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Abstract: Efficient Virtual Machine (VM) placement is a critical challenge in optimizing resource
utilization in cloud data centers. This paper explores both exact and approximate methods to address
this problem. We begin by presenting an exact solution based on a Multi-Objective Integer Linear
Programming (MOILP) model, which provides an optimal VM Placement (VMP) strategy. Given
the NP-completeness of the MOILP model when handling large-scale problems, we then propose
an approximate solution using a Tabu Search (TS) algorithm. The TS algorithm is designed as a
practical alternative for addressing these complex scenarios. A key innovation of our approach is
the simultaneous optimization of three performance metrics: the number of accepted VMs, resource
wastage, and power consumption. To the best of our knowledge, this is the first application of a TS
algorithm in the context of VMP. Furthermore, these three performance metrics are jointly optimized
to ensure operational efficiency (OPEF) and minimal operational expenditure (OPEX). We rigorously
evaluate the performance of the TS algorithm through extensive simulation scenarios and compare its
results with those of the MOILP model, enabling us to assess the quality of the approximate solution
relative to the optimal one. Additionally, we benchmark our approach against existing methods in
the literature to emphasize its advantages. Our findings demonstrate that the TS algorithm strikes an
effective balance between efficiency and practicality, making it a robust solution for VMP in cloud
environments. The TS algorithm outperforms the other algorithms considered in the simulations,
achieving a gain of 2% to 32% in OPEF, with a worst-case increase of up to 6% in OPEX.

Keywords: cloud computing; virtualization; virtual machines; placement problem; multi-objective
optimization; integer linear programming; tabu search; ant colony optimization; genetic algorithm;
first fit; first fit decreasing; worst fit

1. Introduction

Cloud computing has transformed the IT landscape, providing scalable, flexible, and
cost-efficient solutions for handling large volumes of data and applications across industries
such as healthcare, education, and e-commerce [1,2]. A key enabler of this transformation is
virtualization, which facilitates the creation of Virtual Machines (VMs) to optimize resource
utilization in data centers (DCs) [3]. However, achieving this optimization hinges on
addressing the Virtual Machine Placement Problem (VMPP).

The VMPP involves allocating VMs with specific resource requirements (e.g., CPU,
memory, and storage) to Physical Machines (PMs) in a way that maximizes efficiency while
meeting application demands. Effective placement enhances resource utilization, system
performance, and compliance with operational constraints. Conversely, poor placement
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can result in wasted resources, reduced performance, and violations of Service Level
Agreements (SLAs), underscoring the importance of robust solutions.

The complexity of the VMPP stems from multiple interrelated factors [4]. Resource
heterogeneity in modern cloud environments complicates the matching of VM requirements
to available PMs. The sheer scale of DCs introduces a combinatorial challenge as the number
of potential VM–PM allocations grows exponentially with infrastructure size. Additionally,
balancing conflicting objectives—such as minimizing energy consumption, reducing costs,
ensuring Quality of Service (QoS), and adhering to SLAs—requires strategic prioritization.
Dynamic workloads and fluctuating resource demands further amplify these challenges,
necessitating adaptable and real-time solutions.

These factors significantly impact cloud operational efficiency (OPEF) and sustain-
ability [5]. High energy consumption increases costs and contributes to carbon emissions,
making energy-efficient strategies vital for reducing environmental impact. Effective re-
source utilization is critical to avoiding under-utilization, which wastes resources, and
over-utilization, which causes performance bottlenecks and degrades QoS. SLA compli-
ance is also essential to avoid penalties and maintain client satisfaction, requiring careful
management of latency and workload distribution. Finally, scalability and adaptability are
paramount for accommodating infrastructure growth and dynamic workloads, ensuring
reliable performance under changing conditions.

Traditional methods, such as greedy algorithms or single-objective optimization tech-
niques, often fall short in addressing the multifaceted nature of the VMPP. These methods
typically focus on optimizing a single objective (e.g., minimizing energy consumption
or maximizing resource utilization), neglecting the interdependencies and trade-offs that
exist between competing objectives in real-world cloud environments. For instance, while
reducing energy consumption is crucial for sustainability and cost savings, it may inadver-
tently lead to performance degradation if not balanced with latency or QoS requirements.
Moreover, traditional approaches struggle to handle the dynamic and heterogeneous nature
of modern cloud applications, such as cloud-native applications and serverless computing,
which demand highly adaptive and resource-efficient placements. These challenges under-
score the limitations of existing methods and highlight the need for more sophisticated,
multi-objective strategies.

