDE

Evaluation

ΩTC Capture Consists of only capture
examples ΩTC ∩ ΩC = ∅

KDE, kernel density estimate.

Table 2. Three waveform sets used in the work.

Set Waveforms

Φ3 BPSK, QPSK, Noise

Φ5 Φ3, QAM16, QAM64

Φ10 Φ10, AM-DSB, BFSK, FM-NB, BGFSK, GMSK

1.2. RF Characteristics

In the idealized world where the transceivers are in a physically stationary envi-
ronment, RF signals can be thought of as processing signals at a complex baseband (BB)
with a channel between transmitter and receiver. The transmitter’s waveform is then
represented as

sBB(t) = sre(t) + jsim(t), (7)

where the channel introduces a static set of unknowns: gain (α0); delay (τ0); and phase shift
(θ0), and a time-varying additive noise ν(t) to the receiver observation, in addition to the
transmitter’s modulated baseband signal, however, with the received signal being modeled
after perfect synchronization, eliminating the static unknowns with a perfect low pass filter
results in the received signal given as

rBB(t) = sBB(t) + νBB(t). (8)

The ratio of power in the signal to that of the noise, or the Signal-to-Noise Ratio (SNR),
often expressed in dB (10 log10(

∫
|sBB(t)|2dt/

∫
|νBB(t)|2dt)), is then the primary limiting

factor explaining the performance of the system, with νBB(t) most commonly assumed to
be a circularly symmetric complex Gaussian process.
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1.2.1. Real-World Degradation

In practice, the problem becomes vastly more complex as relative motion between
transceivers, multiple transceivers, environmental noise, environmental motion, unin-
tended radio emissions from man-made devices, multipath interference, and the imperfect
hardware that transmits and receives the waveform are introduced. An introduction to the
effects of imperfect hardware is given by Fettweis et al. in [43] by looking at the individual
degradations the hardware can add to a system, as well as some mitigation strategies that
can be applied; however, it is worth mentioning that these degradations are compounding
and time-varying, so while the worst of the effects can be calibrated out, the effects per-
sist and cause a separation from the ideals assumed in (8). For an example of how these
degradations affect the ideal, here, the frequency-independent In-phase and Quadrature
Imbalance (IQI) of the transceivers result in carrier modulation functions that are ideally
expressed as ξTX(ideal)(t, fc) = exp(j2π fct) for the transmitter for a carrier frequency fc
and ξRX(ideal)(t, fc) = exp(−j2π fct) for the receiver as

ξTX(t, fc) =

((
1 + gTX exp(jϕTX)

2

)
exp(j2π fct)

+

(
1 − gTX exp(−jϕTX)

2

)
exp(−j2π fct)

)
,

ξRX(t, fc) =

((
1 + gRX exp(−jϕRX)

2

)
exp(−j2π fct)

+

(
1 − gRX exp(jϕRX)

2

)
exp(j2π fct)

)
,

(9)

where gX is the magnitude ratio imbalance and ϕX is the phase difference between the
quadrature mixer and the in-phase mixer [43]. The ideal carrier modulators are recovered
when the magnitude ratio imbalance is unity, gX = 1, and the phase difference is zero,
ϕX = 0. This results in an ideal received signal being changed from the ideal baseband
transmitted waveform in (8) into

rBB(t) =(sBB(t)ξTX(t, fc) + s∗BB(t)ξ
∗
TX(t, f c)

+ νBB(t)ej2π fct + ν∗BB(t)e
−j2π fct)

· ξRX(t, fc) ∗ hlp(t)

=sBB(t) + IQI(sBB(t), gTX , gRX , ϕTX , ϕRX)

+ νBB(t) + IQI(νBB(t), 1, gRX , 0, ϕRX)

(10)

where the IQI(·) is a function for the addition of IQI when both the transmitter’s and
receiver’s parameters are known in the received signal as an additive interference, given as

IQI(x(t),gTX , gRX , ϕTX , ϕRX) =

xre(t) · (−jgRX sin(ϕRX))

+ xim(t) · (−gTX sin(ϕTX)

+ j(gTX gRX cos(ϕTX − ϕRX)− 1)).

