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Abstract

:

This review describes methods for the synthesis of 1-trifluomethylindanes and close structures, which are still quite rare and scarcely available compounds. There are two main approaches to obtain 1-CF3-indanes. The first one is the construction of an indane system from CF3 precursors; the main methods are acid-mediated Friedel–Crafts cyclization, transition metal-catalyzed [3+2] annulation, and free-radical transformations. The second approach is the trifluoromethylation of a ready-made indane core by various CF3 sources, such as Ruppert–Prakash or Togni reagents. Many of these synthetic procedures possess high regio- and stereo-selectivity, allowing the preparation of unique 1-CF3-indane structures. In recent years, great attention has been paid to the synthesis of 1-CF3-indanes, due to the discovery of important biologically active properties for these compounds.
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1. Introduction


Organofluorine compounds are widely used and are of great importance in chemistry, biology, medicine, agriculture, materials science, and other fields of science and technology. The presence of fluorine atoms in organic molecules significantly changes their chemical (reactivity), physical (high electronegativity), and pharmokinetic (lipophilicity, bioavailability, and metabolic activity) properties. Fluorinated compounds are intensively explored as drugs, agrochemicals, liquid crystals, sensors, nanomaterials, etc. (see books [1,2,3,4,5,6,7,8,9,10,11,12,13] on these topics).



One of the most important types of organic compounds is indanes, which possess various valuable practical properties including biological activity. There are several reviews on the synthesis and use of indanes [14,15,16,17,18]. The introduction of a trifluorometyl group CF3 in the indane core may bring new, important properties for these compounds. For instance, we have recently found that trans-1,3-diaryl-1-trifluoromethyl indanes are very good ligands for cannabinoid receptors of CB1 and CB2 types. The most potent compound showed sub-micromolar affinity for both receptor subtypes, with six-fold selectivity toward the CB2 receptor and with no appreciable cytotoxicity toward SHSY5Y cells (Figure 1) [19]. Apart from this, various 1-CF3-substituted indanes have been tested for the inhibition of monoacylglycerol lipase (MAGL) and anandamide (AEA) uptake; the latter can be related to the low-micromolar inhibition of fatty acid amide hydrolase (FAAH) [20].



Thus, 1-trifluoromethyl indanes are extremely promising objects for medicinal chemistry. The development of novel methods of synthesis of CF3-indane derivatives and investigation of their biologically active properties is an important goal for chemistry, biology, and medicine. Moreover, these fluorinated derivatives must find broad application in material science and many other fields. However, to the best of our knowledge, CF3-indanes are still rare compounds. Their synthesis has not yet been developed. This mini review is focused on current methods of the synthesis of 1-CF3-indanes including trifluoromethylatedindanols and indanones to show the main approaches to the preparation of these compounds.




2. Discussion


One may classify the methods for the synthesis of trifluoromethyl indanes into two main approaches. The first one is the construction of an indane system from CF3 precursors, including acid-mediated electrophilic Friedel–Crafts cyclization, transition metal-catalyzed [3+2] annulation, free-radical transformations, and some other procedures. The second approach is thetrifluoromethylation of suitable indane scaffolds or the reduction of trifluoromethylindene compounds. All these methods are considered in this mini review.



2.1. Construction of Trifluoromethylindane Core from CF3 Precursors


In this type of CF3-indane synthesis, one of the most effective methods is electrophilic Friedel–Crafts cyclization with the participation of various aromatic substrates having trifluoromethyl substituents.



One of the first reports in this field was published by Béguéet al.in 1989 [21]. The authors described the cycloalkylation of trifluoromethylated β-phenyl ketones, non-enolizable β-keto esters, and alcohols. In this work, the series of 1-trifluoromethylindanes has been prepared by intramolecular Friedel–Crafts alkylation. The best results have been demonstrated by electrophilic activation of the ketone carbonyl group of CF3-β-keto esters 1a-c under the action of TiCl4 (conditions a) or EtAlCl2 (conditions b), which gives 1-trifluoromethylindan-1-ols 2a-c in excellent yield and perfect stereoselectivity; only one diastereomer was obtained (Scheme 1).



