Indole-Based Macrocyclization by Metal-Catalyzed Approaches
Abstract
:1. Introduction
2. Metal Catalyzed Strategies toward the Indole Macrocycles
2.1. Ruthenium (Ru) Catalyzed Macrocyclizations: Ring-Closing Metathesis [RCM]
2.2. Palladium (Pd) Catalyzed Indole-Based Macrocyclizations
2.3. Silver (Ag) Catalyzed Indole-Based Macrocyclizations
2.4. Manganese (Mn) Catalyzed Indole-Based Macrocyclizations
2.5. Copper (Cu) Catalyzed Indole Based Macrocyclizations
2.6. Iridium (Ir) Catalyzed Indole-Based Macrocyclizations
2.7. Nickel (Ni) Catalyzed Indole-Based Macrocyclizations
2.8. Rhodium (Rh) Catalyzed Indole-Based Macrocyclizations
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marsault, E.; Peterson, M.L. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J. Med. Chem. 2011, 54, 1961–2004. [Google Scholar] [CrossRef]
- Butler, M.S. Natural products to drugs: Natural product derived compounds in clinical trials. Nat. Prod. Rep. 2005, 22, 162–195. [Google Scholar] [CrossRef]
- Kotz, J. Bringing macrocycles full circle. Sci.-Bus. Exch. 2012, 5, 1176. [Google Scholar] [CrossRef]
- Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem. 2012, 4, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Giordanetto, F.; Kihlberg, J. Macrocyclic Drugs and Clinical Candidates: What Can Medicinal Chemists Learn from Their Properties? J. Med. Chem. 2014, 57, 278–295. [Google Scholar] [CrossRef]
- Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.F. The exploration of macrocycles for drug discovery—An underexploited structural class. Nat. Rev. Drug Discov. 2008, 7, 608–624. [Google Scholar] [CrossRef] [PubMed]
- Cheekatla, S.R.; Thurakkal, L.; Jose, A.; Barik, D.; Porel, M. Aza-Oxa-Triazole Based Macrocycles with Tunable Properties: Design, Synthesis, and Bioactivity. Molecules 2022, 27, 3409. [Google Scholar] [CrossRef] [PubMed]
- Porel, M.; Thornlow, D.N.; Phan, N.N.; Alabi, C.A. Sequence-defined bioactive macrocycles via an acid-catalysed cascade reaction. Nat. Chem. 2016, 8, 590–596. [Google Scholar] [CrossRef]
- McGeary, R.P.; Fairlie, D.P. Macrocyclic peptidomimetics: Potential for drug development. Curr. Opin. Drug Discov. Dev. 1998, 1, 208–217. [Google Scholar]
- Levis, J.I. (Ed.) Macrocycles in Drug Discovery; RSC: Cambridge, UK, 2015. [Google Scholar]
- Mallinson, J.; Collins, I. Macrocycles in New Drug Discovery. Future Med. Chem. 2012, 4, 1409–1438. [Google Scholar] [CrossRef]
- Gokel, G.W.; Leevy, W.M.; Weber, M.E. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 2004, 104, 2723–2750. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Pillararenes, a New Class of Macrocycles for Supramolecular Chemistry. Acc. Chem. Res. 2012, 45, 1294–1308. [Google Scholar] [CrossRef] [PubMed]
- Yudin, A.K. Macrocycles: Lessons from the distant past, recent developments, and future directions. Chem. Sci. 2015, 6, 30–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLorbe, J.E.; Clements, J.H.; Whiddon, B.B.; Martin, S.F. Thermodynamic and Structural Effects of Macrocyclic Constraints in Protein−Ligand Interactions. ACS Med. Chem. Lett. 2010, 1, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Thurakkal, L.; Nanjan, P.; Porel, M. Design, synthesis, and bioactive properties of a class of macrocycles with tunable functional groups and ring size. Sci. Rep. 2022, 12, 4815. [Google Scholar] [CrossRef]
- Martí-Centelles, V.; Pandey, M.D.; Burguete, M.I.; Luis, S.V. Macrocyclization reactions: The importance of conformational, configurational, and template-induced preorganization. Chem. Rev. 2015, 115, 8736–8834. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, A.; Schwochert, J.; Pye, C.R.; Asano, D.; Edmondson, Q.D.; Turmon, A.C.; Klein, V.G.; Ono, S.; Okada, O.; Lokey, R.S. Drug-Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side-Chain Lipophilicity. Angew. Chem. Int. Ed. 2020, 59, 21571–21577. [Google Scholar] [CrossRef]
