Sum-Rate Maximization for a Hybrid Precoding-Based Massive MIMO NOMA System with Simultaneous Wireless Information and Power Transmission
Abstract
:1. Introduction
- We examine the optimisation of both HP and PS techniques to enrich SWIPT-enabled mmWave-mMIMO-NOMA systems. Based on the channel correlation, a modified version of the K-Means (MKM) user grouping algorithm was used. Here, we examine the proposed HP and optimization of the PA and PS factors to improve the sum rate of the proposed system.
- We have constructed a hybrid/joint mmWave MIMO-NOMA precoding technique/scheme. Depending on the user groupings, a scheme for analog precoding (AP) has been designed to guarantee that every beam receives equivalent channel gain at its maximum. We introduce the SSOR-CRZF digital precoder (DP) for eradicating inter-user interference. We define the problem as a combined optimization of power distribution and PS variables in order to make the overall power as well as the minimal rate limits for every UE more straightforward.
- In comparison to traditional precoders, the presented SSOR-CRZF precoder is evaluated in this study for its ability to improve both SS as well as EE within the mmWave-mMIMO-NOMA-SWIPT network while having less complexity. In terms of SE, EE, and computational complexity, its performance is contrasted with that of MRT, ZF, RZF, Kalman, SSOR, and CRZF-based precoders. It is shown that the recommended strategy outperforms the system significantly more than the current state-of-the-art algorithms.
- The performance of the proposed system is evaluated with respect to variations in the signal-to-noise ratio, number of users, number of BS antennas, number of phase quantization bits, fading parameters, and under imperfect CSI conditions.
- Given the limitations of transmit power and EH need, the combined PA and PS control is mathematically formulated to maximise the sum rate.
2. System Model
2.1. Channel
2.2. Power Splitting Receiver and Sum Rate
2.3. User Grouping
Algorithm 1 MKM User Grouping Algorithm |
3. Problem Formulation and Solutions
3.1. Problem Formulation
3.2. Solution: Hybrid Precoder
3.2.1. Analog Precoder (AP)
Algorithm 2 Analog Precoder |
3.2.2. Digital Precoder (DP)
Algorithm 3 Proposed SSOR-CRZF DP |
3.3. Solution: Power Allocation (PA) and Power Splitting (PS)
4. COMPUTATIONAL COMPLEXITY
5. NUMERICAL AND SIMULATION RESULTS
6. Challenges and Future Research Directions
6.1. Challenges
6.1.1. Power Splitting (PS) Efficiency
6.1.2. Complexity in Algorithm Design
6.1.3. Channel Estimation and Feedback Overhead
6.1.4. Interference Management
6.1.5. Energy Harvesting Efficiency
6.2. Future Research Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mumtaz, S.; Rodriguez, J.; Dai, L. MmWave Massive MIMO: A Paradigm for 5G; Academic Press: London, UK, 2016. [Google Scholar]
- Uwaechia, A.N.; Mahyuddin, N.M.; Ain, M.F.; Latiff, N.M.A.; Za’bah, N.F. On the Spectral-Efficiency of Low-Complexity and Resolution Hybrid Precoding and Combining Transceivers for mmWave MIMO Systems. IEEE Access 2019, 7, 109259–109277. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Peng, M.; Chen, S. Hybrid Precoding-Based Millimeter-Wave Massive MIMO-NOMA with Simultaneous Wireless Information and Power Transfer. IEEE J. Sel. Areas Commun. 2019, 37, 131–141. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. Spectrum and Energy Efficiency Optimization for Hybrid Precoding-Based SWIPT-Enabled mmWave mMIMO-NOMA Systems. IEEE Access 2020, 8, 139994–140007. [Google Scholar] [CrossRef]