Apart from this, in the presence of benzene, as a good trap for intermediate cationic species, the Lewis acid AlCl3-promoted cycloalkylation of β-phenyl CF3-ketone 1d furnishes 1-phenyl-1-trifluoromethylindane 2d in a good yield of 77% (Scheme 2) [21]. Meanwhile, Friedel–Crafts alkylation of tertiary alcohol 1e in Brønsted acids (CF3CO2H, H2SO4) affords compound 2d in a lower yield of 53%.



Remarkably, indanol 2c under the same protosolvolytic conditions in CF3CO2H, H2SO4, as for alcohol 1e, is transformed into intermediate cation A, which is cyclized to tetracyclic compound 3 (condensed bis-indane structure) and partially undergoes fragmentation to CF3-indene 4 (Scheme 3).



In the absence of benzene at 0 °C, CF3-ketone 1d reacts very slowly with AlCl3,affording polymeric materials, and does not react with TiCl4. However, in the presence of MeAlCl2, ketone 1d is cyclized into a mixture of indanol 5 and the reduced indane 6 in low yields [21] (Scheme 4).



Later on, the same scientific group developed Lewis acid (TiCl4 or EtAlCl2)-induced ene-cyclization of ω-olefinic CF3-ketones into trifluoromethyl carbocycles [22]. However, in this reaction, phenyl substituted substrate 1b gives 1-CF3-indanol 2b (see in Scheme 1), rather than the expected cyclopentanes, as products of the cyclization of the carbonyl group onto the alkene bond.



Prakash et al. have shown the formation of CF3-indanones 8a,b by the reaction of 3-(trifluoromethyl)crotonic acid 7 with haloarenes in neat Brønsted superacid, triflic acid TfOH (CF3SO3H), at 130–150 °C for 24 h (Scheme 5) [23]. This reaction initially proceeds at room temperature as the Friedel–Crafts acylation of arenes by acid 7, leading to the corresponding 1-aryl-3-CF3-butenones, which may be intermolecularly cyclized into CF3-indanones at higher temperatures under superacidic reaction conditions.



Similar cyclization of enantiomeric CF3-acid 9 into indanone 10 in TfOH has been described in work [24] (Scheme 6). The starting compound 9 was obtained by rhodium(I)-catalyzed asymmetric hydrogenation of the corresponding β-CF3-substituted acrylic acid.



Fruitful CF3 precursors for the building of an indane core under electrophilic activation conditions are trifluoromethyl ketones. Thus, CF3-β-diketones bearing trifluoroalkyl or heterocyclic substituents 11a-d in reaction with benzene in neat TfOH give stereoselective 1-CF3-indanes 12a-d having phenyl groups in the cis-position relative to the indane plane [25] (Scheme 7). There is an electrophilic activation of carbonyl carbons in diketones 11a-d due to the protonation of carbonyl oxygens and heteroatoms (for 11c,d) in Brønsted superacid TfOH. The generated cationic species react, in a cascading manner, with three molecules of benzene, leading finally to CF3-indanes 12a-d. The authors have explained the reaction’s stereoselectivity by possible cation π-stacking stabilization between phenyl groups in intermediate cations [25].



A similar approach has been used in works [19,26] for the cyclization of CF3-enones, 1,1,1-trifluorobut-3-en-2-ones 13a,b, in their reaction with arenes in TfOH, affording 1,3-diaryl-substituted 1-trifluoromethylindanes 14a-g with an exclusively trans-configuration of aryl groups (Scheme 8). Protonation of the enone system of 13a,b may give rise to either monocationic species B1 or dications B2, which further interact in two pathways with two molecules of arene, forming indanes 14a-g through the intermediate formation of cations B3 or B4, and C. The excellent stereoselectivity of this reaction may be explained by the intermediate formation of cation C, which reacts with an arene molecule, which gives a more stable trans-orientation of bulky aromatic rings. It should be noted that the high sensitivity to steric effects of substituents in arenes in this transformation results also in the formation of an unexpected product of electrophilic attack to position 5 of m-xylene for compound 14c [19].



