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Abstract: This paper presents a hybrid dielectric resonator antenna (HDRA) for circularly
polarized (CP) radiation at 5 GHz, designed for WLAN applications. The antenna features
a single probe feed that excites a combination of a circular ring patch and a cylindrical
dielectric resonator (DR) element, achieving stable gain across a wide bandwidth. The
parametric analysis and vector E-field distribution of the proposed antenna presents the
optimization, and it is evidence of CP radiation, respectively. The hybrid DRA has a
reflection loss (RL) bandwidth of 485 MHz, from 4740 to 5225 MHz, and an axial ratio
(AR) bandwidth of 150 MHz, ranging from 4950 to 5100 MHz. It achieves a peak gain of
7.03 dBic at 5 GHz, making it suitable for missile tracking, data link communications, and
IEEE 802.11n WLAN systems. Measurements of a prototype in an anechoic chamber show
a close match with simulation results.

Keywords: CP radiation; dielectric antennas; hybrid antennas; IEEE 802.11n band; single-
point probe feed

1. Introduction
Hybrid dielectric resonator antennas (DRAs) represent cutting-edge technology in

modern wireless communication, combining the advantages of dielectric and microstrip
antenna designs. These antennas are especially useful for applications like wireless local
area networks (WLAN), satellite communication, radar, and various broadband wireless
systems. Known for their compact size, cost-effectiveness, lightweight structure, and
compatibility with standard transmission lines, hybrid DRAs effectively meet the critical
demands of today’s communications landscape, where space and performance efficiency
are paramount.

Interest and research in dielectric antenna technology have surged over the last two
decades, driven by the need for antennas that offer wide bandwidth and ease of integration
with diverse feeding techniques [1]. Microstrip antennas are commonly used, due, in part,
to their relative ease of production. However, the bandwidth of a simple, single layer
microstrip patch is typically quite narrow (1% to 2%). The bandwidth performance of a
patch antenna can be improved by loading it with DRA, as reported in [2–6]. By using this
technique with broadside radiation patterns, bandwidths of up to nearly 24% have been
reported. Another hybrid antenna consists of a corner-fed patch onto which two DRAs
are stacked, and the entire configuration is dropped into a square metal cavity. For the
implementation described in [7], the two DRAs had different dielectric constants and the
heights of the two DRAs were on the order of a quarter-guided wavelength. The X-band
design achieved a bandwidth of about 18%. The bandwidth of a monopole antenna can
be significantly extended by adding a ring DRA, as reported in [8–11]. The monopole and
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the ring DRA are both centered on about the same axis, and the monopole simultaneously
functions as a quarter-wave-length radiator and as a feed for the DRA. The DRA is designed
to operate in the TM01δ mode, which has a circular symmetric model field pattern similar to
that of a short monopole antenna. This allows the centrally located monopole to efficiently
excite the DRA. The monopole is designed to operate toward the lower end of the spectrum,
while the DRA operates toward the upper end.

A key advantage of hybrid DRAs is their polarization versatility, making them well-
suited for applications requiring circular polarization [12]. CP antennas help reduce a
polarization mismatch between transmitting and receiving antennas, ensuring more stable
and reliable connections, even when devices are misaligned. Various methods have been
developed to achieve circular polarization in dielectric resonator antennas [13], includ-
ing hybrid couplers with quadruple strip feeds [1], precise positioning of symmetric and
asymmetric cylindrical slots, creating curved slots along cylindrical DR elements [14], and
implementing unique microstrip shapes for feed lines [15]. For instance, a rectangular
dielectric resonator block can be positioned near the edge of a slotted hexagonal patch to
produce a wideband CP radiation pattern [16]. While different CP radiation techniques
and designs have been independently implemented for microstrip and dielectric resonator
antennas, achieving CP radiation in hybrid dielectric resonator antennas across a wide band-
width presents challenges. One example is a compact dielectric-loaded aperture-coupled
microstrip antenna designed for L-band mobile satellite applications, which features CP
radiation [17]. Two dielectric inserts [18] positioned along the edges of a square patch re-
duce the frequency shift by 30% to the lower side. At the same time, the cross-slot aperture
generates the two orthogonal modes necessary for CP radiation, yielding a 2.5% 3 dB axial
ratio bandwidth compared to a traditional CP square patch. Similarly, four dielectric inserts
placed [19] under the square patch, along with a cross-slot feed, achieve CP radiation.
Inserting dielectric blocks beneath the patch can significantly reduce antenna size while
still achieving the desired bandwidth and axial ratio for L-band applications [20]. Another
design is a strip-line fed compact rectangular DRA with a top-loaded rectangular patch [21],
which can possess various aspect ratios and produce circularly polarized radiation. Select-
ing an appropriate aspect ratio for the top-loaded rectangular patch allows for the division
of the fundamental resonant mode of the rectangular DR antenna into two orthogonal
degenerate modes (TEx