In this context, this study introduces and compares two innovative methods that tackle
the VMPP by considering multiple conflicting objectives simultaneously:

• The first approach is a Multi-Objective Integer Linear Programming (MOILP) model
that optimizes three key objectives: maximizing the number of hosted VMs, mini-
mizing resource wastage, and reducing power consumption. This model integrates
objectives that are crucial for cloud data center operators—increasing revenue, enhanc-
ing client satisfaction, and reducing operational expenditures (OPEX). By considering
these objectives together, the MOILP approach offers a novel framework that seeks to
strike a balance between OPEF and cost-effectiveness.

• The second method explored is a Tabu Search (TS) algorithm, which offers a meta-
heuristic solution to the same multi-objective problem. Unlike traditional heuristics,
the TS algorithm is designed to optimize multiple objectives simultaneously, providing
a practical solution to the computational challenges associated with the MOILP model.
The TS algorithm excels in navigating large-scale problem spaces, offering high-quality
solutions within reasonable computation times, making it particularly suitable for
real-time cloud management scenarios.

The scientific novelty of this work lies in the development and comparison of two
distinct yet complementary methods—a precise optimization model and a meta-heuristic
approach—both tailored to solve the complex, multi-objective nature of the VMPP. This
dual approach contributes significantly to the current literature by addressing the short-
comings of traditional methods and offering practical, scalable solutions for optimizing
VM Placement (VMP) in modern cloud data centers. The findings from this study provide
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a solid foundation for further research and hold great potential for improving OPEF in
cloud computing infrastructures.

The structure of this paper is as follows: Section 2 provides a comprehensive de-
scription of the problem addressed in this study and a review of the current state of the
art, highlighting relevant research and methodologies. Section 3 presents the proposed
solutions, offering in-depth insights into their development and implementation. Section 4
discusses the simulation results, evaluating the performance of the proposed approaches.
Finally, Section 5 summarizes the main findings and suggests potential avenues for fu-
ture research.

2. Problem Description and Related Work
2.1. Problem Overview

The VMPP, also called the VM mapping problem, involves assigning a set of VMs
to a set of PMs while satisfying certain constraints and optimizing an objective function
as previously discussed. Specifically, given a set of PMs with defined resource capacities
(CPU, memory, and storage) and a set of VMs with resource requirements, the goal is to
allocate physical resources such that VM requirements are met, constraints are satisfied,
and the objective function is optimized. For example, we consider three PMs with specified
capacities for CPU cores, memory, and storage (Table 1), and five VMs with specific resource
requirements (Table 2). The task is to allocate the VMs across the PMs to maximize the
number of hosted VMs, ensure a one-to-one VM-PM assignment, and avoid resource
overcommitment on any PM.

Table 1. PM resource characteristics.

PM CPU (Cores) RAM (GB) Storage (GB)
PM1 8 32 500
PM2 16 64 1000
PM3 4 16 250

Table 2. VM resource requirements.

VM CPU (Cores) RAM (GB) Storage (GB)
VM1 4 16 100
VM2 2 8 50
VM3 6 24 200
VM4 4 16 100
VM5 2 8 50

As shown in Figure 1, multiple solutions exist for the VMPP, each with its own set of
advantages and trade-offs. In the first solution, depicted in Figure 1a, VM1 and VM2 are
hosted on PM1, utilizing six CPU cores, 24 GB of RAM, and 150 GB of storage. VM3 and
VM5 are placed on PM2, consuming eight CPU cores, 32 GB of RAM, and 250 GB of storage,
while VM4 is placed on PM3, fully utilizing its resources. Although this configuration hosts
all VMs, it results in higher energy consumption since all three PMs are active.

Alternatively, the second solution, shown in Figure 1b, optimizes resource utilization
and minimizes energy consumption. In this solution, VM1, VM2, and VM5 are allocated to
PM1, fully utilizing its resources (eight CPU cores, 32 GB of RAM, and 200 GB of storage).
VM3 and VM4 are placed on PM2, consuming 10 CPU cores, 40 GB of RAM, and 300 GB of
storage. Notably, PM3 remains unused, reducing energy consumption by activating only
PM1 and PM2. This configuration maximizes the number of accepted VMs while minimiz-
ing resource waste and energy expenditure, demonstrating the effectiveness of strategic
VM placement in optimizing resource utilization and cost-efficiency in cloud environments.
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(a)

(b)

Figure 1. Comparative analysis of VMP solutions: solution 1 vs. solution 2. (a) VMP solution 1;
(b) VMP solution 2.

This example highlights the variability in VMPP solutions and emphasizes the need
to optimize multiple criteria simultaneously. A comprehensive approach that sequentially
optimizes several objective functions is essential for achieving more efficient and effective
VMP solutions.