Running this reaction in another Brønsted superacid FSO3H at a low temperature of−60 °C for enone 13c and benzene, the authors have been able to obtain intermediate ketone 15, as a product of the initial addition of benzene to the double carbon–carbon bond (Scheme 9) [19]. Then, compound 15 is cyclized into 1-CF3-indane 14h in reaction with benzene in TfOH at room temperature. The cyclization results in a more nucleophilic methoxy-substituted aromatic ring; the same regioselectivityis observed upon the formation of indane 14i from enone 13d.



It has been found that these diaryl-substituted trans-1-CF3-indanes 14 show high activity towards cannabinoid receptors of CB1 and CB2 types [19] (see Introduction).



Under similar superelectrophilic activation conditions in TfOH, bromo-substituted CF3-enone 13e in reaction with benzene is stereoselectively transformed into 1-CF3-bromoindane 14j in moderate yield (Scheme 10) [27].



In the series of papers [19,28,29,30], it has been demonstrated that trifluoromethylatedallyl alcohols and their trimethylsilyl (TMS) ethers are good precursors for the preparation of 1-CF3-indanes. The protonation of oxygen of CF3-allyl alcohols with Brønsted acid or coordination of oxygen with Lewis acid gives rise to species D; dehydroxylation of the latter affords CF3-allyl cations E, having two resonance forms E′ and E″, with electrophilic centers on the ends of the allylic system. Both species D and E (E′↔E″) may take part in interaction with aromatic nucleophiles, which depends on substituents in species D and E and the nucleophilicity of arenes (Scheme 11).



Thus, the reaction of CF3-allyl alcohols 17 with electron-donating arenes under the action of Lewis acid FeCl3 at room temperature or Brønsted superacid FSO3H at −75 °C can be used to obtain monoarylatedtrifluoromethylindanes 18a-h (Scheme 12) [28]. Reactions with p-xylene and pseudocumene demonstrate high stereoselectivity, affording only cis-CF3-indanes 18a-h. More striking results are obtained for the reactions with pseudocumene, leading to 50–76% yields of target products. However, the interaction with p-xylene gives alkenes [Ar(2,5-Me2C6H3)CHCH=CHCF3] as major products.



The use of mesitylene results in the formation of the same indanes 18a-d (Scheme 13), as in the case of pseudocumene (Scheme 12), due to the methyl group shift during the electrophilic aromatic substitution step. However, both the yields of the target reaction products and stereoselectivity are lower compared to the reaction with pseudocumene (compare Scheme 12 and Scheme 13). The formation of a cis-/trans-isomeric mixture for indane 18i is also observed in reaction with m-xylene (Scheme 13) [28].



A plausible mechanism of Brønsted or Lewis acid-promoted formation of 1-CF3-indanes 18 from CF3-allyl alcohols 17 and arenes includes the initial generation of species D (Scheme 14). The latter possesses a sufficiently electrophilic reactive center on allylic carbon to interact with polymethylatedπ-donating arenes, giving alkenes F, which are protonated to form cations G. Cyclization of the latter furnishes finally indanes 18 [28].



The same approach of superelectrophilic activation of TMS-ethers of diaryl-substituted CF3-allyl alcohols 19 in TfOH has been applied in the synthesis of 1-CF3-indanes 20 (Scheme 15) [29]. This reaction has been studied for a broad series of starting alcohols 19. The reaction proceeds very rapidly, within just 5 min, at room temperature, and leads mainly to indanes 20 with trans-configuration of aryl groups in high yields. At the first stage of this transformation, there is an intermediate generation of allyl cation H↔H′, which is cyclized into indene I. Protonation of the latter gives rise to cation J, which reacts with the arene, forming 1-CF3-indane 20. The predominant formation of trans-indanes 20 is probably explained by sterical hindrance between aryl moieties Ar′ and Ar″ at the last stage of the reaction (Scheme 15) [29].