- Sur, S.N.; Kandar, D.; Silva, A.; Nguyen, N.D.; Nandi, S.; Do, D.T. Hybrid Precoding Algorithm for Millimeter-Wave Massive MIMO-NOMA Systems. Electronics 2022, 11, 2198. [Google Scholar] [CrossRef]
- Krikidis, I.; Timotheou, S.; Nikolaou, S.; Zheng, G.; Ng, D.W.K.; Schober, R. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 2014, 52, 104–110. [Google Scholar] [CrossRef]
- Tran, H.Q. PSR versus TSR Relaying Protocols: Leveraging Full-Duplex DF and Energy Harvesting for SWIPT in NOMA Systems. Wirel. Pers. Commun. 2024, 134, 293–318. [Google Scholar] [CrossRef]
- Tran, H.; Sur, S.; Lee, B. A Comprehensive Analytical Framework under Practical Constraints for a Cooperative NOMA System Empowered by SWIPT IoT. Mathematics 2024, 12, 2249. [Google Scholar] [CrossRef]
- Zargari, S.; Khalili, A.; Zhang, R. Energy Efficiency Maximization via Joint Active and Passive Beamforming Design for Multiuser MISO IRS-Aided SWIPT. IEEE Wirel. Commun. Lett. 2021, 10, 557–561. [Google Scholar] [CrossRef]
- Dong, G.; Zhou, X.; Zhang, H.; Yuan, D. Achievable Rate Optimization for Massive MIMO Enabled SWIPT Systems Over Downlink Rician Channels. IEEE Access 2018, 6, 36810–36824. [Google Scholar] [CrossRef]
- Khodamoradi, V.; Sali, A.; Messadi, O.; Khalili, A.; Ali, B.B.M. Energy-Efficient Massive MIMO SWIPT-Enabled Systems. IEEE Trans. Veh. Technol. 2022, 71, 5111–5127. [Google Scholar] [CrossRef]
- Psomas, C.; Krikidis, I. Successive Interference Cancellation in Bipolar Ad Hoc Networks with SWIPT. IEEE Wirel. Commun. Lett. 2016, 5, 364–367. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O.; Xia, X.G. Millimeter-Wave NOMA with User Grouping, Power Allocation and Hybrid Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5065–5079. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, Y.; Yang, Z.; Xu, P.; Ding, Z. Energy Efficiency Optimization in Full-Duplex User-Aided Cooperative SWIPT NOMA Systems. IEEE Trans. Commun. 2019, 67, 5753–5767. [Google Scholar] [CrossRef]
- Tran, T.N.; Voznak, M.; Fazio, P.; Ho, V.C. Emerging cooperative MIMO-NOMA networks combining TAS and SWIPT protocols assisted by an AF-VG relaying protocol with instantaneous amplifying factor maximization. AEU - Int. J. Electron. Commun. 2021, 135, 153695. [Google Scholar] [CrossRef]
- Li, S.; Wan, Z.; Jin, L. Joint rate maximization of downlink and uplink in NOMA SWIPT systems. Phys. Commun. 2021, 46, 101324. [Google Scholar] [CrossRef]
- Jawarneh, A.; Kadoch, M.; Albataineh, Z. Decoupling Energy Efficient Approach for Hybrid Precoding-Based mmWave Massive MIMO-NOMA with SWIPT. IEEE Access 2022, 10, 28868–28884. [Google Scholar] [CrossRef]
- Li, C.; Cheng, X.; Liu, F. Energy efficient transceiver design for SWIPT systems with non-orthogonal multiple access and power splitting. AEU - Int. J. Electron. Commun. 2023, 158, 154449. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Jiang, Y. Fast Computation of Zero-Forcing Precoding for Massive MIMO-OFDM Systems. IEEE Trans. Signal Process. 2024, 72, 912–927. [Google Scholar] [CrossRef]
- Elmagzoub, H.M. On the MMSE-based multiuser millimeter wave MIMO hybrid precoding design. Int. J. Commun. Syst. 2020, 33, e4409. [Google Scholar] [CrossRef]