2.2. Objectives and Challenges

The VMP is guided by several objectives, focusing on maximizing resource utilization
across CPU, memory, and storage [6–11]. Minimizing energy consumption is another key
objective, achievable through intelligent server management that reduces the number of
active servers or by migrating VMs to energy-efficient servers [12–15]. Load balancing
is also important to prevent resource bottlenecks and improve system reliability [16–19].
Additionally, meeting QoS requirements, as outlined in SLAs, ensures that performance
levels are met [20–22]. Other factors include scalability, which ensures that the system can
adapt to changing demands, and minimizing migration costs when relocating VMs [23–27].
These objectives are interrelated, requiring a careful balance to achieve optimal performance,
cost efficiency, and sustainability in cloud environments.
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2.3. Multi-Objective VMP Optimization

Multi-objective optimization (MOO) offers a framework for solving the VMPP by
evaluating competing objectives simultaneously. Techniques such as genetic algorithms
(GAs), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) have
been applied to VMPP, each with strengths and limitations.

GAs are commonly used for multi-objective VMP, evolving solution populations over
generations [28–32]. However, GAs may suffer from slow convergence, especially in large
solution spaces, and face challenges with maintaining population diversity, leading to
premature convergence. PSO, inspired by social behaviors in nature, has been used to
minimize energy consumption and optimize resource utilization [33,34]. However, PSO can
become trapped in local optima and is sensitive to parameter tuning. ACO, which simulates
ant foraging behavior, has also been applied to VMPP, using pheromone trails to guide
efficient placements [35–37]. However, ACO may struggle with balancing exploration and
exploitation, leading to significant computational overhead in large environments. Hybrid
approaches combining GAs with local search methods or PSO with heuristics have also
been explored to overcome these challenges [30,38,39]. While these hybrid methods can
improve solution quality, they may introduce additional complexity in implementation
and tuning, and may struggle with real-time adaptation to dynamic environments.

3. Proposed Methods

This section presents the proposed methods for solving the VMPP, focusing on their
contributions to addressing the limitations of existing approaches.

We introduce a novel solution by combining two advanced methods: a Multi-Objective
Integer Linear Programming (MOILP) model and a Multi-Objective Tabu Search (MOTS)
meta-heuristic. To the best of our knowledge, MOTS is applied for the first time to address
the VMPP.

The key innovation of this study lies in addressing the limitations of MOILP in large-
scale cloud environments. While MOILP provides a precise mathematical framework for
optimizing conflicting objectives, its computational cost and inefficiency grow exponentially
with the size of the problem, especially with thousands of VMs and PMs. As the complexity
of MOILP increases, it struggles with long solution times and high resource demands,
making it unsuitable for real-time or dynamic cloud scenarios.

To address these challenges, we employ MOTS, a TS-based optimization technique
that is highly effective in solving complex problems. MOTS improves local search processes
by utilizing a memory-based approach, which helps it avoid getting trapped in local optima.
The method explores the solution space methodically, permitting moves that may initially
worsen the objective, and uses a tabu list—a short-term memory mechanism—to prevent
revisiting recently explored solutions. This approach ensures greater diversity and directs
the search toward high-quality solutions [40,41]. MOTS improves computational efficiency,
accelerates convergence, and enhances scalability, making it particularly suited for dynamic
environments with larger solution spaces.

The combination of MOILP and MOTS provides a unique balance of theoretical rigor
and practical scalability, making it an ideal solution for large-scale cloud environments.

The study simultaneously optimizes three critical objectives to improve VMP:

• Maximizing hosted VMs: This objective aims to optimize PM utilization, increasing
cloud profitability by hosting more clients.

• Minimizing resource wastage: Efficient allocation of CPU, memory, and storage
prevents over-provisioning and enhances server performance. Unbalanced residual
resources can limit future VM placements. Resource wastage is calculated as the sum
of normalized residuals for each dimension, with greater discrepancies leading to
more waste [42]. For instance, a server with unused RAM but insufficient CPU cannot
accommodate more VMs. Figure 2 shows the VMP for three VMs over a PM. The total
CPU and RAM capacities are represented among the x-axis and y-axis respectively.
Placing three VMs on the host reduces its resource capacity across the two dimensions,
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with each small rectangle representing the resources allocated to a VM. The dark gray
area indicates the remaining residual resources available for future allocation. In the
example of Figure 2a, the host has substantial unused RAM capacity but limited CPU,
which prevents it from accommodating any additional VMs due to CPU shortage.
Figure 2b shows a VMP scenario where CPU and memory utilization reaches 90%,
indicating that all dimensions are balanced, and the PM is being fully utilized.

(a) (b)

Figure 2. An example of a VMP of three VMs over one PM. (a) A first example of a VMP of three
VMs over one PM; (b) A second example of a VMP of three VMs over one PM.

