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Abstract: The complexity and number of data streams generated by internal processes exceed
the capabilities of most current simulation environments. Consequently, there is a need for the
development of more advanced solutions that can handle any number of simultaneous simulations.
One of the most promising ideas to address these and other challenges is the concept of a Digital
Twin (DT), which refers to a digital representation or a virtual model designed to accurately reflect an
intended or actual physical product, system, or process (i.e., a physical twin). As a Digital Twin spans
the life-cycle of its physical twin, its development and application can bring considerable benefits
to organizations seeking to improve existing processes as well as implement new ones. However,
few studies have comprehensively examined the value and benefits of Digital Twins. To fill this gap,
this study aims to provide a better understanding of this technology by reviewing the contemporary
literature, with a particular focus on the documented case studies, as well as reported business and
industrial deployments. The results obtained show that Digital Twins have proven beneficial for
maintenance, cost reduction, optimization, simulation performance, monitoring, product life-cycle
understanding, assessment validation, performance evaluation, product design, and safety and risk
mitigation. In addition, when considering the human factor, DTs can facilitate education and training,
team collaboration, and decision making. Undeniably, Digital Twins are a game changer for safer,
faster, and more sustainable development.
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1. Introduction

Sustainable development is development that “meets the needs of the present genera-
tion without compromising the ability of future generations to meet their own needs” [1].
In general, this issue has received considerable attention from businesses, governments,
and researchers over the last decades [2–4]. Not surprisingly, due to global warming and its
effects [5], there is a clear and growing interest in developing and implementing low-impact
solutions [6]. Among many key drivers for sustainability, an innovation is one of today’s
most desired technological traits to create more efficient and more sustainable products and
services [7,8]. According to Prudy et al. [9], Digital Twins are changing the face and pace of
innovation, while the implications are profound, making an innovation faster, cheaper, and
more radical.

According to Fortune Business Insights, the global Digital Twin market size reached a
value of US$6.75 billion in 2021 and is projected to reach US$96.49 billion by 2029, exhibiting
a compound annual growth rate (CAGR) of 40.6% during the forecast period [10]. The
world’s largest tech companies, including Alphabet [11], Amazon [12], and Microsoft [13],
offer development tools that enable the creation of Digital Twins of real-world systems in
areas such as construction [14], healthcare [15], manufacturing [16], supply chain [17], and
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retail [18], to name a few. Moreover, Digital Twins and closely related areas have piqued the
interest of researchers from over 158 countries (The number of countries has been estimated
based on the results from the query “digital twin” execution on the Scopus database
(30 March 2023)), spanning a wide range of fields, including engineering, computer science,
physics, energy, biochemistry, decision sciences, and business management. Despite the
numerous research questions raised and answered, a fundamental question still remains:
what value and benefits can a Digital Twin deployment bring to the organization?

In this paper, we aim to explore the value of a Digital Twin and identify its benefits,
regardless of its domain of application. Thus, our study is qualitative in nature, providing
an appropriate way to analyze a relatively under-examined topic. In other words, our study
relies on exploring the state-of-the-art literature focused on Digital Twin development and
implementation in any area of business or industry. In this sense, this paper contributes to
the limited research in the Digital Twin landscape by identifying and articulating the story
of its value and benefits, and informing interested parties of possible outcomes resulting
from its adoption.

The rest of the paper is structured as follows. In Section 2, we outline the theoretical
and technological background that underpins the Digital Twin concept and architecture.
In Section 3, we present the research methodology we applied to achieve our research
objectives. In Section 4, we provide the results we obtained, followed by a discussion of
threats to validity, as well as contributions, limitations, and future research directions in
Section 5.

2. Background

It is widely accepted that the concept of a “digital twin” originated from the National
Aeronautics and Space Administration (NASA) in the 1960s, where it was referred to as a
“living model” of the Apollo mission [19]. The term itself was first used by John Vickers in
2002 [20]. According to VanDerHorn and Mahadevan, a Digital Twin (DT) is defined as “a
virtual representation of a physical system (and its associated environment and processes)
that is updated through the exchange of information between the physical and virtual
systems” [21].

Lueth [22] classified Digital Twin use cases along three prevailing dimensions:

1. The hierarchical level at which the Digital Twin is deployed includes six levels (Infor-
mational, Component, Product, Process, System, and Multi-system).

2. The life-cycle phase in which the Digital Twin is deployed involves six phases (Design,
Build, Operate, Maintain, Optimize, and Decommission).

3. The use of the Digital Twin refers to seven uses (Digitize, Visualize, Simulate, Emulate,
Extract, Orchestrate, and Predict).

In total, 252 potential use cases are defined by combining the seven most common
uses, six hierarchical levels, and six phases. It seems quite evident that researchers and
practitioners have so far have documented and classified a plethora of use cases of the
Digital Twin in many different sectors, introducing different sets of criteria, ranging from
the general to the very technical [23].