(11)

1.2.2. Understanding RF Data Origin

There are three common sources of data within ML dataset generation [8]. The first
is the captured or collected data acquired by using a sensor and recording the data. Under
the most intuitive conditions, data collection performed using this approach in the applica-
tion space provides the highest quality of data for the problem to learn from because all
unknown characteristics and sensor degradations will be present in the data [41]. However,
when performing the capture of rare events or while in search of other infrequent and
uncontrollable events, performing collection events can prove to be difficult to properly
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label, let alone find. These problems, along with having to procure and sustain the equip-
ment and personnel to perform the collection, often make collection in large quantities
impractical and expensive.

Synthetic datasets are therefore the most common and typically orders of magnitude
cheaper to procure due to not being bound to waiting on real-world limitations. For
example, synthetic generation can occur in parallel for vastly different conditions, with the
limitation being computation resources, rather than the sensors and personnel in collection
events. The trade-off with synthesis is that significantly more information on the data is
necessary in order to properly simulate, which, without the appropriate knowledge, can
render models in the field useless [41].

The process of creating an augmented dataset tries to bridge the strengths of captured
and the synthetic dataset creation, while covering their weaknesses [8]. By taking captured
data and adding synthetic permutations of SNR, FO, and SRM, the augmented dataset
can smooth out missing observations from a limited collection event by having a better
understanding of the detection characteristics of the sensors in use, while preserving all
other real-world degradations native to the application space.

Here, the different origins of data are kept separate from each other to achieve a better
understanding of the characteristics of each approach, but the fusion of such datasets should
be carried out either by directly combining the datasets or by performing staged learning
in practice.

2. Materials and Methods

The work performed in Clark et al. [41] showed that, within the realm of AMC, the
quantity of data has a functional relationship to the performance of a trained system given
all other variables are constant. Additionally, the work showed that the performance
could be found to have a log-linear, or power-law, relation to the quantity of data for
lower performance regions, but a log-sigmoidal relationship is more appropriate as the
performance reaches a maximum. The process of regressing the relationship between
quantity and performance was then suggested as a quantification measure of dataset
quality in [44], where different datasets could then be compared across different quantities
with the expected accuracy (e.g., dataset A needs X observations, while dataset B needs 2X
observations to achieve an accuracy of 90%), or another metric of performance, taken as the
quality (X|90% or 2X|90% in the previous example) of the dataset. The inherent quality
of any dataset can be described in three generalized terms: Comprehensiveness, Correctness,
and Variety [25]. In this work, the datasets are already examined and confirmed to be
Comprehensive, in that all the information being sought is included within the dataset, and
Correct, in that the observations for each modulation are correctly identified and labeled.
The main concept of quality being examined is then that of Variety or rather that the
distributions on the observations within the datasets match, approximate, or deviate from
the distributions of the test set, and therefore, only the effect of quality in terms of Variety
can be examined in this work.

While these works give an initial understanding of the data quantity and quality that
fundamentally drive the process of an ML system, they provide minimal utility when
trying to understand how many data are needed in order to achieve ideal performance and
therefore reliably plan a data collection campaign. For example, in [44] fourth figure that is
looking at the 10-class classification performance, the log-linear fit predicts a performance
of 90% accuracy at roughly an order of magnitude less data than the corresponding log-
sigmoidal fit, while both fits use the full range of trials available to regress the fit. The
results discussed above all depend on some initial good dataset to contrast with, and while
this work does not alleviate that requirement, here, we answer the question of how to best
use a limited good dataset to forecast how many total data would be needed during training
if neither the model nor training approach is modified.