• Minimizing energy consumption: Reducing power usage lowers operational costs
and environmental impact. Energy consumption primarily depends on CPU usage,
calculated using the formula [35]

Ej = (E1
j − E0

j )× Uj + E0
j (1)

where Uj is the normalized CPU usage on PM Pj (Uj ∈ [0, 1]), and E1
j and E0

j are
the power values when the PM is busy or idle, respectively. We assume that CPU
consumes the most energy compared to other resources like memory and storage,
though the model can be extended to include other parameters.

Balancing these objectives enables effective trade-offs between performance, cost, and
energy efficiency in cloud environments.

3.1. Mathematical Formulation of the Multi-Objective Integer Linear Programming Model

In the realm of optimization, MOILP models play a crucial role in addressing complex
problems where multiple, often conflicting, objectives need to be simultaneously optimized.
This section delves into the detailed description of an MOILP model designed to tackle
the VMPP.

3.1.1. Notations

We use the following notations and formatting conventions.

Index Notations

The indices i and j refer to a VM request and a PM, respectively.

Parameters

The parameters used in the model capture the core characteristics of the VMs and PMs
in the DC.
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• V = {v1, v2, . . . , vN} represents the set of VM requests received by the DC. Each VM
vi is defined by

vi = {ci, ri, si}

where

– ci represents the CPU requirements of VM vi;
– ri represents the RAM requirements of VM vi;
– si represents the storage requirements of VM vi.

• P = {P1, P2, . . . , PM} represents the set of available PMs in the DC. Each PM Pj is
characterized by

Pj = {Cj, Rj, Sj, E0
j , E1

j }

where

– Cj represents the initial CPU capacity of Pj;
– Rj represents the initial memory capacity of Pj;
– Sj represents the initial storage capacity of Pj;
– E0

j represents the average power consumed by Pj when the PM is idle.;

– E1
j represents the average power consumed by Pj when the PM is busy.

• N = |V| and M = |P| are the number of VM requests and the number of PMs available
in the DC, respectively.

Variables

To define the decision-making aspect of the model, we introduce the following binary
variables:

• The binary variable ϕij, equal to 1 if VM vi is hosted by PM Pj and 0 otherwise.
• The binary variable κj, equal to 1 if there is at least one VM hosted by PM Pj and 0

otherwise.

Table 3 presents an overview of the notations employed in the MOILP model, serving
as a convenient reference for each parameter and its role in the optimization framework.

Table 3. Notations used in the MOIP model.

Symbol Description

V Set of VM requests.

N Number of VM requests.

P Set of available PMs in the DC.

M Number of PMs.

ci CPU requirements of VM vi.

ri RAM requirements of VM vi.

si Storage requirements of VM vi.

Cj CPU capacity of PM Pj.

Rj RAM capacity of PM Pj.

Sj Storage capacity of PM Pj.

E0
j Power consumption of PM Pj when idle.

E1
j Power consumption of PM Pj when busy.
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Table 3. Cont.

Symbol Description

ϕij Binary decision variable, where ϕij = 1 if VM vi is hosted by PM Pj, and
ϕij = 0 otherwise.

κj Binary decision variable, where κj = 1 if at least one VM is hosted by PM Pj,
κj = 0 otherwise.

3.1.2. Mathematical Formulation

The mathematical formulation of the MOILP model is structured in three sequential
stages. Each stage focuses on one key objective, ensuring that prior objectives are preserved:

• Objective 1 (O1): Maximize the number of accepted VMs.
• Objective 2 (O2): Minimize resource wastage in the DC.
• Objective 3 (O3): Minimize power consumption in the DC.

The stages are optimized in a lexicographical order, prioritizing O1 over O2, and O2
over O3. This ensures that the results of one stage are not compromised by subsequent
stages. Figure 3 visually represents this three-stage optimization approach.

Figure 3. Graphical representation of the three-stage MOILP solution.

Stage 1: Maximizing the Number of Accepted VMs—O1

This stage focuses on maximizing the total number of hosted VM requests, denoted as
ϕmax, by determining the optimal placement of VMs across PMs.