In general, the architecture of a Digital Twin in terms of its modeling can be divided
into three main layers [24,25]:

• The physical layer, which encompasses the physical entities of the system, environ-
ment, and processes;

• The virtual layer, which involves virtual models of the physical entities at different
levels of abstraction;

• The interconnection layer, which serves as the bidirectional data proxy between the
physical and virtual layers.

From the perspective of a solution vendor, the first physical reality layer is indepen-
dent and is the object of observation, analysis, and understanding; while the remaining two
dependent layers are the object of modeling, implementing, and testing. Four core tech-
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nologies typically employed in modeling and developing a DT are Artificial Intelligence
(AI), Big Data (BD), Internet-of-Things (IoT), and mobile/wireless networks [26].

AI aims to empower a Digital Twin with capabilities of perceiving, synthesizing,
and inferring information to learn and adapt to new situations and circumstances [27].
Some researchers and practitioners argue that AI is an imperative component for some DT
applications, such as autonomous driving systems [28] and additive manufacturing [29].
In particular, machine learning algorithms are commonly used to explore data for hidden
patterns [30], detect anomalies [31], make predictions [32], or construct classifiers [33].

Big Data (BD) spans over the “high” seven Vs—namely, Volume, Velocity, Variety,
Veracity, Variability, Visualization, and Value [34]. In short, Big Data refers to relatively
larger, more complex data repositories [35], especially from new data sources [36]. For
Perry [37], the concept Big Data really means “harvesting meaning from data”, which “is
coming in faster, from more sources, and in more varied formats than ever before” [38].
In a practical sense [39], Big Data technology refers to a software utility designed to
“analyze process and extract information from extremely complex and large data sets
which traditional data processing software could never handle” [40]. The modern big data
solutions available in the market are [41] Apache Hadoop [42], Apache Spark [43], and
Hortonworks Data Platform (HDP) [44].

The term Internet of Things (IoT) is understood as “the collective network of connected
devices and the technology that facilitates communication between devices and the cloud,
as well as between the devices themselves” [45]. In general, IoT capacitates the Digital
Twin model to support new intelligent services to connect and interact with physical
objects [46]. The realms of IoT and DTs overlap when it comes to describing, discovering,
and accessing resources [47]. This is conceptualized on five layers, starting from physical
space, communication network, virtual space, data analysis and virtualization, and ending
with the application layer [48]. In the case of the first layer, the naming of objects is typically
associated with the word “smart” when IoT comes into action; hence, numerous studies
have already discussed smart buildings [49], smart enterprises [50], smart factories [51,52],
smart farming [53], smart grid [54], smart health [55], and smart transportation [56], to
name a few.

In recent years, significant advancements in mobile and wireless technologies have
enabled many applications beyond traditional voice and video calls on mobile phones [57].
Digital Twin solutions are no exception to this trend. One of the main assumptions underly-
ing the design of Digital Twins is reliability [58], which implies that twins are synchronized
in real-time with their physical counterparts by receiving actual data with low latency.
Data from physical entities are collected through Data Acquisition Systems (DAC) deploy-
ment [59] equipped with sensors, measurement devices, and computers [60].

The concept of a Digital Twin is not merely a passing trend from a business perspective.
Even industries such as aviation and wind turbine manufacturing, which traditionally
have little to do with digitization, have embraced the latest technological advancements
and adapted their existing systems and procedures to incorporate Digital Twins. Recently,
the term Digital Twin is often used to refer to the latest wave of computer modeling and
simulation, which aim to develop digital representations of real-world objects, systems,
or processes. Ultimately, the application of Digital Twins is expected to lead to significant
time and cost savings [61].

3. Methodology

In our study, we put forward the following research question: what is the value and
benefits of deploying Digital Twins across various applications? Given the nature of this
research, it makes sense to adopt a qualitative approach using a literature review, which
by definition is a structured, comprehensive review with an explicit methodology that
is focused on finding the key evidence needed to answer the research question [62]. In
general, according to Knopf [63], a literature review consists of two parts. First, it should
be a concise summary of the findings or claims that are the result of previous research
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efforts on a topic. Second, it should provide a conclusion about how accurate and complete
that knowledge is. In this sense, a literature review process “involves researching, reading,
analyzing, evaluating, and summarizing scholarly literature (typically journals and articles)
about a specific topic” [64].

Our research inquiry begins by specifying data sources. For the primary data source,
we used Google Scholar (available at https://scholar.google.com/), which is the largest
academic database with over 390 million indexed records [65]. As a secondary data source,
we used Scopus (available at https://www.scopus.com/), an Elsevier abstract and citation
multidisciplinary database of peer-reviewed literature, which includes scientific journals,
books, and conference proceedings [66]. Note that both Google Scholar and Scopus are
legitimate, reliable, and up-to-date sources of information used by most researchers around
the world [67,68].