Apart from this, the TfOH-promoted reaction of TMS-ethers 19 and their corresponding alcohols with arenes have been used for the stereoselective synthesis of several trans-1-CF3-indanes 20 to study their biologically active properties [20] (see Introduction).



Cyclization of dibromo-CF3-allyl alcohols 21a-e into CF3-indanones 20a-e in TfOH-CH2Cl2 has been described in work [30] (Scheme 16). This reaction is in concurrence with the formation of 2,3-dibromo-1-CF3-indenes. It has been found that prolongation of the reaction to1 h leads to the exclusive or predominant formation of indanones 22.



A plausible mechanism of the cyclization includes the formation of O-protonated cation K, which is cyclized into indene L (Scheme 17). Subsequent protonation of the formed indene gives rise to cation M, which has been studied by NMR in TfOH. The quenching of the reaction mixture with water leads to CF3-indanone 22 along with 2,3-dibromo-1-CF3-indenes; the latter are formed at the deprotonation of species M [30].



Karpov et al., in their study on the synthesis and reactions of perfluorinated aromatics, have found an interesting transformation of perfluoro-1-phenyltetralin 23 into 1-CF3-perfluoroindane 24, along with other perfluoroorganics, under the action of SbF5or the system HF-SbF5underharshconditions at 130–200 °C in a nickel autoclave (Scheme 18) [31]. The authors explain the formation of indane 24 by multi-step cationic transformations of starting tetralin 23, in which one of the CF2 groups is transformed into a CF3-substituent of 24 under a ring contraction process. Later on, the same group developed the synthesis of perfluorofluorenes, containing a 1-CF3-indane structural fragment, by the reaction of perfluoro-1,1-diphenylalkanes with SbF5 [32].



One more promising approach to the building of a 1-CF3-indane core is the transition metal-catalyzed [3+2] annulation of various CF3 precursors.



Trifluoromethyl-substituted enones containing a CF3 group at the carbon–carbon double bond have found successful application in Rh(III)-catalyzed [3+2] annulation via C-H activation. Thus, Li et al. have investigated reactions of cyclic-N-sulfonyl and N-acyl ketimines 26 with β-CF3-enones 25 (Scheme 19) [33]. This coupling furnishes a set of diverse spirocycles 27 and 27′ with three stereogenic centers, stereochemistry of which can be regulated by silver additives. For N-sulfonyl ketimines, it has been found that the use of AgOAc increases the yield of diastereomer 27 with thecis-orientation of CF3 and NH groups. Meanwhile, the application of AgOTf shifts thediastereomer ratio in favor of another isomer 27′ with trans-orientation of these moieties. In contrast to this, for the annulation of N-acyl ketimines, the use of a AgTFA additive increases the yields of diastereomers, and diastereomer 27′ is formed in a predominant amount. The authors have extensively studied the scope and limitations of this reaction. The yields of target products 27 and 27′ are increased by electron-donating groups in the para-position of N-sulfonyl and N-acyl ketimines, such as the methoxy group, and decreased by electron-withdrawing groups, such as fluorine. It is worth mentioning that the use of the N-sulfonyl ketimine with the o-methoxyphenyl substituent resulted in the formation of only one diastereomer 27′ due to steric hindrance affected by the transition state during the insertion of the imine group. The reaction results in a broad range of CF3-enones 25. In this way, substrates bearing both electron acceptors (4-NO2, 2-CF3, halogens) and donors (4-OMe, 2-Me, 3-Me-, 2,4-Me2 or 3,4-OMe2) in the aryl ring of 25 demonstrate moderate to excellent yields of the target products and high stereoselectivity [33].