Objective:

Maximize ϕmax =
N

∑
i=1

M

∑
j=1

ϕij (2)

Subject to the following constraints:

• Single host constraint: Each VM request vi is assigned to, at most, one PM:

M

∑
j=1

ϕij ≤ 1, ∀1 ≤ i ≤ N (3)

• CPU capacity constraint: The total CPU usage of the VMs assigned to PM Pj must not
exceed the PM’s available CPU capacity Cj:

N

∑
i=1

ciϕij ≤ Cj, ∀1 ≤ j ≤ M (4)

• RAM capacity constraint: The total RAM usage of the VMs assigned to PM Pj must
not exceed the PM’s available RAM capacity Rj:
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N

∑
i=1

riϕij ≤ Rj, ∀1 ≤ j ≤ M (5)

• Storage capacity constraint: The storage usage of the VMs assigned to PM Pj must not
exceed the PM’s available storage capacity Sj:

N

∑
i=1

siϕij ≤ Sj, ∀1 ≤ j ≤ M (6)

Stage 2: Minimizing Resource Wastage—O2

Once ϕmax, the maximum number of hosted VMs, is determined, the next objective is
to minimize resource wastage, denoted as Wmin. This stage ensures that resources are used
efficiently across all PMs while maintaining the number of hosted VMs unchanged from
Stage 1.

Objective:

Minimize Wmin =
M

∑
j=1

(
3 −

(
N

∑
i=1

(
ciϕij

Cj
+

riϕij

Rj
+

siϕij

Sj

)))
− 3

(
M −

M

∑
j=1

κj

)
(7)

Subject to the following constraints:

• VM hosting preservation constraint: The total number of hosted VMs must be at least
equal to ϕmax, computed in Stage 1:

ϕmax ≤
N

∑
i=1

M

∑
j=1

ϕij (8)

• VM assignment linking constraint: A VM can only be assigned to a PM if that PM is
active (κj = 1):

ϕij ≤ κj, ∀1 ≤ i ≤ N, ∀1 ≤ j ≤ M (9)

• PM usage indicator constraint: A PM is considered active (κj = 1) only if it hosts at
least one VM:

κj ≤
N

∑
i=1

ϕij, ∀1 ≤ j ≤ M (10)

and (3)–(6).

Stage 3: Minimizing Power Consumption—O3

The final stage minimizes the total power consumption, denoted as Emin. This includes
the static power consumption of active PMs and the dynamic power usage associated with
hosted VMs.

Objective:

Minimize Emin =
M

∑
j=1

((
E1

j − E0
j

) N

∑
i=1

(
ciϕij

Cj

)
+ E0

j κj

)
(11)

Subject to the following constraints:

• Resource wastage limitation constraint: Ensure that total resource wastage does not
exceed the minimum value, Wmin, determined in Stage 2:

M

∑
j=1

(
3 −

(
N

∑
i=1

(
ciϕij

Cj
+

riϕij

Rj
+

siϕij

Sj

)))
− 3

(
M −

M

∑
j=1

κj

)
≤ Wmin (12)

and (3)–(6) and (8)–(10).
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Computational Complexity Analysis

In Stage 1, the number of variables is N × M. The number of constraints is N + 3M,
giving a computational complexity of O(N × M). In Stage 2, the same number of variables
N × M is used, with an additional M binary variables (κj), and the number of constraints
remains N + 3M, with the complexity still O(N × M). In Stage 3, the model retains the
N × M variables and the additional M binary variables (κj), with the total number of
constraints remaining N + 3M, and the complexity is, again, O(N × M). Overall, the entire
model involves N × M variables plus M additional binary variables across all steps. The
total number of constraints across all steps is N + 3M. Thus, the model’s computational
complexity across all steps is O(N × M).

3.2. Multi-Objective Tabu Search

TS is a meta-heuristic optimization method specifically designed to address combina-
torial problems. The algorithm systematically explores the solution space until it satisfies
a predetermined stopping condition, such as reaching a specified number of iterations
or achieving a target cost value. The process starts with an initial solution, which my be
produced using another approach (e.g., randomly when no better alternative is available).
This initial solution serves as the algorithm’s starting point.

At each iteration, TS generates a neighborhood of potential solutions by applying
small changes to the current solution. The best candidate, evaluated using a predefined
cost function, is then selected as the new current solution. To avoid revisiting solutions that
have been explored, the algorithm employs a tabu list—a short-term memory structure that
temporarily stores recently visited solutions. These solutions are excluded from selection
for a specified number of iterations, helping the algorithm break free from cycles and
local optima.

Although TS does not guarantee convergence to a global optimum, it is widely re-
garded as a powerful and practical technique capable of finding high-quality solutions in
many applications. For further details on TS, refer to [40,41,43].

To design a TS algorithm, three problem-specific components must be defined: an
initial solution, a cost function to evaluate the solutions produced by the algorithm, and a
perturbation procedure to create new solutions from the current one.

3.2.1. Initial Solution

The initial solution is created by randomly shuffling the VMs and assigning them to
PMs in a random order. If a VM cannot be placed on a PM due to insufficient capacity, the
VM is rejected.