We developed search queries by combining keywords related to Digital Twin research,
such as advantage, benefit, and value. Our objective was to analyze and summarize
the existing literature comprehensively by discussing the background of the topic. We
conducted a narrative literature review as the first step in our study [69]. Please note that
for the Scopus database, we only searched for titles of reviewed articles and conference
papers published solely in English.

The second step involved searching, analyzing, and documenting existing Digital Twin
deployments across all areas of business or industry. We used a combination of keywords
such as application, deployment, design, implementation, and solution. More specifically,
we employed an exploratory approach to investigate the benefits reported after Digital
Twin deployments. We excluded studies that only discussed promises or expectations. If
insufficient information was found in the collected scholarly literature, we also used Google
Search Engine (available at https://www.google.com/), as a supplementary data source.

Eventually, having collected necessary data, we performed manual coding, following
the instructions authored by Hacking [70]. By definition, in qualitative research, a code
is usually a word or short phrase that semantically assigns a summative attribute for a
portion of language-based data. Therefore, the application of manual coding involves
detailed reading and manually developing and assigning codes.

In this study, we adopted the inductive coding approach, which means building a list
of codes from scratch based on the collected data. In this extent, the following four steps
were undertaken. Firstly, one of the researchers read all the papers and extracted all the
text fragments related to the research question. Secondly, by making use of the keywords
and their synonyms, the contextualized meaning was individually classified to one word,
or alternatively to a string, consisting of two or three words. Thirdly, the second researcher
manually verified the coding and, if necessary, extended the list of codes. In the last step,
the list was the subject of shared processing with the aim of consensual understanding and
final refinement. The outcome of the manual coding is provided in Appendix A.

4. Benefits of Digital Twin Deployments

To summarize our results, we used the cloud of words technique, which is a free and
online tool (worditout.com). This technique generates a visual representation of word
frequency by extracting words from the source text and emphasizing those that appear
more frequently. While there were 103 codes found in the original source, we set up
the minimum frequency on two. Next, after careful analysis, we excluded four words
(commissioning, failure, problem, and risk) due to their negative connotation, as well
eight common words (analysis, cost, costs, data, interaction, model, sales, and time). Thus,
the remaining set, as an input for visualization, includes 40 words. Figure 1 depicts the
cloud of codes assigned, expected, and reported from Digital Twin deployment that were
anticipated from our quantitative analysis.

https://scholar.google.com/
https://www.scopus.com/
https://www.google.com/
worditout.com
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Figure 1. The cloud of codes with regard to the benefits expected and documented from Digital Twin
deployment.

As one can notice, the benefits of deploying a Digital Twin are multifaceted (see
Figure 2). The most frequent and common benefits include the following:

• Maintenance (22.4%)—related to both operational and predictive analysis, enabling
stakeholders to better understand the physical systems and actual processes;

• Cost reduction (16.3%)—refers to the better understanding of the product life-cycle
loop, thus recognizing the points of materials and work overhead;

• Optimization (12.2%)—due to the discovery of the best solutions, incorporating the
cost-effective resources while maximizing business value;

• Simulation performance (10.2%)—having the capability of handling multiple simulta-
neous and heterogeneous simulations and aims to model the processes’ evolution by
testing different settings of their key behaviors, characteristics, or relationships;

• Monitoring (8.2%)—refers to the regular surveillance over digitized assets, processes,
and services over a period of time;

• Product life-cycle understanding (6.1%)—refers to the handling of a good as it moves
through the various stages of its lifespan, bringing tangible effects of reducing system
load, configuring and planning assets, and checking product feasibility;

• Assessment validation (6.1%)—concerns the quality review of the assessment process,
including checking that the assessment tool produces consistent results;

• Performance evaluation (6.1%)—through analyzing, developing, and categorizing
a set of alternative scenarios and models before their implementation within the
physical system;

• Product design (6.1%)—enabling designers to develop and test more product varia-
tions with fewer resources engaged;

• Safety and risk mitigation (6.1%)—relates to the detection, assessment, understanding,
and prevention of adverse events, side effects, or any other health-related issues.

Last but not least, other benefits of a Digital Twin deployment pertained to inno-
vation fostering [71], system security [72], and multidomain collaboration [73]. How-
ever, it seems that the most intriguing side of the Digital Twin implementations currently
relates to the healthcare pathway involving human organs [74], such as the heart [75],
liver [76], or lung [77]. In addition, Digital Twins can provide a realistic and safe environ-
ment for healthcare professionals to improve their skills by practicing complex medical
procedures [78,79]. Thus, the implementation of Digital Twin technology in healthcare has
the potential to greatly improve patient outcomes and support patient safety [80].
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Figure 2. The top 10 benefits of Digital Twin deployment.