The substrate scope of Rh(III)-catalyzed [3+2] annulation with participation of β-CF3-enones 25 has been expended to acyclic aldimines 28 by Sharma et al. (Scheme 20) [34]. This reaction affords an inseparable diastereomeric mixture of CF3-aminoindanes 29. Contrary to cyclic ketimines 26 (Scheme 19), such high diastereoselectivity in reactions of aldimines 28 has not been observed, presumably due to the lower steric hindrance for non-cyclic compounds 28. Various tosylaldimines and N-(p-methoxyphenyl)aldimine, in contrast to tosylhydrazone, have been successfully involved in this coupling. At the same time, the reaction with β-CF3-enones 25, containing electron-rich aryl rings, gives CF3-aminoindanes 29 in moderate to high yields, whereas the use of compounds 25 with electron-withdrawing substituents in the aryl moiety leads to the target products 29 in lower yields.



Another type of fluorinated substrate for transition metal-catalyzed [3+2] annulationvia C−H activation is CF3-ketimines 30 (Scheme 21). Xiong, Zhang et al. [35] have found that the Re-catalyzed reaction of CF3-ketimines 30 with alkyl acrylates 31 results in the formation of compounds 32, having geminal trifluoromethyl and amino substituents along with a vicinal ester group in the indane core. CF3-aminoindanes 32 are important precursors for the synthesis of fluorinated β-amino acids. CF3-ketimines 30 bearing both electron-rich and -poor aromatic substituents as well as an alkyl group in the amine part can be successfully involved in this coupling. The reaction is also tolerated by various para- and meta-substituents in the aryl group in the ketone part of 30. Remarkably, due to steric factors, only one regioisomer 32 with cis-configuration is formed. It is worth mentioning that meta-substituted ketimines 30 give two regioisomers of desirable products in excellent general yields. Moreover, the interaction of diketimine with acrylate affords two regioisomers of the tricyclic skeleton, bearing two CF3-amino-esterindane moieties in high yield.



One more example of the transition metal-catalyzed construction of a 1-CF3-indane core is the stereoselective Rh(I)-catalyzed intramolecular hydroacylation of 2-(1-CF3-ethenyl)benzaldehyde 33, furnishing CF3-indanone 34 in high yield and with high ee value (Scheme 22) [36].



There are some methods forbuilding CF3-indane systems on the basis of free-radical transformations.



Kimoto et al. have studied di-t-butylperoxide-induced reactions of alkylbenzenes 35a-c with hexafluoropropene 36 under harsh conditions (130–160 °C, 6 h) (Scheme 23) [37]. One of the reaction products is fluorinated 1-CF3-indanes 37a-c, along with fluoroalkyl arenes 38a-c and other unidentified substances. However, the yields of the obtained compounds are rather low. The initial step in the reaction is the generation of a phenylmetyl radical, which is added to the double bond of 36, and then transformations of secondary radical species lead to 1-CF3-indanes 37a-c. Later on, this scientific group, using the same radical reaction between hexafluoropropene 36 and benzaldehyde, prepared 2,2,3-trifluoro-3-trifluoromethylindan-one, which was transformed to other 1-CF3-indanes by reactions onto carbonyl group [38].



The reaction between substrates 35 and 36 has been also investigated by Haszeldine et al. under thermal conditions at 250 °C without the addition of any peroxide for the initiation; however, target 1-CF3-indanes 37 have been obtained in very low yields [39].



The synthesis of diastereomeric 1-CF3-indanes 41 and 42 has been described in work [40] (Scheme 24). Starting 1-CF3-perfluoroindene 39 is subjected to cyclopropanation by difluorocarbene generated from hexafluoropropylene oxide that gives compound 40. The latter is brominated under thermal conditions (intermediate free-radical species generation) with the formation of 1-CF3-indanes 41 and 42 in a ratio of 2.5 : 1 in a good general yield.