111 and TEy
111), leading to circular polarization. A high-gain single-

element hybrid DRA [22] composed of a microstrip and an elliptical-shaped dielectric ring
has also been proposed for millimeter-wave frequency applications. This combination
results in high gain, with an inverted T-shaped slot contributing to CP radiation. The
aspect ratio and gain can be fine-tuned with the ring-shaped DR. The design has achieved
a maximum impedance bandwidth of 12% and an axial ratio bandwidth of 10%, with a
measured gain exceeding 9 dBi across the entire frequency band. The versatility of hybrid
DRAs allows engineers to select various methods to achieve CP, tailoring antenna designs
to specific application requirements. Metasurface-based CDRAs have been reported as an
effective solution for enhancing gain [23] and achieving wide bandwidth [24] while main-
taining circularly polarized radiation. These advancements leverage the unique properties
of metasurfaces, allowing for improved performance metrics in wireless communication
applications. A portion of this work has been submitted [25] for a conference focused on
generating wideband dual-sense circular polarization.

This paper presents a novel single-coaxial feed method designed to excite both circular
ring patches and cylindrical dielectric resonator elements. This method creates two orthog-
onal modes that enable circular polarization radiation, offering a broad axial ratio (AR)
bandwidth that spans the WLAN frequency range and supports high-speed data transfer.
Initially, a basic cylindrical DRA is constructed using a rectangular substrate and ground
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structure, resonating at 4 GHz. The innovative probe-feed mechanism is asymmetrically
positioned between the circular ring patch and the cylindrical DR element, facilitating
high-gain CP radiation, which represents a significant advancement in the field. The pro-
posed design involves a simple tuning technique that adds a circular ring patch to the basic
DRA to achieve CP at the desired resonance frequency. Furthermore, this hybrid DRA
is compared with other related hybrid antennas from the existing literature [23,24,26–31].
The versatility, adaptability, and performance advantages of hybrid dielectric resonator
antennas position them as a cutting-edge solution for modern wireless applications. As the
demand for faster and more reliable communication continues to grow, these antennas are
likely to play a crucial role in advancing communication technologies, providing a robust
alternative to traditional antenna designs. The proposed paper is outlined with a compre-
hensive literature review in the introduction, detailed composition of design, parametric
and field analysis, and prototype and measured results with detailed discussion.

2. Design and Analysis of Proposed Hybrid DRA
2.1. Proposed HDRA

The configuration of the proposed probe-fed hybrid DRA is illustrated in Figure 1.
This antenna is designed to operate at a frequency of 5 GHz and has overall dimensions of
60 mm × 45 mm × 0.787 mm. Both the height and radius of the dielectric resonator (DR)
element are 10 mm. The antenna incorporates two types of dielectric materials: Rogers-
5800, which has a permittivity of 2.2, is used as the substrate, and Rogers-6010, with a
permittivity of 10.2, serves as the DR material.
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2.2. Composition and Field Analysis of the Proposed HDRA