- Gibson, S.E.; Lecci, C. Amino acid derived macrocycles—An area driven by synthesis or application? Angew. Chem. Int. Ed. 2006, 45, 1364–1377. [Google Scholar] [CrossRef]
- Begnini, F.; Poongavanam, V.; Over, B.; Castaldo, M.; Geschwindner, S.; Johansson, P.; Tyagi, M.; Tyrchan, C.; Wissler, L.; Sjo, P.; et al. Mining Natural Products for Macrocycles to Drug Difficult Targets. J. Med. Chem. 2021, 64, 1054–1072. [Google Scholar] [CrossRef]
- Garcia Jimenez, D.; Poongavanam, V.; Kihlberg, J. Macrocycles in Drug Discovery—Learning from the Past for the Future. J. Med. Chem. 2023, 66, 5377–5396. [Google Scholar] [CrossRef]
- Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem. 2019, 13, 101. [Google Scholar] [CrossRef] [Green Version]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gribble, G.W. Indole Ring Synthesis: From Natural Products to Drug Discovery; Wiley: Weinheim, Germany, 2016. [Google Scholar]
- Gribble, G.W. (Ed.) Heterocyclic Scaffolds II: Reactions and Applications of Indoles. In Topics in Heterocyclic Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; Volume 26, ISBN 978-3-642-15733-2. [Google Scholar]
- Kumar, S.; Ritika. A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci. 2020, 6, 121. [Google Scholar] [CrossRef]
- Cummings, M.D.; Lin, T.-I.; Hu, L.; Tahri, A.; McGowan, D.; Amssoms, K.; Last, S.; Devogelaere, B.; Rouan, M.-C.; Vijgen, L.; et al. Discovery and Early Development of TMC647055, a Non-Nucleoside Inhibitor of the Hepatitis C Virus NS5B Polymerase. J. Med. Chem. 2014, 57, 1880–1892. [Google Scholar] [CrossRef]
- Ueda, T.; Takai, N.; Nishida, M.; Nasu, K.; Narahara, H. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int. J. Mol. Med. 2007, 19, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedini, A.; Di Cesare Mannelli, L.; Micheli, L.; Baiula, M.; Vaca, G.; De Marco, R.; Gentilucci, L.; Ghelardini, C.; Spampinato, S. Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist. Front. Pharmacol. 2020, 11, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolyar, I.V.; Yudin, A.K.; Nenajdenko, V.G. Heteroaryl Rings in Peptide Macrocycles. Chem. Rev. 2019, 119, 10032–10240. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, K.T.; Osberger, T.J.; King, T.A.; Sore, H.F.; Spring, D.R. Strategies for the diversity-oriented synthesis of macrocycles. Chem. Rev. 2019, 119, 10288–10317. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wang, C.; Kyle, A.F.; Jakubec, P.; Dixon, D.; Schrock, R.R.; Hoveyda, A.H. Synthesis of macrocyclic natural products by catalyst-controlled stereoselective ring-closing metathesis. Nature 2011, 479, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Zhao, M.; Li, S.-S.; Xu, Y.-H.; Loh, T.-P. Macrolide synthesis through intramolecular oxidative cross-coupling of alkenes. Angew. Chem. Int. Ed. 2018, 57, 555–559. [Google Scholar] [CrossRef]
- Parenty, A.; Moreau, X.; Campagne, J.-M. Macrolactonizations in the total synthesis of natural products. Chem. Rev. 2006, 106, 911–939. [Google Scholar] [CrossRef]
- Jagasia, R.; Holub, J.M.; Bollinger, M.; Kirshenbaum, K.; Finn, M.G. Peptide Cyclization and Cyclodimerization by CuIMediated Azide-Alkyne Cycloaddition. J. Org. Chem. 2009, 74, 2964–2974. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, K.; Kuroki, Y.; Hanaki, N.; Ohara, S.; Yamamoto, H. Antimony-templated macrolactamization of tetraamino esters. Facile synthesis of macrocyclic spermine alkaloids, (±)-buchnerine, (±)-verbacine, (±)-verbaskine, and (±)-verbascenine. J. Am. Chem. Soc. 1996, 118, 1569–1570. [Google Scholar] [CrossRef]
- Aimetti, A.A.; Shoemaker, R.K.; Lin, C.-C.; Anseth, K.S. On-resin peptide macrocyclization using thiol–ene click chemistry. Chem. Commun. 2010, 46, 4061–4063. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Pattarawarapan, M.; Wang, Z.; Burgess, K. Solid-Phase SN2 Macrocyclization Reactions To Form β-Turn Mimics. Org. Lett. 1999, 1, 121–124. [Google Scholar] [CrossRef]