- Vizziello, A.; Savazzi, P.; Chowdhury, K.R. A Kalman Based Hybrid Precoding for Multi-User Millimeter Wave MIMO Systems. IEEE Access 2018, 6, 55712–55722. [Google Scholar] [CrossRef]
- Woldesenbet, M.D.; Mishra, S.; Siddique, M. Least Mean Squares Based Kalman Hybrid Precoding for Multi-User Millimeter Wave Massive MIMO Systems. Wirel. Pers. Commun. 2024, 135, 563–592. [Google Scholar] [CrossRef]
- Ni, W.; Dong, X. Hybrid Block Diagonalization for Massive Multiuser MIMO Systems. IEEE Trans. Commun. 2016, 64, 201–211. [Google Scholar] [CrossRef]
- Payami, S.; Ghoraishi, M.; Dianati, M. Hybrid Beamforming for Downlink Massive MIMO Systems with Multiantenna User Equipment. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Cao, S.; Deng, Q.; Ran, R.; Nguyen, K.; Tingrui, P. Hybrid Precoding for Massive mmWave MIMO Systems. IEEE Access 2019, 7, 33577–33586. [Google Scholar] [CrossRef]
- Zu, K.; de Lamare, R.C.; Haardt, M. Generalized Design of Low-Complexity Block Diagonalization Type Precoding Algorithms for Multiuser MIMO Systems. IEEE Trans. Commun. 2013, 61, 4232–4242. [Google Scholar] [CrossRef]
- Halak, B.; El-Hajjar, M.; Hassanein, A. Hardware Efficient Architecture for Element-Based Lattice Reduction Aided K-Best Detector for MIMO Systems. J. Sens. Actuator Netw. 2018, 7, 22. [Google Scholar] [CrossRef]
- Sur, S.N.; Bera, R.; Bhoi, A.K.; Shaik, M.; Marques, G. Capacity Analysis of Lattice Reduction Aided Equalizers for Massive MIMO Systems. Information 2020, 11, 301. [Google Scholar] [CrossRef]
- Kandar, D.; Sur, S.N.; Singh, A.K.; Nandi, S. Performance analysis of lattice reduction-assisted precoder for multi-user millimeter wave MIMO system. Int. J. Commun. Syst. 2021, 34, e4853. [Google Scholar] [CrossRef]
- Lyu, S.; Ling, C. Hybrid Vector Perturbation Precoding: The Blessing of Approximate Message Passing. IEEE Trans. Signal Process. 2019, 67, 178–193. [Google Scholar] [CrossRef]
- Elbir, A.M. CNN-Based Precoder and Combiner Design in mmWave MIMO Systems. IEEE Commun. Lett. 2019, 23, 1240–1243. [Google Scholar] [CrossRef]
- Shlezinger, N.; Ma, M.; Lavi, O.; Nguyen, N.T.; Eldar, Y.C.; Juntti, M. Artificial Intelligence-Empowered Hybrid Multiple-Input/Multiple-Output Beamforming: Learning to Optimize for High-Throughput Scalable MIMO. IEEE Veh. Technol. Mag. 2024, 2–11. [Google Scholar] [CrossRef]
- Huang, H.; Song, Y.; Yang, J.; Gui, G.; Adachi, F. Deep-Learning-Based Millimeter-Wave Massive MIMO for Hybrid Precoding. IEEE Trans. Veh. Technol. 2019, 68, 3027–3032. [Google Scholar] [CrossRef]
- Ramanathan, S.; Maria, A.B. Deep Learning-Based Hybrid Precoding Approach in the Massive Multiple-Input Multiple-Output System. IETE J. Res. 2024, 1–22. [Google Scholar] [CrossRef]
- Mueller, A.; Kammoun, A.; Björnson, E.; Debbah, M. Linear precoding based on polynomial expansion: Reducing complexity in massive MIMO. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 63. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, H.; Rodrigues, J.; Edfors, O.; Rusek, F. Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013. [Google Scholar] [CrossRef]
- Minango, J.; de Almeida, C. A Low-Complexity Linear Precoding Algorithm Based on Jacobi Method for Massive MIMO Systems. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar] [CrossRef]
- Dai, L.; Gao, X.; Su, X.; Han, S.; I, C.L.; Wang, Z. Low-Complexity Soft-Output Signal Detection Based on Gauss–Seidel Method for Uplink Multiuser Large-Scale MIMO Systems. IEEE Trans. Veh. Technol. 2015, 64, 4839–4845. [Google Scholar] [CrossRef]