The proposed design and composition of the hybrid DRA is illustrated in Figure 2a–d.
Initially, a conventional probe-fed DRA is created for a frequency of 4 GHz, based on the
fundamental resonance Equation (1) referenced in [32]. This design is chosen to trans-
form the traditional cylindrical DRA into a hybrid model that incorporates a probe-feed
mechanism, aiming to achieve resonances at 5 GHz, circularly polarized (CP) radiation,
and improved gain. A substrate is then introduced between the ground and the DRA
to support the ring patch. An independent resonance study of the conventional DRA,
the substrate-integrated DRA, the ring patch, and the proposed DRA is carried out to
analyze orthogonal mode generation and the variation of S11, as depicted in Figure 3.
The fundamental resonance of the conventional probe-fed cylindrical DRA is observed at
3.9 GHz, while the resonance for the substrate-integrated DRA is shifted to 4.15 GHz. The
ring patch resonates at 4.9 GHz with a lower return loss of −3 dB. The combination of the
ring patch and the cylindrical element, both utilizing a common probe feed, resonates at
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5 GHz, producing two orthogonal modes that result in CP radiation. This study reveals a
lower resonance due to the high dielectric constant of the dielectric resonator element and
a higher resonance attributed to the ring patch on a lower dielectric substrate.
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If a multi-segmented antenna is considered, the resonance frequency will be affected
by the layers of the substrate (HS) and dielectric (HD) materials. Accordingly, the effec-
tive height (Heff), and permittivity (∈r,eff) [33,34] of the hybrid CDRA are calculated by
Equations (2) and (3).

He f f = HDR + HSub (2)

Similarly, the effective relative permittivity ∈r,eff in Equation (3) is given by,

∈r,e f f=
He f f

HDR
∈r,CDRA

+ HSub
∈r,sub

(3)

where “d” (D/2) is the radius of the cylindrical DR element.
The circular field rotation for the YZ and XZ planes confirms the CP radiation, as

illustrated in Figure 4. It is observed that the E-Field is subverted into the DRA in the
YZ plane, while in the XZ plane, it emerges from the DRA. This interaction results in
two perpendicular modes at different phases, demonstrating CP radiation. To achieve
the desired resonance frequency around 5 GHz, optimizing the dimensions of the probe
feed length (Ph) and the height (Dh) of the dielectric resonator is crucial, as illustrated in
Figures 5 and 6. Specifically, an increase in the height of the coaxial pin causes the resonance
frequency band to shift from higher to lower frequencies. Conversely, an increase in the
DR height helps fine-tune the resonance to the targeted 5 GHz for WLAN applications.
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3. Prototype, Measurements, Discussion, and Assessment of Results
The prototype of the proposed HDRA is illustrated in Figure 7a, showing both the pre-

bonding and post-bonding stages. The dielectric resonator element, made from Rogers 6010,
is affixed to a substrate featuring a circular-ring patch composed of Rogers 5880 material.
This bonding is achieved using NITTO Tape No. 5015, which also helps achieve the desired
height of 10 mm for the DR element by stacking four individual layers, each 2.5 mm
thick. Figure 7b presents the measurement setup for the proposed HDRA, conducted in
an anechoic chamber. The far-field distance between the transmitter (Horn Antenna) and
receiver (AUT), measured within the chamber is precisely 1.2 m. Antenna measurements
in an anechoic chamber are conducted by mounting the antenna under test (AUT) on a
positioner for precise orientation control. The chamber is calibrated using a standard gain
antenna to account for system losses and ensure accuracy. Key parameters like radiation
pattern, gain, polarization, and efficiency are measured using a VNA, with results processed
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for visualization and analysis. Figures 8 and 9 display the S-parameter (S11) and axial ratio
plots for the proposed antenna, respectively. The measured return loss (RL) bandwidth is
485 MHz, spanning from 4740 MHz to 5225 MHz, while the axial ratio (AR) bandwidth
measures 150 MHz, ranging from 4950 MHz to 5100 MHz, with an orthogonal time-phase
variation observed at 5 GHz.
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Table 1. Comparison table of simulation and measured results.