An ideal approach would be to use a metric that is both strongly correlated with the
desired performance of the system, such as accuracy, in terms of Kendall’s τ and has a
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relationship with data quantity that can be linearly derived from minimal data; however,
a metric that reduces the error over that of performance directly regressed with quantity
will be sufficient. For this reason, the metrics that have been developed to predict the
transferability of a pretrained model onto a new target dataset, discussed in Section 1.1.2,
are repurposed to predict data quantity requirements and provide a new metric of quality
for a model’s training dataset with regard to the target dataset, which is the evaluation
dataset in this work, as shown in Figure 1c.

2.1. Examining the Correlation between Performance and Metrics

The first step is the confirmation that the chosen metrics correlate in a beneficial
manner with the performance value of interest, which is classification accuracy in this case.
In order to understand whether a metric is well correlated with classification accuracy, the
weighted Kendall’s τ is calculated using the SciPy implementation [45] and found for three
datasets (Table 1: ΩC, ΩA, ΩS) and compared against three sets of modulation classification
sets (Table 2: Φ3, Φ5, Φ10). Kendall’s τ weighted correlations are presented in Table 3 and
show high values of correlation for all three metrics in the case of ΩC and ΩA datasets;
however, the correlation for the ΩS dataset shows a worse correlation between accuracy
and all three metrics. Looking at the performance at the relationships between performance
and the proposed metrics in Figure 3 shows that the performance and metrics are tightly
clustered, while for ΩC and ΩA, definite trends are observable. Looking at the performance
of the different datasets as a function of quantity used during training in Figure 4 helps
to further explain this decrease in correlation in that the performance results of networks
trained on ΩS are comparably independent of the quantity of data used for the synthetic
observations. Therefore, the classification accuracy and metrics extracted from the networks
trained on ΩS are more akin to noisy point measurements rather than a discernible trend
to examine.

Table 3. Kendall’s τ weighted correlation across datasets (Ω) and waveform sets for Accuracy and
(NCE, LEEP, LogME). Strong correlations will have an absolute value near 1, while no discernible
correlation will be around 0. Bold values represent the combination of the problem set and metric
with the highest correlation with accuracy on the evaluation set.

Set Ω NCE LEEP LogME

Φ3

ΩC 0.9774 0.9533 0.8033
ΩS 0.8249 0.8144 0.7382
ΩA 0.9666 0.9639 0.9377

Φ5

ΩC 0.9438 0.9443 0.8788
ΩS 0.6554 0.6553 0.6334
ΩA 0.9794 0.9791 0.9582

Φ10

ΩC 0.9794 0.9688 0.9609
ΩS 0.5165 0.4262 0.5298
ΩA 0.9836 0.9808 0.9764

The main observation is that when there is a discernible trend between performance
and data quantity, the correlation of all three metrics is considerably high, and therefore,
5h3y are potential metrics with which to regress the relationship with data quantity in
search of a quantity estimator for the total data needed to achieve the desired performance.

2.2. Regression of Quantity and Metrics

With the confidence that the TL metrics discussed above have a positive and significant
correlation with the performance of the system when performance increases with regard
to the quantity of data used during training, the goal is to now derive the relationship
between those metrics and data quantity, with preference being given to the metric that
has a better goodness of fit (GoF) with a form of linear regression. In this case, a log-linear
regression is used between the metrics and the data quantity. Starting with the accuracy of
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each network shown in Figure 4, the log-linear fit is able to provide a quality value in terms
of the accuracy achievable for a given number of observations per class (OPCs) for the three
datasets. Looking at the Φ10 problem set shows the quality quantification as follows:

• ΩC → 81% accuracy | 1M OPC
• ΩS → 20% accuracy | 1M OPC
• ΩA → 76% accuracy | 1M OPC,

but the quality can just as easily be defined as the OPC needed in order to achieve a given
accuracy given the linear fit can be inverted as

• ΩC → 5.25M OPC | 90% accuracy
• ΩS → ∞ OPC | 90% accuracy
• ΩA → 7.04M OPC | 90% accuracy.
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Figure 3. Visualization of the relationships between the three metrics (Left column: NCE, Middle
column: LEEP, Right column: LogME) and the performance metric (Accuracy) of each network when
measured on the results of the evaluation set ΩTC, or the target dataset in TL vernacular. Each dataset
used for training is positioned along the rows (Top row: ΩC, Middle row: ΩS, Bottom row: ΩA).