Note that while there are many adopters of digital life models, there is not yet a widely
accepted consensus on the value and benefits of the Digital Twin as its first solutions are
deployed and are still expanding across many industries on a global scale. Therefore, the
calculated percentages should be treated with considerable caution. Nevertheless, we
believe that the results obtained can provide a valuable foothold for both the academic and
business communities by providing a broad view of the value and benefits of implementing
Digital Twins.

5. Discussion

At present, we are witnessing the Fourth Industrial Revolution [81], and time is driven
by digital transformation in the service and manufacturing sectors. Almost every industry,
if not all, is currently subject to these changes—which are characterized by interconnectivity
via digital tools [82,83]—that promise to deliver affordable, smart, scalable, and reliable
capabilities beyond physical limitations [84]. Future generations of computer systems
(FGCs), particularly Digital Twins solutions, are expected to provide support not only to
their users but also to their physical counterparts in economic, operational, and strategic
domains. Clearly, the FGCs are not off-the-shelf technological products; as such, a variety
of unprecedented challenges and issues have already been identified [85–87], both in terms
of their development and deployment. This makes them one of the most complex and
demanding endeavors to undertake. Therefore, the expected benefits should be treated
with caution and considered over the long term.

Collected information suggests that different technologies used to design and develop
Digital Twin solutions have been implemented and integrated over time. There is an
obvious role for hardware infrastructure, which is a major requirement for efficient data
processing units as well as for the system as a whole. Another key component underpinning
Digital Twin solutions is a digital definition of its counterpart, along with an attached
information model. The last but not least component is a middleware that links physical
and digital entities and exchanges data between them. However, combining all these
components into one fully operational system is a complex and challenging process that
carries additional risks to a deployment effort [88–90]. Thus, in addition to considering the
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expected benefits of a DT deployment, it is also important to identify and assess potential
threats and vulnerabilities to which the system may be exposed.

Our findings are consistent with previous research that has explored the topic of Digi-
tal Twins. More generally, the domain of its applications spans many industries, including
automotive, aerospace, construction, agriculture, mining, utilities, retail, healthcare, mili-
tary, natural resources, and public safety sectors [91]. Secondly, since a DT is a theoretical
notion and does not exist as such, and takes advantage of four technology pillars—Internet-
of-Things [92], Cloud Computing [93], Artificial Intelligence [94], and Extended Reality
(XR) [95]—it is able to deliver an added value, originating from the integration of the above
pillars and their real-time collaboration.

While the adoption of Digital Twin technology has grown significantly in recent years,
with many successful application scenarios reported to date, several challenges and issues
remain to be addressed. Tahmasebinia et al. [96] identified such challenges as cost control,
data processing, security, and privacy, along with seamless integration of the physical
and digital worlds, and integration with intelligent solutions. In the construction domain,
Madubuike et al. [97] claim that the process of deploying effective DT involves highly
technical and complex steps. Digital Twin technology requires collecting and utilizing
large amounts of data from multiple endpoints, each a potential vulnerability. In addition,
employees may show a lack of interest due to concerns about job security, which can
hinder adoption. Another significant challenge is the difficulty of integrating the various
stakeholders in the construction industry to work as one team.

While Tao et al. [98] indicate that Digital Twin (DT) modeling involves physical mod-
eling, virtual modeling, connection modeling, data modeling, and service modeling, on the
other hand, such an approach implies several challenges. First, the digital model requires
managing a large volume of data, including physical data, virtual data, and their integrated
fusion data. As a result, data preprocessing is essential, providing data cleaning, data
conversion, and data filtering. Second, all components of the digital twin must interact and
collaborate to solve complex tasks. DTs have three types of interaction and collaboration:
physical–physical, virtual–virtual, and virtual–physical. Note that physical–physical inter-
action and collaboration allows multiple physical entities to communicate, coordinate, and
work together to accomplish complex tasks that a single entity cannot accomplish alone.
Finally, the remaining issues relate to service encapsulation [99], service matching [100]
and discovery [101], quality of service (QoS) modeling and evaluation [102,103], service
optimization and integration [104,105], and fault tolerance management.

Having said that, the question that naturally arises is as follows: how do you address
all these challenges and issues? Obviously, there is no single valid answer. However,
considering Deponti’s view that “Digital Twin is not about technology, it’s about people.
People and processes to be exact.” [106], there are many proven and well-documented
methods and solutions for modeling interactions between people and processes as well
as among them. Nevertheless, there is no one-size-fits-all approach that works best in
all cases. Therefore, each case should be considered individually, taking into account
the skills and resources [107,108] available on the one hand and the requirements and
constraints [109,110] on the other.

This study was set up to investigate the benefits of Digital Twin deployments. A
qualitative exploratory approach was undertaken to address this research inquiry. In our
opinion, the obtained results present some interesting findings that are of value to both
researchers and practitioners. Nevertheless, further research is needed to determine not
only the benefits but also the challenges and limitations associated with DT deployments.
One limitation of the study is that the targeted literature review only included title keyword
searches of the Scopus database and only included articles and conference proceedings
published in English. Therefore, future research should also incorporate more case studies
and technical reports that document the deployment of DTs in real-world settings.