Parameter Simulated Results Measured Results

Operating frequency band 4760–5200 MHz 4740–5225 MHz

RL-Bandwidth 485 MHz 440 MHz

AR-Bandwidth 150 MHz 150 MHz

Gain 7.03 dBic 6.9 dBic

The data presented in Table 2 indicates that the proposed antenna aligns with
existing literature regarding its performance parameters. In comparison to other
studies [23,24,26–31], this research utilizes an innovative feeding mechanism that achieves
a consistent gain (with a peak gain of 7.03 dBic) while providing circularly polarized (CP)
radiation throughout the specified bandwidth.

Table 2. Performance comparison of proposed antenna with the existing literature.

[Ref.] Feeding Mechanism CP Is Achieved by
Volume of the HDRA

(in Terms of λ at fr)
(L × W × Heff)

fr (or) CP Bands of
Resonance (GHz) Gain (dBic)

[23] Penetrated coax feed

Quasi-self-
complementary

characteristic of the
metasurface

6.08 λ × 4 λ × 0.06 λ 24.65–26.06 6.03

[24] Perturbed probe feed

Due to plus shaped
unit-cells based
metasurface and
rectangular DR

0.93 λ × 1.29 λ × 0.16 λ 3.6–6.6 6–7.2

[26] Aperture coupled

Having a feeding
network composed of
four microstrip lines,
where the four slots

are geometrically
arranged to ensure

circular polarization

0.8 λ × 0.8 λ × 0.12 λ 1.08–1.82 5
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Table 2. Cont.

[Ref.] Feeding Mechanism CP Is Achieved by
Volume of the HDRA

(in Terms of λ at fr)
(L × W × Heff)

fr (or) CP Bands of
Resonance (GHz) Gain (dBic)

[27] Aperture coupled Due to the
arc-shaped slots 0.8 λ × 0.8 λ × 0.118 λ 1.22–1.71 3

[28] Aperture coupled Modified cross-slot 0.43 λ × 0.43 λ × 0.29 λ 2.19–2.92 5

[29] An offset aperture
coupled feed

Combination of
Stair-shaped DR and
open-ended slot on
the ground plane

with an offset feed

0.46 λ × 0.46 λ × 0.07 λ 3.844–8.146 3.9

[30] Dual orthogonal
microstrip line

Dual vertical
microstrip lines with

L-shaped
microstrip-line

arranged
perpendicularly to
excite orthogonal

modes

0.59 λ × 0.59 λ × 0.26 λ 2.82–3.83 5.5

[31]

Combination of
probe feed and

conformal E-shaped
patch

Parasitic patch
positioned at an

optimized distance
next to the conformal

metal-strip of two
identical rectangular
DRAs is utilized to

generate circular
polarization

0.46 λ × 0.46 λ × 0.34 λ 3.50–4.95 6.2

Proposed Work Single point probe
feed

Combined
asymmetric nature of

circular ring patch
and cylindrical DR

element

λ × 0.75 λ × 0.18 λ 4.740–5.225 7.03

4. Conclusions and Future Scope
This study presents a circularly polarized hybrid dielectric resonator antenna with an

impressive return-loss (RL) bandwidth of 485 MHz (ranging from 4740 MHz to 5225 MHz)
and an axial ratio (AR) bandwidth of 150 MHz (spanning from 4950 MHz to 5100 MHz).
The proposed antenna achieves a peak gain of 7.03 dBic at 5 GHz, making it suitable for
missile tracking, data link communications, and IEEE 802.11n WLAN applications. The
paper discusses the composition of the antenna, the optimization of its feeding mechanism,
and the generation of two orthogonal modes, along with relevant results. A prototype
of the antenna has been fabricated, tested, and validated against simulation results. The
novelty of this work lies in the combined probe feed mechanism, which integrates both the
ring patch and the dielectric resonator element to produce circularly polarized radiation.
However, there are limitations concerning return loss and axial ratio bandwidths. These
limitations can be addressed in the future through the use of metasurfaces and optimized
feed locations, which will be further explored.
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