However, the log-linear regression between data quantity and accuracy has an un-
desired effect between the data points and the linear fit, which is that at the ends of the
available data, there is increased error relative to the center of the data points. Additionally,
because the sign of error is the same at both ends, this suggests that the linear fit between
data quantity and accuracy when there are minimal data will severely underestimate the
data quantity needed to achieve high-performance systems. For a better look at this issue,
Figure 5 examines the residuals for the Φ10 waveform set across the three dataset types.

This same sign of error at the ends of the available data suggests that a non-log-linear
fit would be more appropriate for regressing the relationship between accuracy and data
quantity, which is poorly suited to understanding the full relationship as available data
become more limited to a narrow subset of the full data range. For example, just looking at
a narrow portion of either end, with high or low data quantity, does not provide enough
context to predict a good non-linear fit. Therefore, a GoF measure that weights the outer
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errors more significantly than the errors toward the center of the data range is desired.
Additionally, since both edges of the residual are of equal significance and the results are
non-uniformly sampled across the observation space, a weighting that balances the weights
into histogram bins will be used to normalize equal significance in the edges of the GoF
measure. For simplicity, three bins will be used to indicate observations with lower, mid,
and high data quantity relative to the log-linear fit. The weights are suggested as

w′(qx[i]) =


|qx|/|blow| qx[i] ∈ blow

|qx|/3|bmid| qx[i] ∈ bmid

|qx|/|bhi| qx[i] ∈ bhi

w(qx[i]) =
w′(qx[i])

∑
|qx |
j=1 w′(qx[j])

(12)

where the middle bin has one-third the weight of the edges, which without it, would have
all three regions equally weighted. The division edges between bins are taken as evenly
spaced on the log scale between the minimum and maximum data quantities in the set, with
|qx| being the number of elements in the set, while {|blow|, |bmid|, |bhiw|} are the numbers of
observations within that bin. Those weights are then normalized such that their sum is unity.
The GoF is then taken as the Normalized Root Weighted Mean Squared Error (NRWMSE).
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Figure 4. Relationship between the quantity of data used from each dataset (Top: ΩC, Middle: ΩS,
Bottom: ΩA) and the accuracy achieved by networks trained on that amount of data.

gof(αx, qx, f̂ll) =

√√√√∑
|qx [i]|
i=1 w(qx[i]) · ( f̂ll(qx[i])− αx[i])2

Var(αx)
(13)

where the quantities (qx) and accuracies (αx) are used to derive the log-linear fit ( f̂ll);
however, the accuracies and fit can be swapped out for any other metric and matching fit.

The GoF for the accuracy, NCE, LEEP, and LogME metrics are given in Table 4. A
general conclusion is that all three metrics have the potential to provide a better prediction
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of data quantity needed to achieve high performance; however, considering the correlation
presented in Table 3 in addition to these results suggests that NCE will be the most con-
sistent estimate, with LEEP being a close second. LogME, by comparison, offers the most
promise with regard to the augmented dataset but has the highest variability among the
three metrics examined here. One more unique attribute about the linear regressions of
the metrics is that accuracy, NCE, and LEEP all have residuals typically indicating that the
true quantity of data that are needed will be underestimated, while LogME’s residuals are
inverted, suggesting that that LogME’s regression will overestimate the number of data,
giving soft bounds of the required quantity of data being between the estimates of NCE
and LogME predictions.

Figure 5. Residuals between the regressed log-linear fits of the quantity of data available during
training and the accuracy of each trained network and the observed accuracy of each network.

Table 4. Goodness of fit (GoF) for a log-linear regression between dataset quantity available for
training across datasets (Ω) and waveform sets (Φ) for Accuracy (α) and NCE, LEEP, LogME. Perfect
fit would have a value of 0. Bold values represent the best GoF value for the log-linear regression
between the metric and data quantity available during training.