- Wang, X.; Lu, M.-Z.; Loh, T.-P. Transition-Metal-Catalyzed C–C Bond Macrocyclization via Intramolecular C–H Bond Activation. Catalysts 2023, 13, 438. [Google Scholar] [CrossRef]
- Larsen, B.J.; Sun, Z.; Nagorny, P. Synthesis of Eukaryotic Translation Elongation Inhibitor Lactimidomycin via Zn(II)-Mediated Horner–Wadsworth–Emmons Macrocyclization. Org. Lett. 2013, 15, 2998–3001. [Google Scholar] [CrossRef] [PubMed]
- Breazzano, S.P.; Poudel, Y.B.; Boger, D.L. A Pd(0)-Mediated Indole (Macro) Cyclization Reaction. J. Am. Chem. Soc. 2013, 135, 1600–1606. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K.; Yoshimi, Y.; Maeda, K.; Morita, T.; Takahashi, I.; Itou, T.; Inagaki, S.; Hatanaka, M. Radical Photocyclization Route for Macrocyclic Lactone Ring Expansion and Conversion to Macrocyclic Lactams and Ketones. J. Org. Chem. 2012, 78, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Abdelraheem, E.M.M.; Khaksar, S.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Shaabani, S.; Dömling, A. Two-Step Macrocycle Synthesis by Classical Ugi Reaction. J. Org. Chem. 2018, 83, 1441–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapf, C.W.; Harrison, B.A.; Drahl, C.; Sorensen, E.J. A Diels-Alder Macrocyclization Enables an Efficient Asymmetric Synthesis of the Antibacterial Natural Product Abyssomicin C. Angew. Chem. 2005, 117, 6691–6695. [Google Scholar] [CrossRef]
- Gradillas, A.; Pérez-Castells, J. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: Reaction conditions and limitations. Angew. Chem. Int. Ed. 2006, 45, 6086–6101. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, E.A.; Shmatova, O.I.; Kutovaya, I.V.; Khrustalev, V.N.; Nenajdenko, V.G. Synthesis of macrocyclic peptidomimetics via the Ugi-click-strategy. Org. Biomol. Chem. 2019, 17, 3433–3445. [Google Scholar] [CrossRef]
- Lu, X.; He, S.-J.; Cheng, W.-M.; Shi, J. Transition-metal-catalyzed C–H functionalization for late-stage modification of peptides and proteins. Chin. Chem. Lett. 2018, 29, 1001–1008. [Google Scholar] [CrossRef]
- Chouhan, G.; James, K. Efficient Construction of Proline-Containing β-Turn Mimetic Cyclic Tetrapeptides via CuAAC Macrocyclization. Org. Lett. 2013, 15, 1206–1209. [Google Scholar] [CrossRef]
- Cai, C.; Wang, F.; Xiao, X.; Sheng, W.; Liu, S.; Chen, J.; Zheng, J.; Xie, R.; Bai, Z.; Wang, H. Macrocyclization of bioactive peptides with internal thiazole motifs via palladium-catalyzed C–H olefination. Chem. Commun. 2022, 58, 4861–4864. [Google Scholar] [CrossRef]
- Kotha, S.; Cheekatla, S.R.; Meshram, M. Design and Synthesis of Cage Molecules as High Energy Density Materials for Aerospace Applications. ChemCatChem 2020, 12, 6131–6172. [Google Scholar] [CrossRef]
- Kotha, S.; Meshram, M. Application of Claisen Rearrangement and Olefin Metathesis in Organic Synthesis. Chem. Asian J. 2018, 13, 1758–1766. [Google Scholar] [CrossRef]
- Kotha, S.; Meshram, M.; Dommaraju, Y. Design and Synthesis of Polycycles, Heterocycles, and Macrocycles via Strategic Utilization of Ring-Closing Metathesis. Chem. Rec. 2018, 18, 1613–1632. [Google Scholar] [CrossRef]
- Grubbs, R.H.; Wenzel, A.G. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2015; Volume 1. [Google Scholar]
- Estrada-Ortiz, N.; Neochoritis, C.G.; Twarda-Clapa, A.; Musielak, B.; Holak, T.A.; Dömling, A. Artificial Macrocycles as Potent p53–MDM2 Inhibitors. ACS Med. Chem. Lett. 2017, 8, 1025–1030. [Google Scholar] [CrossRef] [Green Version]
- Muthusamy, S.; Kumar, M.D.S.; Suresh, E. Synthesis of Indole Annulated [1,3]-Thiazaheterocycles and -macrocycles via Ring-Closing Metathesis. ChemistrySelect 2016, 1, 2603–2609. [Google Scholar] [CrossRef]