3.2.2. Perturbation Procedure

To generate a new solution from the current one, we define the following two pertur-
bation procedures:

• Swap perturbation: given a VM vi, where vi ∈ V, the following steps are conducted:

– Generate a random number k, uniformly distributed in the interval [1..N].
– Swap VM vi with VM vk, ensuring that vk is a hosted VM. If vk is not hosted,

repeat the process by generating a new k until a valid swap can be performed.

• Migration perturbation

– Let Pp, where Pp ∈ P, be the PM currently hosting VM vi.
– Generate a random number q, uniformly distributed in the interval [1..M], ensur-

ing that q ̸= p.
– Attempt to move VM vi from Pp to Pq. If the migration is not feasible due to

resource constraints, fall back to the swap perturbation.

The overall perturbation procedure is defined as follows:
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• Generate a random number i, uniformly distributed in the interval [1..N], to select a
VM vi. The two perturbations are executed, depending on whether VM vi is hosted
or rejected.

– If vi is a rejected VM, perform a swap perturbation.
– If vi is a hosted VM, execute a migration perturbation.

3.2.3. Cost Function

The cost function is defined based on the objective to be optimized. The TS algorithm
is executed three times, each targeting a different objective. Similar to the MOILP approach,
the first execution of the TS aims to maximize the number of VMs hosted in the data center.
Once this maximum is achieved, the algorithm is run again with the goal of minimizing
resource wastage, while ensuring that the previously obtained maximum number of hosted
VMs is maintained. Finally, the TS is executed for a third time, focusing on minimizing
energy consumption, while keeping both the maximum number of hosted VMs and the
reduced resource wastage from earlier iterations.

3.2.4. Diversification Strategy

The diversification strategy is intended to assist the algorithm in exploring new regions
of the solution space, particularly when it becomes trapped in a local optimum or shows no
improvement after several iterations. A solution with a higher cost than the previously best-
known solution is promoted to the current solution. The tabu list is cleared, the stagnation
iteration count is reset to zero, and the diversification application counter is incremented.
This prevents the algorithm from overusing diversification and helps maintain focus on
intensifying around promising solutions.

4. Simulation Setup and Results

In this section, we present the simulation results to assess the performance of the
proposed approaches in tackling the multi-objective VMPP. We compare the effectiveness
of the MOILP model and the MOTS algorithm with other methods from the literature,
described as follows:

• Multi-Objective Ant Colony Optimization (MOACO): MOACO is a multi-objective
optimization method aimed at finding a Pareto-optimal solution set while minimizing
energy consumption, resource wastage, and communication energy costs between
network elements in the DC [35].

• Multi-Objective Genetic Algorithm (MOGA): MOGA is a multi-objective optimization
technique based on genetic algorithms and Bernoulli simulation, designed to minimize
both the number of PMs used and resource wastage simultaneously [44].

• First Fit (FF) algorithm: The FF algorithm assigns each incoming VM to the first
available PM with sufficient resources to accommodate it.

• First Fit Decreasing (FFD) algorithm: FFD is an extension of the FF algorithm that first
sorts the VMs in descending order of their resource requirements (e.g., from largest to
smallest CPU demands) before placing them on available PMs.

• Worst Fit (WF) algorithm: The WF algorithm aims to distribute VMs across the
available PMs by placing each VM on the PM with the most remaining resources.

4.1. Simulation Parameters

For the benchmarks, we conducted the assessment tests using a homogenous DC with
15 PMs (M = 15), each equipped with 48 cores, 128 GB of memory, and 1.5 TB of storage.
Each PM consumed 1376 watts when idle (no CPU use) (E0 = 1376) and 1872 watts when
fully utilized (100% CPU use) (E1 = 1872), according to the manufacturer’s specifications.

VM requests were generated according to a uniform random distribution, with four
types of VMs: Small (S), Medium (M), Large (L), and XLarge (XL). Their respective charac-
teristics are given in Table 4. Problem instances were solved for different values of N, the
number of VM requests. For each value of N, 50 test scenarios were randomly generated,
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and the performance metrics were computed for each scenario. Each plot represents the av-
erage performance metric across these 50 test scenarios. Figure 4 illustrates the distribution
of generated VM sizes for various values of N, with the proportion of each VM type (S, M,
L, and XL) remaining relatively balanced as N increases.

The MOILP model was implemented in OPL and solved using CPLEX. The MOTS
algorithm, along with the comparative algorithms, were coded in C. All experiments were
conducted on a system equipped with an Intel Core i7 (2.6 GHz) processor and 16 GB
of RAM.

Table 4. VM types and resource requirements.

VM Type CPU (Cores) RAM (GB) Storage (GB)

S 3 4 50

M 4 8 100

L 5 12 150

XL 6 24 250

Figure 4. Distribution of VM sizes for various values of N.