Telecom 2024, 5 781

6. Conclusions

The deployment of Digital Twins is able to create added value by providing the capac-
ity to analyze and evaluate both existing and under-development physical products and
systems. Depending on the particular industry in question, DT models bring considerable
benefits in any number of ways. However, deploying a DT also means understanding
the physical products and systems and discovering their simultaneous and varied uses.
Thus, one should carefully balance out the expectations and deliverables, followed by a
comprehensive cost–benefit analysis. Nevertheless, while there are a number of different
approaches that are possible to be used to identify and quantify the costs in an accurate and
reliable way, we are not yet able to fully monetize the effects. In other words, the reported
pieces of evidence so far mostly rely on qualitative judgment instead of solid numbers.
Moreover, some prior studies have some drawbacks due to the lack of supporting evidence,
or issues related to sampling and its representativeness, affecting the generalizability of
the findings.

Despite the aforementioned weaknesses, Digital Twins could take many forms and
pick up many uses, delivering value to users every single day. For instance, Google Maps,
a free web mapping service with over 1 billion monthly active users [111], spanning across
220 countries and covering 24 thousand cities and towns, provides detailed information
about geographical regions and sites. Here, a question arises: what will come next? Since
the democratization of artificial intelligence (AI) has put advanced technologies such as
ChatGPT [112] into the hands of users without specialized or even technical knowledge,
the road towards Intelligent Digital Twins (IDTs) has become a reality. We believe that
this shift will further empower innovators, researchers, and industry leaders from various
domains to accelerate the adoption and implementation of IDTs in a wide range of everyday
applications, making a significant contribution to sustainable development goals.
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Appendix A. An Input for Manual Coding along with the Codes Assigned

Table A1. Overview of the identified literature items and assigned codes.

Statements Assigned Codes

“The Digital Twin can move from an interesting and potentially useful concept that aids in under-
standing the relationship between a physical product and its underlying information to a critical
component of an enterprise-wide closed loop product lifecycle. These tasks will both reduce costs
and foster innovation in the manufacture of quality products” [71].

enhance analysis; reducing
costs; foster innovation; prod-
uct life-cycle understanding;
quality improvement

“In order to gain a better understanding of the impact of external factors on the validity of products
throughout their lifecycle, we are proposing to expand the digital thread through a digital frame-
work capable of delivering a rapid impact assessment of product validation. The proposed digital
framework can help reduce costs by capitalizing on the knowledge inherent to the product families
while recognizing and reusing common association patterns” [113].

reducing costs; assessment
validation; product life-cycle
understanding

“(. . . ) digital twins are often the best solutions that support remote interaction of humans with
physical machines and overcome the challenge of geographical distance” [114].

human–machine remote in-
teraction

“(. . . ) the cloud-based digital twins successfully reduce the system’s overhead and provide an
effective CPCM application” [114].

reducing costs; reducing sys-
tem load

DT “is used to detect privacy concerns and minimize breaches and associated risks to which smart
car drivers can be exposed trough connected infotainment applications and services” [115].

problem detection; privacy
breach concerns; safety risk
mitigation

“The real-time insight into operational driving states provided by the Digital Twin, enables opera-
tional efficiency and automated feedback to drivers. (. . . ) The overall outcome should be quicker
and more informed decisions on possible privacy vulnerabilities related to operational driving
lifecycle” [115].

real-time and rational
decision-making; opera-
tional efficiency

“(. . . ) Digital Twin is designed with the aim to improve real-world products and processes based on
simulated data and ML supported decisions” [115].

product and process im-
provements; machine
learning-based decisions

Digital Twin “can be used to reduce the complexity and time of reconfiguration by early detection of
design or process sequence errors of the system with a cross-domain simulation” [73].

reducing complexity and re-
configuration time; design er-
rors

“The Digital Twin is enriched with the developed multi-domain models, which are integrated
and semantically referenced together. References between models are achieved by using software
tools that allow model integration and data exchange across different domains. This enables a
cross-domain simulation of different aspects and the system behavior” [73].

data exchange; model inte-
gration; system behavior sim-
ulation

“A cross-domain simulation during engineering supports a rising tendency for parallelizing
the engineering process, therefore reducing engineering time and supporting multidomain
collaboration” [73].

reducing time; multidomain
collaboration

“Using this virtual model, sometimes called the “digital twin,” producers can improve their after-
sales service, offer a range of new services, and generate insights that can be used to optimize the
design of future cars” [116].

improving after-sales service;
new services offering; design
optimization

“(. . . ) emulation software has become a key tool to create Digital Twins and carry out virtual
commissioning of new manufacturing systems, reducing the commissioning time and increasing its
final quality” [117].

efficiency; quality improve-
ment; commissioning time re-
duction

“We envision cognitive digital twins will impact all the stages of the manufacturing systems”, and
(. . . ) “we have particularly highlighted the impact of the cognitive digital twin in the product design
stage” [117].

product design process

“(. . . ) the asset-related decision-making process can be supported by Digital Twin modeling”, in
particular: “Asset configuration – The DT is used for modelling and simulating a production line, to
evaluate its systemic Reliability, Availability, Maintainability performance (RAM performance), to
finally predict its Total Cost of Ownership (TCO). It allows to assess the choice of the best design
solution for the production line” [118].

maintenance; decision-
making; cost optimization;
asset configuration; pro-
duction line modeling;
performance evaluation
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Table A1. Cont.