Intramolecular radical cyclization has been used in the stereoselective synthesis of 1-CF3-indane 44 from compound 43 in the presence of (n-Bu)3SnH and AIBN (Scheme 25) [41].



Pozo, Fustero et al. have used intramolecular 1,3-dipolar nitrone cycloaddition to construct a 1-CF3-indane core from compounds 45 (Scheme 26) [42]. The reaction of the aldehyde group of substrates 45 with N-alkylhydroxylamines gives rise to the intermediate formation of the corresponding nitrones, which are spontaneously cyclized into isoxazolidines 46 adjacent to the trifluoromethylindane fragment. It should be especially emphasized that the regioselectivity of the cycloaddition is determined by the presence of the CF3 group in styrenes 45. Analogous methylstyrenes do not give desirable isoxazolidines. At the final stage, the tricyclicisoxazolidine ring in 46 may be easily opened by Raney Ni, leading to 1-CF3-aminoindanes 47.



Among all approaches to the synthesis of trifluoromethylindanes, there is an example of a complex nucleophilic process to create a 1-CF3-indane structure [43]. The reaction of perfluoro-4-methyl-pent-2-ene 48 with trimethylsilylpentafluorobenzene under the action of CsF in MeCN results in the formation of two compounds 49 and 50 in a general yield of ~50% (Scheme 27). The authors provide a multi-step mechanism of this nucleophilic transformation, according to which trifluoromethyl groups form the structure of tri-CF3-indane 49 from starting alkene 48 [43].




2.2. Trifluoromethylation of Indane Scaffolds


The next group of synthesis methods of trifluoromethylindanes is based on the introduction of a CF3 group into a suitable indane carcass.



One of the simplest approaches in these methods is the trifluoromethylation of the carbonyl group by Ruppert–Prakash reagent CF3SiMe3 (CF3TMS). Thus, Gassman et al. carried out the synthesis of 1-CF3-indan-1-ole 51 from indan-1-one using CF3TMS and tetra-n-butylammonium fluoride as a catalyst (Scheme 28) [44].



Enantioselective Ruppert–Prakash reagent trifluoromethylation of indan-1-one has been conducted with chiral ammonium salts derived from cinchona alkaloids by Shibata, Toru et al. [45]. The target1-CF3-indan-1-ole 51 has been obtained in a yield of 34% and 74% enantiomeric excess [45] (Scheme 29).



Sulfur tetrafluoride SF4 can be also used for the introduction of a CF3 group into theindane core. The reaction of enantio-enriched indan carboxylic acid with SF4 at 70–75 °C for 6 h affords 1-CF3-indane in a moderate yield 43% and perfect enantiomeric excess of 96% (Scheme 30) [46].



Copper-catalyzed radical trifluoromethylation may be also used to access CF3-indanes. Very recently, in 2021, Fang, Zhu, Li et al. have successfully developed ring-opening 1,3-aminotrifluoromethylation of the wide series of arylcyclopropanes including indane derivatives [47]. The radical reaction of tetrahydrocyclopropa[a]indene with trifluoromethylating agent (bpy)Zn(CF3)2 under the action of Cu(OTf)2 as a catalyst leads to 1-CF3-indane 52 in a good yield of 62% and high stereo- and chemoselectivity (Scheme 31).



Earlier, the same scientific group described the copper-catalyzed ring-opening radical trifluoromethylation of cycloalkanone oxime derivatives [48]. In this reaction, copper(II) triflate and bipyridyl act as catalysts, and Zn(CF3)2 complex is a reagent. Oxime derivative 53 affords 1-CF3-indane 54 in a high yield of 84% and with good stereoselectivity with a trans-/cis- isomeric ratio of 94:6 (Scheme 32).