4.2. Performance Comparison

Figures 5–7 provide a comparative analysis of the various VM hosting algorithms
considered in this study, based on three key performance metrics. The figures respec-
tively illustrate the percentage of VMs hosted, residual resource wastage, and total power
consumption, offering insights into the algorithms’ efficiency and scalability.
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Figure 5. Average percentage of hosted VMs.

Figure 6. Average residual resource wastage.
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Figure 7. Average total power consumption.

Figure 5 shows the percentage of VMs successfully hosted as VM requests increase.
All algorithms host all VMs when N is below 140, except FFD and WF, which start rejecting
requests at N = 140. As N grows, rejections increase, with MOILP and MOTS consistently
outperforming others. Under heavy loads, MOTS nearly matches MOILP, with only a 0.25%
difference. Compared to MOACO and MOGA, MOTS achieves average gains of 2% and
3%, respectively, and performs significantly better than FF, FFD, and WF, hosting 11%, 32%,
and 9% more VMs. FFD shows the poorest performance, especially at high N.

Figure 6 highlights average residual resource wastage as N increases. MOILP and
MOTS demonstrate superior resource efficiency, especially at lower request levels, by
hosting all VMs with minimal wastage. While MOACO and MOGA exhibit higher wastage
due to less effective allocation, FF, FFD, and WF perform moderately but host fewer
VMs. As N grows, MOILP and MOTS experience slightly increased wastage, reflecting
their higher hosting rates. Overall, MOILP and MOTS are the most effective in reducing
unused resources.

Figure 7 depicts total power consumption across algorithms as N rises. MOILP and
MOTS consume slightly more power due to their higher VM acceptance rates and associated
CPU usage. Despite this, their energy efficiency stems from better resource utilization. In
contrast, FF, FFD, and WF exhibit inefficient resource use, resulting in comparable or higher
power consumption relative to MOILP and MOTS. MOTS consumes 1% more energy than
MOACO, MOGA, and FF on average, with differences rising to 2% and 6% compared to
WF and FFD, respectively, as the latter two accept fewer VMs.

To summarize, MOILP and MOTS excel in resource utilization and energy efficiency
due to their optimization techniques. MOILP leverages integer linear programming to
achieve precise, globally optimized allocations, particularly effective under high demand.
MOTS, with its TS heuristic, delivers near-optimal solutions quickly, making it ideal
for large-scale scenarios. Both algorithms minimize resource wastage and prevent over-
provisioning, leading to lower energy consumption. In contrast, MOACO and MOGA,
while hosting fewer VMs than MOILP and MOTS, are less energy-efficient due to their
heuristic nature, which can result in suboptimal allocations under heavy loads.
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In Figures 8–11, we present the average percentage of accepted VMs of types S, M, L,
and XL, respectively, as a function of N, for the various algorithms evaluated. The MOILP
model and the MOTS algorithm achieve the highest acceptance rates for VMs of types S, M,
and L, with nearly 100% acceptance for types S and M, even under a heavy load. However,
as the number of VM requests increases, the acceptance rates for type L drop to 92% for
MOILP and 82.5% for MOTS. Both MOILP and MOTS outperform the other algorithms
in hosting VMs of types S, M, and L. In contrast, Figure 11 shows that MOILP and MOTS
have the lowest acceptance rates for XL VMs. Specifically, the acceptance rate for XL VMs
drops to 7.5% for MOILP and 15.5% for MOTS when N reaches 240. This difference is due
to the fact that MOILP and MOTS prioritize maximizing the total number of hosted VMs
over the specific VM types, while the other algorithms aim for a more balanced allocation
of all VM types.

In Figure 12, the number of accepted VMs of different types across the available PMs
(M = 15) is presented for a single problem instance with N = 200. The results for FF, FFD,
and WF are excluded due to their inefficiency. The x-axis corresponds to the individual PMs
(1 to 15), and each group of bars represents the performance of one algorithm (e.g., MOILP,
MOTS, MOACO, or MOGA), with the bars segmented by VM type (S, M, L, and XL), as
shown in the legend. The height of each bar indicates the number of VMs of a specific type
hosted on the respective PM.

These results corroborate earlier findings on the resource utilization efficiency of the
MOILP model and the MOTS algorithm. Both demonstrate the highest number of accepted
VMs, with MOACO and MOGA following closely. The bar segments also reveal how each
algorithm distributes the VM types: some favor larger VMs, while others show a more
balanced allocation across types.

Figure 8. Average percentage of hosted VMs of type S.
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Figure 9. Average percentage of hosted VMs of type M.

Figure 10. Average percentage of hosted VMs of type L.
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Figure 11. Average percentage of hosted VMs of type XL.

Number of hosed VMs by type on each PM for N=200
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Figure 12. Distribution of hosted VMs by type across PMs for N = 200.

