A Reaction of N-Substituted Succinimides with Hydroxylamine as a Novel Approach to the Synthesis of Hydroxamic Acids
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, M.K.; Singh, G.; Gupta, S. Hydroxamic Acid Derivatives as Potential Anticancer Agents. In Hydroxamic Acid: A Unique Family of Chemicals with Multiple Biological Activities; Gupta, S.P., Ed.; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; pp. 173–204. [Google Scholar]
- Citarella, A.; Moi, D.; Pinzi, L.; Bonanni, D.; Rastelli, G. Hydroxamic Acid Derivatives: From Synthetic Strategies to Medicinal Chemistry Applications. ACS Omega 2021, 6, 21843–21849. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, P. Inside HDAC with HDAC inhibitors. Eur. J. Med. Chem. 2010, 45, 2095–2116. [Google Scholar] [CrossRef] [PubMed]
- Thaler, F.; Patil, V.M.; Gupta, S.P. Hydroxamic Acids as Histone Deacetylase Inhibitors. In Hydroxamic Acid: A Unique Family of Chemicals with Multiple Biological Activities; Gupta, S.P., Ed.; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; pp. 99–151. [Google Scholar]
- Patil, V.M.; Gupta, S.P. Structure–Activity Relationship Studies of Hydroxamic Acids as Matrix Metalloproteinase Inhibitors. In Hydroxamic Acid: A Unique Family of Chemicals with Multiple Biological Activities; Gupta, S.P., Ed.; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; pp. 71–98. [Google Scholar]
- Cathcart, J.M.; Cao, J. MMP Inhibitors: Past, present and future. Front. Biosci. Landmark Ed. 2015, 20, 1164–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, V.A.; Alexanian, E.J. Metal-Free Oxyaminations of Alkenes Using Hydroxamic Acids. J. Am. Chem. Soc. 2011, 133, 11402–11405. [Google Scholar] [CrossRef] [PubMed]
- Giglio, B.C.; Alexanian, E.J. Alkene Hydrofunctionalization Using Hydroxamic Acids: A Radical-Mediated Approach to Alkene Hydration. Org. Lett. 2014, 16, 4304–4307. [Google Scholar] [CrossRef]
- Krylov, I.B.; Paveliev, S.A.; Budnikov, A.S.; Segida, O.O.; Merkulova, V.M.; Vil’, V.A.; Nikishin, G.I.; Terent’ev, A.O. Hidden Reactivity of Barbituric and Meldrum’s Acids: Atom-Efficient Free-Radical C–O Coupling with N-Hydroxy Compounds. Synthesis 2022, 54, 506–516. [Google Scholar] [CrossRef]
- Porcheddu, A.; Giacomelli, G. Synthesis of oximes and hydroxamic acids. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Rappoport, Z., Liebmann, J.F., Eds.; Wiley: An Interscience Publication: Chichester, UK, 2009; pp. 163–232. [Google Scholar]
- Alam, M.A. Methods for Hydroxamic Acid Synthesis. Curr. Org. Chem. 2019, 23, 978–993. [Google Scholar] [CrossRef]
- Hearn, M.T.W.; Ward, A.D. Hydroxamic Acids. VI The Synthesis, Properties and Reactions of Amidic Hydroxamic Acid and Dihydroxamic Acid Derivatives. Aust. J. Chem. 1977, 30, 2031–2043. [Google Scholar] [CrossRef]
- Devlin, J.P.; Ollis, W.D.; Thorpe, J.E.; Wood, R.J.; Broughton, B.J.; Warren, P.J.; Wooldridge, K.R.H.; Wright, D.E. Studies concerning the antibiotic actinonin. Part III. Synthesis of structural analogues of actinonin by the anhydride–imide method. J. Chem. Soc. Perkin Trans. 1 1975, 9, 830–841. [Google Scholar] [CrossRef]
- Reichelt, A.; Gaul, C.; Frey, R.R.; Kennedy, A.; Martin, S.F. Design, Synthesis, and Evaluation of Matrix Metalloprotease Inhibitors Bearing Cyclopropane-Derived Peptidomimetics as P1′ and P2′ Replacements. J. Org. Chem. 2002, 67, 4062–4075. [Google Scholar] [CrossRef]
- Tretyakov, B.A.; Gadomsky, S.Y.; Terentiev, A.A. Method for Producing Derivatives of N-Hydroxybutanamide. Russian Federation Patent RU2769320 C1, 30 March 2022. [Google Scholar]
- Dixon, L.A. Polyphosphate Ester. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Yale, H.L.; Losee, K.; Martins, J.; Holsing, M.; Perry, F.M.; Bernstein, J. Chemotherapy of Experimental Tuberculosis. VIII. The Synthesis of Acid Hydrazides, their Derivatives and Related Compounds. J. Am. Chem. Soc. 1953, 75, 1933–1942. [Google Scholar] [CrossRef]
- Lea, Z.-G.; Chen, Z.-C.; Hu, Y.; Zheng, Q.-G. Organic Reactions in Ionic Liquids: Ionic Liquid-Promoted Efficient Synthesis of N-Alkyl and N-Arylimides. Synthesis 2004, 7, 995–998. [Google Scholar] [CrossRef]