Φ Ω α NCE LEEP LogME

Φ3

ΩC 0.2478 0.2054 0.1885 0.2662
ΩS 1.0196 0.9515 0.9521 0.9531
ΩA 0.3120 0.2674 0.2636 0.1672

Φ5

ΩC 0.2499 0.1552 0.1458 0.1987
ΩS 0.9491 0.9367 0.9451 0.9652
ΩA 0.3016 0.2163 0.2208 0.1433

Φ10

ΩC 0.1514 0.1138 0.1173 0.1179
ΩS 0.9853 0.9783 0.9731 0.9697
ΩA 0.2706 0.2652 0.2797 0.1102
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2.3. Predicting the Data Quantity Needed

Now that the metrics have been compared in terms of a regressed log-linear fit with
the quantity of data used to train the model, the question is how to determine what value
of the metrics will provide the desired performance. Looking back at Figure 3 shows that
the metrics and accuracy do not have an easily fit relationship that would map a metric
back to accuracy, and in fact, it would only be trading one non-linear regression for another.
To overcome this problem, label whitening to acquire near-perfect performance is proposed
to act as a quasar that can help map the performance of the metrics with accuracy.

The procedure starts with label smoothing [46] (14) of the truth labels for the evaluation
set, followed by a logit transform (15), which, without the label smoothing, would not be
a useful approach as infinite values would be returned for the correct class and negative
infinity for all other classes.

l̃x = lx − γ ·
(

lx − C−1
)

(14)

mx = log
(

l̃x

1 − l̃x

)
(15)

Label smoothing applied on its own does not affect the value of accuracy, NCE, nor
LogME, but it does affect the LEEP score and is dependent on the smoothing factor, γ, and
the number of classes in the classification problem, C. The effect of γ on the LEEP metric
can significantly affect the metric, so γ is chosen as the minimum value that approaches
|lx − l̃x| > 0 within the chosen machine precision. The effect of label smoothing and the
logit transform allows for the values to now sit at a finite coordinate to which noise can be
added to stochastically decrease the accuracy of the system in a controlled manner. The
normal distribution is used to whiten the logits, in this case, where the standard deviation
of the noise, σ, can be chosen for the degradation of accuracy, ϵ, of the true labels given the
number of classes in the problem space and the label smoothing γ in use.

m̃x = mx +N (0, σ2) (16)

σ(ϵ) =
log

(
C2(1 − γ) + γ2(C − 1)

)
− log

(
γ2(C − 1)

)
2 · erf−1(2 · C−1

√
1 − ϵ − 1

) (17)

With the whitened logits the inverse logit, or logistic, transform is applied and balanced
such that the sum of any result is unity, ∑ l̂xi = 1 ∀ i.

l̂x =
exp(m̃x)/(1 + exp(m̃x))

∑k∈C exp(m̃x[k])/(1 + exp(m̃x[k]))
(18)

Figure 6 shows the effects of this procedure on the error and metrics for a given ϵ
averaged over 1000 iterations and shows a trend that can be maintained with increas-
ing ϵ; however, an important note is that this type of error does not properly reflect
the distributions of error that can be expected, so smaller values (≤ 10−5) of ϵ will
likely be more appropriate than larger values (0.1). Looking at the residual error, (19),
in terms of the dependent variable, ϵ, relative to the measured value, ϵ̂, as seen in the top
left plot of Figure 6, the minimum average error across the three classes is achieved at
∆(10−5, ¯̂ϵ) = 0.0169, with the average normalized residuals being nearly equal at the
extremes (∆(10−8, ¯̂ϵ) = 0.178; ∆(10−1, ¯̂ϵ) = 0.182).