Statements Assigned Codes

“Asset reconfiguration, (. . . ) the DT is used for modelling and simulating a complex process produc-
tion plant, to evaluate its systemic RAM performance, to finally predict its TCO. It allows to assess
the choice of the best reconfiguration alternative to increase the availability of the plant” [118].

processes simulation; perfor-
mance evaluation; decision-
making; cost prediction

“Asset reconfiguration and planning – The DT is used as semantic data model within a web service-
based control system for manufacturing systems. It forms the ground for an open, knowledge-
driven Manufacturing Execution System architecture, which allows quick reconfigurations of the
system” [118].

asset planning; production
control; production manage-
ment; system maintenance

“Asset commissioning – The DT is used as semantic data model, data analytics and advanced
simulation, to make the virtual commissioning of the manufacturing system. Simulation of the
system is based on a semantic data model and of a software structure that is able to analyse data in
runtime. It allows a quick time to commission the system” [118].

data model; system analysis;
real-time data analysis; sys-
tem simulation performance;
system commissioning

“Asset condition monitoring and health assessment – The DT is used for the asset diagnosis, helping
to assess its health status based on the monitored condition. The DT provides the data analytics in
order to extract the features required for the diagnosis. It allows to limit unreliability situations” [118].

reliability and maintenance;
asset monitoring

The primary benefit of using a digital twin, as opposed to a testbed, is that it reliably represents the
real industrial environment. In other words, the results of a pen-test conducted on the digital twin
genuinely reflect the expected results of conducting the same test in the real environment. [72].

security; environment map-
ping reliability

“To secure good geometrical quality in the final product, tolerances, locator positions, clamping
strategies, welding sequence etc. are optimized during design and pre-production. Faster optimiza-
tion algorithms, increased computer power and amount of available data, can leverage the area
of simulation toward real-time control and optimization of products and production systems—a
concept often referred to as a Digital Twin” [119].

product quality assurance;
safety and reliability; prod-
uct design optimization

“The Digital Twin can use data from individuals to perform real-time in-line individual adjustments
or data from batches of parts to make adjustment batch wise” [119].

production control

“(. . . ) the digital twin driven smart manufacturing will be made more responsive and predictive
and will be beneficial to more reasonable and precise manufacturing management in many aspects.
Together they complement each other nicely to help the development of smart manufacturing” [120].

intelligent manufacturing
management

“The digital twin is tweeted to be stored, refined and propagated to the process planning for an
optimized machining solution” [121].

process planning; process op-
timization

“A digital twin collects data and monitors the process, has access to past data, and, overall, allows
for a better understanding of the production process and better prediction of the behavior and
results” [121].

production process under-
standing; process monitor-
ing; maintenance; produc-
tion process prediction

The digital twin model allows a shared conceptualization that can be visualized in exactly the same
way by an unlimited amount of individuals and by individuals who do not need to share the same
location [71].

innovation fostering

“A key ingredient of the DT model is to simulate the inspection and repair of cracked structures in
order to plan and implement cost effective inspection and repair procedures. A typical scenario is to
determine the time and type of inspections to conduct that minimize cost (. . . )” [90].

planning; maintenance; re-
ducing costs; inspection pro-
cedures; cost effectiveness

“A present-day version of the risk assessment computations for fatigue critical locations was pre-
sented that contained the essential components of a probabilistic descriptions of loads, geometry,
material properties, probabilistic methods, efficient fracture mechanics, and inspection and repair
procedures” [90].

risk assessment; inspection
and repair

“The utilisation of in-service data: The implementation of the Digital Twins involves the collection
and utilisation of in-service data, such as the pressure of the valves, the amount of fuel consumed
by the engines. (. . . ) While some companies use the data for monitoring only, others use it for
simulation, prediction and operation optimization” [122].

monitoring; simulation op-
timization; process mainte-
nance; prediction optimiza-
tion

“The integration of planning tools: It is possible to connect the data collected and stored in the Digital
Twins with planning tools. Before production, it allows the optimization of the manufacturing
strategy. During the manufacturing phase, the data stored in the Digital Twin helps to keep track of
the operations and optimize planning” [122].

manufacturing planning; op-
eration tracking; manufactur-
ing optimization



Telecom 2024, 5 784

Table A1. Cont.