- Lee, H.-S.; Yu, J.-S.; Lee, C.-K. Use of Correlation of 1H and 13C Chemical Shifts of N-Arylsuccinanilic Acids, N-Arylsuccinimides, N-Arylmaleanilic Acids, and N-Arylmaleimides with the Hammett Substituent Constants for the Studies of Electronic Effects. Bull. Korean Chem. Soc. 2009, 30, 2351–2354. [Google Scholar] [CrossRef] [Green Version]
- Garad, D.N.; Tanpure, S.D.; Mhaske, S.B. Radical-mediated dehydrative preparation of cyclic imides using (NH4)2S2O8–DMSO: Application to the synthesis of vernakalant. Beilstein J. Org. Chem. 2015, 11, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Short, F.W.; Long, L.M. Synthesis of 5-aryl-2-oxazolepropionic acids and analogs. Antiinflammatory agents. J. Heterocycl. Chem. 1969, 6, 707–712. [Google Scholar] [CrossRef]
- Itsuo, M.; Kohya, N.; Masateru, M. Reaction of benzaldoxime with N-phenylmaleimide. Kobunshi Ronbunshu 1988, 45, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Hermant, P.; Bosc, D.; Piveteau, C.; Gealageas, R.; Lam, B.; Ronco, C.; Roignant, M.; Tolojanahary, H.; Jean, L.; Renard, O.-Y.; et al. Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox. J. Med. Chem. 2017, 60, 9067–9089. [Google Scholar] [CrossRef]
- Brown, D.A.; Glass, W.K.; Mageswaran, R.; Girmay, B. cis-trans Isomerism in monoalkylhydroxamic acids by 1H, 13C and 15N NMR spectroscopy. Magn. Reson. Chem. 1988, 26, 970–973. [Google Scholar] [CrossRef]
- Kar, A.; Argade, N.P. A Simple Key for Benzylic Mono- and gem-Dibromination of Primary Aromatic Amine Derivatives Using Molecular Bromine. Synthesis 2002, 2, 221–224. [Google Scholar] [CrossRef]
- Liang, J.; Lv, J.; Fan, J.-C.; Shang, Z.-C. Polyethylene Glycol as a Nonionic Liquid Solvent for the Synthesis of N-Alkyl and N-Arylimides. Synth. Commun. 2009, 39, 2822–2828. [Google Scholar] [CrossRef]
- Abdel-Aziz, A.A.-M.; Eltahir, K.E.H.; Asiri, Y.A. Synthesis, anti-inflammatory activity and COX-1/COX-2 inhibition of novel substituted cyclic imides. Part 1: Molecular docking study. Eur. J. Med. Chem. 2011, 46, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Makurina, V.I.; Chuvurin, A.V.; Karnozhitskaya, T.M.; Chernykh, V.P. Kinetics and Mechanism of the Hydrazinolysis of the Imides of 4-Substituted Succinanilic Acids in Dimethylformamide. J. Org. Chem. USSR Engl. Transl. 1990, 26, 1978–1980. [Google Scholar]
- Correa-Basurto, J.; Flores-Sandoval, C.; Marin-Cruz, J.; Rojo-Dominguez, A.; Espinoza-Fonseca, L.M.; Trujillo-Ferrara, J.G. Docking and quantum mechanic studies on cholinesterases and their inhibitors. Eur. J. Med. Chem. 2007, 42, 10–19. [Google Scholar] [CrossRef]
- Sortino, M.; Garibotto, F.; Cechinel Filho, V.; Gupta, M.; Enriz, R.; Zacchino, S. Antifungal, cytotoxic and SAR studies of a series of N-alkyl, N-aryl and N-alkylphenyl-1,4-pyrrolediones and related compounds. Bioorg. Med. Chem. 2011, 19, 2823–2834. [Google Scholar] [CrossRef] [PubMed]
- Araghi, M.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I. New porphyrin–polyoxometalate hybrid materials: Synthesis, characterization and investigation of catalytic activity in acetylation reactions. Dalton Trans. 2012, 41, 11745–11752. [Google Scholar] [CrossRef]
- Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Gharaati, S. Polystyrene-bound electron-deficient tin(IV) porphyrin: A new, highly efficient, robust and reusable catalyst for acetylation of alcohols and phenols with acetic anhydride. C. R. Chim. 2011, 14, 1080–1087. [Google Scholar] [CrossRef]
- Yakuschenko, I.; Pozdeeva, N.N.; Gadomsky, S.Y. A novel one-pot synthesis method of 3,4,5-triaryl-substituted 1,2,4-triazoles. Chem. Heterocycl. Compd. 2019, 55, 834–838. [Google Scholar] [CrossRef]
- Kokovina, T.S.; Gadomsky, S.Y.; Terentiev, A.A.; Sanina, N.A. A Novel Approach to the Synthesis of 1,3,4-Thiadiazole-2-Amine Derivatives. Molecules 2021, 26, 5159. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press LLC: Boca Raton, FL, USA, 2003; p. 2616. [Google Scholar]
- Available online: https://scifinder-n.cas.org (accessed on 15 November 2022).