Several recent works have been devoted to metal-catalyzed trifluoromethylation with hypervalent iodine-based reagents. Thus, MacMillan et al. [49] reported ametallaphotoredox methodology including sodium decatungstate(NaDT)-photocatalyzed hydrogen atom transfer and copper catalysis, which allows the conversion of C–H bonds into the corresponding C(sp3)–CF3 one using Togni reagent II. This provides the transformation of unprotected amine 55 into a single regioisomer of 1-CF3-indane 56 with good stereoselectivity (Scheme 33).



Togni reagent II and TMSCN have been also applied for the copper-catalyzed spiroannulation–cyanotrifluoromethylation of 1,5-enynes 57 for the synthesis of spiro-1-CF3-indanes 58 (Scheme 34) [50]. The set of substituents R1 in the acetylene moiety of compounds 57 includes a wide range of electron-rich and electron-poor aryl groups. However, starting enynes57 bearing alkyl or cycloalkyl groups R1 do not converge into target compounds 58. Remarkably, 1,5-enynes containing an ortho-substituted aryl group give inseparable diastereomeric mixtures; otherwise, only Z-products are obtained in good yields.



One more synthetic approach to 1-CF3-indanes is the reduction of 1-CF3-indenes. In this area, it is worth mentioning the recent work by Chirik et al. [51], which focused on the diastereoselective cobalt-catalyzed hydroboration of substituted indenes, including trifluoromethylated ones. Thus, the reduction of 1-CF3-indene by HBP in the presence ofcobalt catalyst 59 results in the stereoselective formation of trans-1,3-disubstituted CF3-indanyl boronate ester 60 (Scheme 35).





3. Conclusions


This survey of methods for the synthesis of 1-trifluoromethylindanes and close substances reveals that existing approaches allow these compounds to be obtained in regio- and stereoselective ways by two main procedures: the construction of a 1-CF3-indane core from CF3 precursors and the trifluoromethylation of indane structures. The latter method needs further deep investigation, since the regio- and stereoselective introduction of a CF3 group into an indane core allows novel structures of this series to be obtained.