Statements Assigned Codes

“During the utilization phase, some failures or breakdowns can be predicted through the analysis
of the data stored in the Digital Twin and affect task scheduling both for the operator and the
manufacturer that might have to do some repair” [122].

repair prediction; mainte-
nance forecasting

“The integration of simulation tools: To push the analytics further, it is possible to integrate simulation
tools into the Digital Twins. (. . . ) The comparison between in-service data and theoretical data
obtained through modelling and simulation allows the assessment of the performance of the physical
asset, the detection of failures, the prediction of potential problems and the determination of the next
best actions” [122].

performance evaluation; fail-
ure detection; problem pre-
diction

“The integration of the product lifecycle steps: A very important characteristic is the level of
integration of the different lifecycle steps of the product into the Digital Twin” [122].

product design; product life-
cycle understanding

“The creation of simple services: Using Tukker’s service classification, the “simple services” refer to
“product-oriented services” (. . . ). These services consist essentially in advice and consultancy using
the data stored in the Digital Twin. It can also be some basic real time monitoring features such as
asset localization, fuel consumption, etc.” [122].

maintenance and monitoring;
product-oriented services

“The creation of advanced services. (. . . ) By using the in-service data of the assets, these services aim
at optimizing the operations and predicting failures” [122].

optimization; failure predic-
tion

“The creation of services, enabled by the Digital Twins, allows the manufacturers to develop new
selling paradigms. They can build subscription systems for the services, pay per use systems for the
product and also base their revenues on the result obtained with the services they provide” [122].

sales planning; sales develop-
ment

“In particular, the digital twin lends itself to contribute to the value propositions by supporting all of
the actors around the product service system, in particular by relieving the pains and increasing the
gains of the actors” [123].

improving service offerings;
increasing profit

The DT “can be considered a data-driven enabler and support for providing services” [123]. services support

“(. . . ) embedded digital twins are involved in all activities that imply their physical twins—e.g.,
service set up and optimized configuring, delivery monitoring and update. The main benefits
brought by the digital twin concept are: (a) visibility: DTs allow visibility in the operations of
resources; (b) prediction: using various modelling techniques (DES—based), the DT model can
be used to predict the future state of a service process or resource; (c) interaction with the DES
model: simulate conditions that are impractical to create in real life through “what if” analysis; (d)
documenting: mechanisms to understand and explain behaviours of individual or interconnected
resources; (e) integration: the DT model can be used to connect with backend business applications
to co-create value” [124].

optimization; monitoring;
maintenance; visibility;
integration; interaction

“The Digital Twin is ultra-realistic and may consider one or more important and interdependent
vehicle systems, including airframe, propulsion and energy storage, life support, avionics, thermal
protection, etc.” [125].

reliability

“(. . . ) the Digital Twin continuously forecasts the health of the vehicle or system, the remaining useful
life and the probability of mission success. The Digital Twin can also predict system response to safety
critical events and uncover previously unknown issues before they become critical by comparing
predicted and actual responses. Finally, the systems on board the Digital Twin are capable of miti-
gating damage or degradation by activating self-healing mechanisms or by recommending changes
in mission profile to decrease loadings thereby increasing both the life span and the probability of
mission success” [125].

forecasting; safety; risk miti-
gation; damage mitigation

(. . . ) a digital twin that fuses the information gained from probabilistic damage diagnosis and
prognosis. The digital twin thus supports intelligent decision making (mission planning) using
up-to-date information, and quantified uncertainty” [126].

decision making; resilience

“The U. S. Air Force has been investigating the extension of IAT to realize the digital twin concept (. . . )
to fuse multiple heterogeneous sources of information from models and data to support proactive
fleet sustainment decisions” [127].

decision support

“The U.S. Air Force is currently investigating this methodology within the Airframe Digital Twin
program for demonstration with Air Force legacy aircraft, using full scale experimental tests. The
demonstrated P2IAT methodology is expected to be used for both legacy and new aircraft to reduce
maintenance cost” [127].

feasibility testing; reducing
costs
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“With the rapid technological developments of the last several years, it is now possible to simulate
complex industrial systems and develop and run digital twins in real-time settings. Digital twins
offer an ability to complete off-line ”what-if” analysis in a close-to-reality virtual environment before
implementing tested actions in actual operations” [128].

decision-making; simulation
performance

“(. . . ) considerable benefits of creating digital twin of a building are as follows: (1) gathering,
generating and visualizing the environment of the building, (2) analyzing data irregularities, and (3)
optimizing building services” [129].

simulation performance; op-
timization; risk mitigation

“The digitization of production systems offers the possibility of automated data acquisition”. (. . . )
“Benefits of the proposed new approach for the analysis and modification of production systems can
be experienced by participants in practical training sessions, especially continuous data acquisition,
automated derivation of optimization measures and capturing of motion data” [130].