Figures 13–15 compare the average percentage of CPU, RAM, and storage usage
across active PMs as N, the number of VM requests, increases. Each plot includes data
for MOILP, MOTS, MOACO, and MOGA. The average percentage of resource usage is
calculated by dividing the total resources used by the total number of active PMs. MOILP
consistently outperforms the other algorithms in terms of maximizing resource utilization
(CPU, memory, and storage) across active PMs. MOTS performs well, slightly behind
MOILP, while MOACO and MOGA show more variability, especially at higher VM loads,
due to a higher number of active PMs.
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Figure 13. Average percentage of CPU usage among active PMs.

Figure 14. Average percentage of RAM usage among active PMs.
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Figure 15. Average percentage of storage usage among active PMs.

In Figure 16, the average execution time (in seconds) for different numbers of VM
requests is presented. MOILP exhibits a sharp increase in execution time as N grows, due
to its high computational complexity, particularly for larger problem sizes. For N = 240,
the execution time exceeds 2500 s, making it the slowest algorithm when handling large
numbers of VM requests. In contrast, MOTS, MOACO, and MOGA maintain much lower
execution times, staying under 500 s, even for N = 240—five times faster than MOILP.
MOTS strikes the best balance between efficiency and execution time when compared to
MOACO and MOGA.

4.3. Discussion

The experimental results highlight the strengths and weaknesses of the MOILP and
MOTS algorithms compared to other VM hosting algorithms. Both MOILP and MOTS
consistently outperform others in VM hosting efficiency, resource utilization, and power
consumption, with some trade-offs in execution time:

• VM hosting efficiency: MOILP and MOTS host significantly more VMs, with MOTS
hosting 32% more VMs than FFD and 11% more than FF at high loads. MOTS is nearly
as efficient as MOILP, with only a 0.25% difference in hosted VMs. MOACO and
MOGA perform better than other algorithms but still fall short of MOILP and MOTS.

• Residual resource wastage: MOILP and MOTS exhibit the lowest resource wastage,
even as VM demand increases, while FF, FFD, and WF show the highest wastage due
to their limited hosting capacity.

• Power consumption: MOILP and MOTS consume slightly more power than MOACO
and MOGA due to higher VM acceptance rates. For example, MOTS consumes up to
6% more power than FFD but only 1–2% more than MOACO and MOGA, reflecting
better resource utilization despite the increased energy use.

• Execution time: MOILP is five times slower than other VMP solutions, while MOTS
offers the best balance between efficiency and execution time.
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Figure 16. Average CPU execution time for various values of N.

In summary, MOILP and MOTS are the top-performing algorithms, excelling in
hosting efficiency, resource utilization, and power consumption. While MOILP is time-
consuming, MOTS strikes the best balance between performance and computational cost.
Both algorithms, though slightly more power-hungry, offer superior VM hosting capac-
ity and resource optimization, making them ideal for environments where these factors
are prioritized.

5. Conclusions and Future Work

In this paper, we proposed exact and approximate methods to address the VM place-
ment problem in cloud data centers, focusing on an MOILP model and a TS algorithm. The
model offers optimal solutions, while the TS algorithm provides near-optimal solutions in
a more computationally efficient manner. Both methods address three critical objectives:
maximizing the number of accepted VMs, minimizing resource wastage, and reducing
energy consumption. Simulation results showed that the TS algorithm achieved results
close to the optimal ones provided by the MOILP model, offering a practical trade-off be-
tween accuracy and computational efficiency. The TS algorithm consistently outperformed
traditional methods in the literature, making it a robust approach for real-time VMP in
large-scale cloud environments.

Future work will expand this research to the optimization of VM and container place-
ment in cloud-native environments. Containers, unlike VMs, are more lightweight and
share the host operating system, which presents unique challenges and opportunities in
resource allocation. Key factors such as inter-container communication, resource isolation,
and fault tolerance need to be addressed for effective placement strategies in containerized
environments. To adapt the TS algorithm for this new context, modifications would involve
incorporating container-specific constraints, such as affinity and anti-affinity rules, which
define which containers should be placed together or kept apart for optimal performance
and fault isolation. Additionally, the model would need to account for dynamic scaling



Telecom 2024, 5 1329

requirements to handle the elasticity of containerized workloads in real time. Further, load
balancing and network management for containerized applications must be integrated
into the placement strategy to ensure efficient resource utilization and minimize communi-
cation latency between containers. By exploring these challenges and developing hybrid
placement strategies, this work aims to enhance resource efficiency, operational agility,
and performance in modern, cloud-native infrastructures, thus bridging the gap between
traditional VM environments and emerging container-based systems.
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