∆(ϵ, ϵ̂) =
ϵ − ϵ̂

ϵ
(19)

At this point, a means for determining the value for each metric has been proposed that
will not suffer from the need to have a perfect response that can be used and will help with
metrics such as LogME, where the maximum is not immediately known given the iterative
solution that is employed to produce the score. These values for a given small ϵ can then be
used to regress the corresponding metric’s data estimate for achieving such performance.
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The log-linear regressions for each metric, dataset, and waveform space combinations are
shown in Figure 7, while the log-linear regressions for accuracy are shown in Figure 3, and
together help to better visualize the GoF results given in Table 4.
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Making use of the whitening procedure above and the log-linear regressions between
data quantity and the metric’s score, a prediction of data quantity needed to achieve
arbitrarily high performance can then be found. For example, applying an error of
ϵ = 10−5 to each examined problem space for the metrics and selecting a value aver-
aged over 1000 iterations, the data quantity predictions can be made for each metric, as
shown in Table 5, where the predictions are found by inverting the linear fit to estimate the
quantity from the predicted metric as

q̃χ = log10(q̂χ) =
M̂χ − bx

sχ
, (20)

where the q̃χ value is the logarithm base ten of the quantity estimate for the selected metric
χ ∈ [Accuracy, NCE, LEEP, LogME], M̂χ is the metric value found through the whitening
procedure, and sχ, bχ are the slope and y-intercept, respectively, of the log-linear regression
given a base ten logarithm applied.

Table 5. The performance of Accuracy (α), NCE, LEEP, and LogME for the label whitening procedure
proposed in Section 2 for a desired error ϵ = 10−5. Additionally, the data quantity needed per metric
for the log-linear regression of the metric with the data quantity used during training is provided.

Φ α NCE LEEP LogME Ω α NCE LEEP LogME
Metric Metric Metric Metric Quantity Quantity Quantity Quantity

Φ3 0.999990 −1.275 × 10−4 −2.668 × 10−3 2.696
ΩC 48.7 × 106 237 × 106 88.5 × 106 2.46 × 1012

ΩS 6.42 × 10224 1.64 × 10190 1.38 × 10158 ∞
ΩA 72.8 × 106 291 × 106 144 × 106 3.47 × 1015

Φ5 0.999990 −1.272 × 10−4 −2.972 × 10−3 2.842
ΩC 394 × 106 13.5 × 109 4.45 × 109 2.57 × 1019

ΩS ∞ 9.15 × 1095 6.57 × 10100 ∞
ΩA 181 × 106 3.60 × 109 1.11 × 109 2.41 × 1021

Φ10 0.999990 −1.289 × 10−4 −3.963 × 10−3 3.066
ΩC 34.2 × 106 514 × 106 430 × 106 1.61 × 1021

ΩS ∞ ∞ ∞ ∞
ΩA 29.3 × 106 337 × 106 233 × 106 1.57 × 1023

3. Results and Discussion

The prior sections made use of all data points taken in order to establish the best
predictions for data quantity with their given metric. As these are estimates that are
intended to predict the data quantity needed to achieve high-performance systems through
the increase in available data alone, certifying any result in particular is beyond the scope of
this work, as the expected predicted quantities will far exceed the available data acquired.
Instead, the focus shifts to how having fewer data available during training relatively
affects the prediction capability for each metric in comparison to greater quantities of
available data.

Due to the performance of the synthetic dataset stagnating, further analysis will ignore
this case going forward. For the purpose of finding how well the log-linear regression with
each metric is able to predict the data quantity needed, the data quantities provided in
Table 5, with preference for a quantity estimate given by the GoF in Table 4, will be used
such that the metric that achieved the best GoF will be used as the truth for the problem
space. Therefore, predictions of the models making use of ΩC will use the LEEP metric’s
quantity prediction for Φ3 and Φ5 but will make use of the NCE prediction for Φ10, while
the predictions for ΩA will all make use of the LogME metric, and these quantity prediction
are summarized in Table 6. The predictions for each metric can be seen in Figure 8, where
the top row shows the predictions when using the ΩC dataset, while the bottom shows the
predictions for the ΩA dataset. The columns consist of waveform spaces {Φ3,Φ5,Φ10} from
left to right.
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Table 6. Quantity estimates being taken as truth for the combinations of waveform groups, Φ, and
training datasets, Ω. The augmented quantities are estimated using the LogME metric regression,
while the captured quantities are estimated from either the NCE or LEEP metric based on the GoF
in Table 4.