monitoring; optimization

“The benefits of DT technology include cost cutting, reduced time-to-market, and predictive main-
tenance”. (. . . ) “Digital tools and DT technology can increase study motivation, students’ own
responsibility for learning, as well as improve learning” [131].

reducing costs; maintenance;
cost optimization

“The digital twin is an emerging technology used in intelligent manufacturing that can grasp the state
of intelligent manufacturing systems in real-time and predict system failures” (. . . ). “Manufacturing
systems can monitor physical processes, create a digital twin in the physical world [132], receive
real-time information from the physical world for simulation analysis, and make informed decisions
through real-time communication and collaboration with humans” (. . . ). “Using the built-in flexible
digital twin helps designers quickly evaluate different designs and find design flaws” [133].

monitoring; risk mitigation;
damage mitigation; simu-
lation performance; assess-
ment validation

“The digital twin extends the use of virtual simulation models developed in the design phase
of a production system to operations for real-time control, dynamic skill-based tasks allocation
between human and robot, sequencing of tasks and developing robot program accordingly.” (. . . )
“Results show that the approach supports the notion of automation while maintaining assembly
flexibility” [134].

maintenance; optimization;
automation

“The approach proposed prevent complex reverse-engineering processes in setting up a usable
digital environment which grow in importance to support and evaluate the impact of increasing
engineering and decision-making processes. Stakeholders are being informed about the current
machine configuration, status or behaviour or get general information on what machines are present
and connected at the moment” [135].

maintenance; decision-
making support; assessment
validation

“By establishing cyberphysical connection via decentralized digital twin models, various manufac-
turing resources can be formed as dynamic autonomous system to co-create personalized products”
(. . . ). “It addresses a bi-level online intelligence in proactive decision making for the organization and
operation of manufacturing resources”. (. . . ) “Digital twin defines the use of performance metrics
to support a manufacturing operation and provides a systems engineering-based approach that
enables continuous improvement and strategic adaptability to change. The complexities of mass
individualization in the dynamic production flows management are reduced, and the flexibility of
WIP for individualized manufacturing demands is improved. Evidenced by a successful case study
in board-type product manufacturing system, the proposed prototype can provide manufacturing
system with an intelligent optimization engine” [136].

optimization; product de-
sign; decision-making sup-
port; maintenance

“The dynamic fusion process of digital twin data not only reflects the running conditions of physical
elements and virtual models, but also keeps driving and affecting the iterative running processes of
both physical production and virtual simulation respectively as well as the co-evolution between
these two parts” [137].

maintenance; simulation per-
formance; product design

“Based on the digital twin model, probabilistic roadmap method (PRM) is performed to generate a
collision-free path and control the robot to accomplish the assembly mission”. (. . . ) “The experiment
results show that the proposed method can quickly plan a collision-free assembly path, and then
control the industrial robot to automatically, safely and efficiently complete large-scale components
installation” [138].

simulation performance;
safety and risk mitigation;
reducing costs
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“The production plan under the digital twin model is a dynamic model with stronger disturbance
resistance. It not only makes the processes (i.e., coking, sintering, iron making, steel making, and steel
rolling) and other processes more coordinated and orderly, but also makes energy, power, logistics,
equipment maintenance and all kinds of raw materials more balanced. Through capacity requirement
planning model and material requirement planning model, the requirements of equipment and
material are determined, and the production is arranged according to the scheduling model, and the
coordination of man, machines and materials is ensured in time” [139].

maintenance; reducing costs;
decision-making support

“This digital twin will have high impact in terms of developing HRI techniques for example facilitat-
ing human-robot trust in high stakes scenarios such as emergency response. It will also allow testing
of task planning algorithms for cooperative inspection and long-term autonomy, and humanguided
supervision and control of the robotic assets from remotely located control stations” [140].

maintenance; safety and risk
mitigation

References
1. Spijkers, O. Intergenerational equity and the sustainable development goals. Sustainability 2018, 10, 3836. [CrossRef]
2. Sadhukhan, J.; Dugmore, T.I.; Matharu, A.; Martinez-Hernandez, E.; Aburto, J.; Rahman, P.K.; Lynch, J. Perspectives on “game

changer” global challenges for sustainable 21st century: Plant-based diet, unavoidable food waste biorefining, and circular
economy. Sustainability 2020, 12, 1976. [CrossRef]

3. Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.;
et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [CrossRef]

4. Olawumi, T.O.; Chan, D.W. A scientometric review of global research on sustainability and sustainable development. J. Clean.
Prod. 2018, 183, 231–250. [CrossRef]

5. Elavarasan, R.M.; Shafiullah, G.; Padmanaban, S.; Kumar, N.M.; Annam, A.; Vetrichelvan, A.M.; Mihet-Popa, L.; Holm-Nielsen,
J.B. A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an
international perspective. IEEE Access 2020, 8, 74432–74457. [CrossRef]
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