The combination of an indane scaffold, which is suitable for the creation of asymmetric carbons, along with a lipophilic CF3 group, in various 1-CF3-indane containing structures, makes these compounds extremely important for medicinal chemistry, as the basisfor the search for novel biologically active substances. In the near future, one should expect further intensive research on the development of the synthesis of 1-CF3-indanes and the discovery of new methods in this area.
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Figure 1. Cannabinoid receptor (CB1 and CB2 types) ligand properties of the CF3-indane (data from ref. [19]). 
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Scheme 1. TiCl4 or EtAlCl2-induced stereoselective synthesis of 1-CF3-indanes 2a-c from CF3-β-keto esters 1a-c. 
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Scheme 2. Synthesis of 1-CF3-indane 2d from CF3-ketone 1d or from CF3-alcohol 1e. 
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Scheme 3. Transformation of 1-CF3-indane 2c into compounds 3 and 4 in CF3CO2H, H2SO4. 
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Scheme 4. MeAlCl2-promoted synthesis of 1-CF3-indan-1-ol 5 and 1-CF3-indan 6 from CF3-ketone 1d. 
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Scheme 5. Reaction of 3-CF3-crotonic acid 7 with arenes in neat TfOH, resulting in CF3-indanones 8a,b. 
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Scheme 6. Cyclization of CF3-acid 9 into CF3-indanone 10 in TfOH. 
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Scheme 7. Synthesis of 1-CF3-indanes 12a-d by reaction of CF3-β-diketones 11a-d with benzene in TfOH. 
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Scheme 8. Stereoselective synthesis of trans-1-CF3-indanes 14a-g from CF3-enones 13a,b and arenes in TfOH. 
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Scheme 9. Synthesis of 1-CF3-indanes 1h,i from CF3-enones 13c,d and benzene. 
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Scheme 10. Synthesis of 1-CF3-indane 14j from bromo-CF3-enone 13e and benzene in TfOH. 
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Scheme 11. Generation of species D and E (E′↔E″) from CF3-allyl alcohols 16 under the action of Brønsted or Lewis acids. 
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Scheme 12. Stereoselective synthesis of cis-1-CF3-indanes 18a-h from CF3-allyl alcohols 17a-e and donating arenes under the action of Lewis acid FeCl3 or Brønsted superacid FSO3H. 
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Scheme 13. Synthesis of 1-CF3-indanes 18a,c,d,i from CF3-allyl alcohols 17a-d and arenes. 
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Scheme 14. Possible mechanism of acid-promoted formation of 1-CF3-indanes 18 from CF3-allyl alcohols 17 and arenes. 
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Scheme 15. TfOH-promoted synthesis of 1-CF3-indanes 20 from CF3-allyl alcohols 19 and arenes. 
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Scheme 16. Cyclization of dibromo-CF3-allyl alcohols 21a-e into CF3-indanones 22a-e in TfOH-CH2Cl2. 
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Scheme 17. Plausible mechanism of cyclization of dibromo-CF3-allyl alcohols 21a-e into CF3-indanones 22a-e in TfOH-CH2Cl2. 
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Scheme 18. Synthesis of 1-CF3-perfluoroindane 24 from perfluoro-1-phenyltetralin 23 under the action of SbF5 and HF. 
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Scheme 19. Synthesis of 1-CF3-indanespirocycles 27 and 27′ by Rh(III)-catalyzed [3+2] annulation of β-CF3-enones 25 with cyclic-N-sulfonyl and N-acyl ketimines 26. 
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Scheme 20. Synthesis of CF3-aminoindanes 29 by Rh(III)-catalyzed [3+2] annulation of β-CF3-enones 25 with aldimines 28. 
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Scheme 21. Synthesis of CF3-aminoindanes 32 by Re-catalyzed [3+2] annulation of CF3-ketimines 30 with alkyl acrylates 31. 
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Scheme 22. Stereoselective synthesis of CF3-indanone 34 by Rh(I)-catalyzed intramolecular hydroacylation of 2-(1-CF3-ethenyl)benzaldehyde 33. 
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Scheme 23. Synthesis of 1-CF3-indanes 37a-c by free radical reaction of alkylbenzenes 35a-c with hexafluoropropene 36. 
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Scheme 24. Synthesis of 1-CF3-indanes 41 and 42 by bromination of compound 40. 
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Scheme 25. Stereoselective synthesis of 1-CF3-indane 44 by intramolecular radical cyclization of compound 43. 
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Scheme 26. Synthesis of 1-CF3-aminoindanes 47 from compounds 45 by intramolecular 1,3-dipolar nitrone cycloaddition followed by reduction with Raney Ni. 
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Scheme 27. Synthesis of tri-CF3-indane 49 from perfluoro-4-methyl-pent-2-ene 48 and trimethylsilylpentafluorobenzene under the action of CsF in MeCN. 
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Scheme 28. Synthesis of 1-CF3-indan-1-ole 51 from indan-1-one using Ruppert–Prakash reagent CF3TMS. 
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Scheme 29. Enantioselective synthesis of 1-CF3-indan-1-ole 51 from indan-1-one by Ruppert–Prakash trifluoromethylation. 
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Scheme 30. Synthesis of 1-CF3-indane from indan carboxylic acid under the action of SF4. 
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Scheme 31. Copper-catalyzed radical trifluoromethylation of tetrahydrocyclopropa[a]indene leading to 1-CF3-indane 52. 
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Scheme 32. Copper-catalyzed radical trifluoromethylation of compound 53 leading to 1-CF3-indane 54. 
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Scheme 33. Metallaphotoredox trifluoromethylation of compound 55 by Togni reagent II leading to 1-CF3-aminoindane 56. 
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Scheme 34. Copper-catalyzed spiroannulation–cyanotrifluoromethylation of 1,5-enynes 57 into spiro-1-CF3-indanes 58. 
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Scheme 35. Cobalt-catalyzed reduction of 1-CF3-indene by HBPin leading to 1-CF3-indane 60. 
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