- Xie, T.; Han, Q.; Xu, H.; Qi, Z.; Shen, W. A Low-Complexity Linear Precoding Scheme Based on SOR Method for Massive MIMO Systems. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015. [Google Scholar] [CrossRef]
- Xie, T.; Dai, L.; Gao, X.; Dai, X.; Zhao, Y. Low-Complexity SSOR-Based Precoding for Massive MIMO Systems. IEEE Commun. Lett. 2016, 20, 744–747. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y. Low Complexity WSSOR-based Linear Precoding for Massive MIMO Systems. In Proceedings of the 2016 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China, 16–18 November 2016. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Cheng, X.; Lian, Y.; Jia, Y.; Zhang, H. Low-complexity and fast-convergence linear precoding based on modified SOR for massive MIMO systems. Digit. Signal Process. 2020, 107, 102864. [Google Scholar] [CrossRef]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; I, C.L.; Heath, R.W. Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems with Large Antenna Arrays. IEEE J. Sel. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef]
- Almers, P.; Bonek, E.; Burr, A.; Czink, N.; Debbah, M.; Degli-Esposti, V.; Hofstetter, H.; Kyösti, P.; Laurenson, D.; Matz, G.; et al. Survey of Channel and Radio Propagation Models for Wireless MIMO Systems. EURASIP J. Wirel. Commun. Netw. 2007, 2007, 19070. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Leus, G.; Heath, R.W. Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems. IEEE Trans. Wirel. Commun. 2015, 14, 6481–6494. [Google Scholar] [CrossRef]
- Saleeb, B.; Shehata, M.; Mostafa, H.; Fahmy, Y. Performance Evaluation of RZF Precoding in Multi-User MIMO Systems. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019. [Google Scholar] [CrossRef]
- Mostafa, M.; Newagy, F.; Hafez, I. Complex Regularized Zero Forcing Precoding for Massive MIMO Systems. Wirel. Pers. Commun. 2021, 120, 633–647. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Tufvesson, F. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef]
Precoding Scheme | Computational Complexity |
---|---|
ZF | |
RZF | |
CRZF | |
KALMAN | |
SSOR-CRZF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sur, S.N.; Tran, H.Q.; Imoize, A.L.; Kandar, D.; Nandi, S. Sum-Rate Maximization for a Hybrid Precoding-Based Massive MIMO NOMA System with Simultaneous Wireless Information and Power Transmission. Telecom 2024, 5, 823-845. https://doi.org/10.3390/telecom5030042
Sur SN, Tran HQ, Imoize AL, Kandar D, Nandi S. Sum-Rate Maximization for a Hybrid Precoding-Based Massive MIMO NOMA System with Simultaneous Wireless Information and Power Transmission. Telecom. 2024; 5(3):823-845. https://doi.org/10.3390/telecom5030042
Chicago/Turabian StyleSur, Samarendra Nath, Huu Q. Tran, Agbotiname Lucky Imoize, Debdatta Kandar, and Sukumar Nandi. 2024. "Sum-Rate Maximization for a Hybrid Precoding-Based Massive MIMO NOMA System with Simultaneous Wireless Information and Power Transmission" Telecom 5, no. 3: 823-845. https://doi.org/10.3390/telecom5030042
APA StyleSur, S. N., Tran, H. Q., Imoize, A. L., Kandar, D., & Nandi, S. (2024). Sum-Rate Maximization for a Hybrid Precoding-Based Massive MIMO NOMA System with Simultaneous Wireless Information and Power Transmission. Telecom, 5(3), 823-845. https://doi.org/10.3390/telecom5030042