Φ ΩC ΩA

Φ3 88.5 × 106 3.47 × 1015

Φ5 4.45 × 109 2.41 × 1021

Φ10 514 × 106 1.57 × 1023

The general understanding given in Figure 8 is that both NCE and LEEP will give a
more realistic prediction for data quantity than Accuracy alone, while the prediction given
by LogME can serve as an upper bound. Due to the log-linear regression, any deviation can
result in orders of magnitude error in terms of either underestimation or overestimation,
and since there are not enough data to acquire the metric that produces the best GoF
regression, a midpoint estimate is recommended when only minimal data are available.
The midpoint estimate seeks to balance the two extremes such that the estimate becomes
q̃MidPoint = 0.5 · (q̃NCE + q̃LogME), such that the midpoint estimate averages the quantity
estimates on the log scale rather than the linear.
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Figure 8. Quantity predictions based on a limited number of available data used to regress the
estimate on the {Top Row: Capture ΩC; Bottom Row: Augmented ΩA} datasets when being used
to estimate across the {Left: Φ3; Center: Φ5; Right: Φ10} waveform space. The lines represent using
{Accuracy: circle, NCE: square, LEEP: diamond, LogME: pentagram, Log Scale Midpoint of NCE
and LogME: hexagram, Target: none} to predict data quantity needed, while Target is determined
in Table 6.

Returning to Table 6, an important note is understanding how long a sequential
collection of data of this kind would take in order to accomplish; that is, for a collection that
records at 10kHz, these waveforms from three waveform groups {Φ3,Φ5,Φ10}, a collection
of the number of observations implied, would require [1.72, 144.5, 33.4] years to acquire
the target observations needed for the ΩC predictions and would require [0.989, 82.9, 19.1]
terabytes of storage to store them in an uncompressed state. While this could be feasible if
the collection was performed in a parallel rather than a sequential collection, the suggestion
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that should be taken rather than immediately starting a long-term collection is to instead
improve the training routine and model architecture to instead allow for this procedure
to produce a regression with a more significant slope than the approach used to produce
these results.

4. Conclusions

The problem of estimating the number of data needed in order to achieve a high-
performing ML model for AMC problems is discussed within this work. Typical approaches
in this type of estimate focus on reducing the loss function rather than performance metrics
of interest, whereas this provides a direct linking of performance to the available dataset
size required to achieve it before performing costly collections and data acquisition. While
if large quantities of data are already available, > 109 observations per class in the problem
presented in this work, a log-scale nonlinear regression between performance and data
quantity can help to determine how many more data are needed, which is often not feasible
for problems with only a small number of data on hand (i.e., < 105 observations per class)
due to the potential for the asymptotic bends in performance not being visible, leading to
the performance of power-law estimations to significantly underestimating the amount
required. The metrics developed for TL in order to choose a model to help linearize,
on a log scale, the relation between accuracy predictions and data quantity can be used
by utilizing the metrics NCE, LEEP, and LogME. These metrics in turn can help bring a
bound to the number of data that would be needed with a current approach and help
determine whether a large-scale data collection should take place or if further refinement
to the training procedure and model architecture is a better approach given the program’s
constraints. Given the tendency for NCE and LEEP metrics to underestimate the numbwe
of data needed (to a lesser extent than power-law approaches) and the tendency of LogME
to overestimate the number of data, a midpoint approach is proposed, on a log scale,
between NCE and LogME to offer a balanced estimate. Given that NCE and LEEP offer
similar performance estimates and GoF measures on the collected dataset problems, and
LogME is seen to offer a better GoF for the augmented dataset problems, and balancing the
two offers a more reasonable measure under data-constrained conditions when performing
an estimate.

While this approach shows traction within the RFML problem space of AMC, addi-
tional research is still needed in order to understand if these techniques can be more widely
applied to other classification problem spaces in ML in general.
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