- Rothenburg, R. Saureimide und Hydrazinhydrat. Chem. Berich. 1894, 27, 691. [Google Scholar] [CrossRef] [Green Version]
- Ing, H.R.; Manske, R.H.F. CCCXII.—A modification of the Gabriel synthesis of amines. J. Chem. Soc. 1926, 129, 2348–2351. [Google Scholar] [CrossRef]
- Sanz, D.; Pérez-Torralba, M.; Alarcón, S.H.; Claramunt, R.M.; Foces-Foces, C.; Elguero, J. Tautomerism in the Solid State and in Solution of a Series of 6-Aminofulvene-1-aldimines. J. Org. Chem. 2002, 67, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.K.; Lightner, D.A. 1,1′-Bipyrroles: Synthesis and Stereochemistry. J. Org. Chem. 2007, 72, 9395–9397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.X.; Mekelburga, T.; Hyland, C. Unusual (Z)-selective palladium(ii)-catalysed addition of aryl boronic acids to vinylaziridines. Org. Biomol. Chem. 2014, 12, 9113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.-Y.; Tseng, C.-C.; Li, S.-M.; Tsai, S.-E.; Lin, H.-Y.; Wong, F.F. Structural Identification between Phthalazine-1,4-Diones and N-Aminophthalimides via Vilsmeier Reaction: Nitrogen Cyclization and Tautomerization Study. Molecules 2021, 26, 2907. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N. Kinetic Evidence for the Occurrence of a Stepwise Mechanism in the Hydrazinolysis of Phthalimide. J. Org. Chem. 1995, 60, 4536–4541. [Google Scholar] [CrossRef]
Ar | Yield of 1, % | Yield of 2, % | ||
---|---|---|---|---|
One-Pot Approach | Two-Step Approach | |||
a | 15 | 68 | 73 | |
b | 35 | 54 | 66 | |
c | 52 | 65 | 53 | |
d | 31 | 44 | 64 | |
e | 42 | 64 | 38 | |
f | 33 | 48 | 34 |
Amine | pKa [36] | |
Ammonia | 9.25 | |
Hydroxylamine | 5.94 | |
a | Aniline | 4.87 |
b | 4-Methoxyaniline | 5.36 |
c | 4-Bromoaniline | 3.89 |
d | 4-Nitroaniline | 1.02 |
e | 4-Fluoroaniline | 4.65 |
f | 3-(Trifluoromethyl)aniline | 3.49 |
Hydrazide | pKa [37] | |
Acetohydrazide | 3.25 | |
Benzohydrazide | 3.06 | |
4-Methoxybenzohydrazide | 3.26 |
R | Yield of 1, % | Yield of 2, % | ||
---|---|---|---|---|
One-Pot Approach | Two-Step Approach | |||
g | 42 | 45 | 75 | |
h | 39 | 43 | 69 | |
i | 68 | 76 | 72 | |
j | 42 | 44 | 63 | |
k | 71 | 69 | 35 | |
l | 46 | 45 | 43 | |
m | 77 | 80 | 46 | |
n | 53 | 60 | 85 | |
o | 59 | 70 | 86 | |
p | 81 | 88 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tretyakov, B.A.; Gadomsky, S.Y.; Terentiev, A.A. A Reaction of N-Substituted Succinimides with Hydroxylamine as a Novel Approach to the Synthesis of Hydroxamic Acids. Organics 2023, 4, 186-195. https://doi.org/10.3390/org4020015
Tretyakov BA, Gadomsky SY, Terentiev AA. A Reaction of N-Substituted Succinimides with Hydroxylamine as a Novel Approach to the Synthesis of Hydroxamic Acids. Organics. 2023; 4(2):186-195. https://doi.org/10.3390/org4020015
Chicago/Turabian StyleTretyakov, Bogdan A., Svyatoslav Y. Gadomsky, and Alexei A. Terentiev. 2023. "A Reaction of N-Substituted Succinimides with Hydroxylamine as a Novel Approach to the Synthesis of Hydroxamic Acids" Organics 4, no. 2: 186-195. https://doi.org/10.3390/org4020015
APA StyleTretyakov, B. A., Gadomsky, S. Y., & Terentiev, A. A. (2023). A Reaction of N-Substituted Succinimides with Hydroxylamine as a Novel Approach to the Synthesis of Hydroxamic Acids. Organics, 4(2), 186-195. https://doi.org/10.3390/org4020015