- McGowan, D.; Vendeville, S.; Lin, T.-I.; Tahri, A.; Hu, L.; Cummings, M.D.; Amssoms, K.; Berke, J.M.; Canard, M.; Cleiren, E.; et al. Finger-loop inhibitors of the HCV NS5b polymerase. Part 1: Discovery and optimization of novel 1,6- and 2,6-macrocyclic indole series. Bioorg. Med. Chem. Lett. 2012, 22, 4431–4436. [Google Scholar] [CrossRef] [PubMed]
- Au, V.S.; Bremner, J.B.; Coates, J.; Keller, P.A.; Pyne, S.G. Synthesis of some cyclic indolic peptoids as potential antibacterials. Tetrahedron 2006, 62, 9373–9382. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.-D.; Lee, K.; Wei, C.-Q.; Roberts, L.R.; Worthy, K.M.; Fisher, R.J.; Burke, T.R. Synthesis of a 5-Methylindolyl-Containing Macrocycle That Displays Ultrapotent Grb2 SH2 Domain-Binding Affinity. J. Med. Chem. 2004, 47, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Kotha, S.; Cheekatla, S.R.; Chinnam, A.K.; Jain, T. Design and synthesis of polycyclic bisindoles via Fischer indolization and ring-closing metathesis as key steps. Tetrahedron Lett. 2016, 57, 5605–5607. [Google Scholar] [CrossRef]
- Kotha, S.; Chinnam, A.K.; Ali, R. Hybrid macrocycle formation and spiro annulation on cis-syn-cis-tricyclo [6.3.0.02,6]undeca 3,11-dione and its congeners via ring-closing metathesis. Beilstein J. Org. Chem. 2015, 11, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Kotha, S.; Chinnam, A.K.; Shirbhate, M.E. Design and synthesis of hybrid cyclophanes containing thiophene and indole units via Grignard reaction, Fischer indolization and ring-closing metathesis as key steps. Beilstein J. Org. Chem. 2015, 11, 1514–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotha, S.; Chinnam, A.K.; Shirbhate, M.E. Diversity-Oriented Approach to Cyclophanes via Fischer Indolization and Ring-Closing Metathesis: Substrate-Controlled Stereochemical Outcome in RCM. J. Org. Chem. 2015, 80, 9141–9146. [Google Scholar] [CrossRef]
- Kotha, S.; Shirbhate, M.E.; Chinnam, A.K.; Sreevani, G. Synthesis of Phenanthroline and Indole Based Hybrid Cyclophane Derivatives via Ring-Closing Metathesis. Heterocycles 2016, 93, 399–405. [Google Scholar] [CrossRef]
- Lawson, K.V.; Rose, T.E.; Harran, P.G. Template-Induced Macrocycle Diversity through Large Ring-Forming Alkylations of Tryptophan. Tetrahedron 2013, 69, 7683–7691. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.J.; Moon, D.; Lah, M.S.; Jeong, K.S. Indole-Based Macrocycles as a Class of Receptors for Anions. Angew. Chem. Int. Ed. 2005, 44, 7926–7929. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Cai, C.; Sheng, W.; Ren, Y.; Wang, H. Late-Stage Peptide Macrocyclization by Palladium-Catalyzed Site-Selective C−H Olefination of Tryptophan. Angew. Chem. 2020, 59, 14686–14692. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; He, Y.; Chen, H.; Sheng, W.; Wang, H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C (sp3)–H activation. Chem. Sci. 2017, 8, 4565–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schramma, K.R.; Bushin, L.B.; Seyedsayamdost, M.R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 2015, 7, 431–437. [Google Scholar] [CrossRef]
- Mendive-Tapia, L.; Bertran, A.; García, J.; Acosta, G.; Albericio, F.; Lavilla, R. Constrained cyclopeptides: Biaryl formation through Pd-catalyzed C−H activation in peptides—Structural control of the cyclization vs. cyclodimerization outcome. Chem. Eur. J. 2016, 22, 13114–13119. [Google Scholar] [CrossRef]
- Mendive-Tapia, L.; Preciado, S.; García, J.; Ramón, R.; Kielland, N.; Albericio, F.; Lavilla, R. New peptide architectures through C–H activation stapling between tryptophan–phenylalanine/tyrosine residues. Nat. Commun. 2015, 6, 7160–7169. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Bois-Choussy, M.; Zhu, J. Synthesis of DEFG ring of complestatin and chloropeptin I: Highly atropdiastereoselective macrocyclization by intramolecular Suzuki-Miyaura reaction. Org. Lett. 2007, 9, 2401–2404. [Google Scholar] [CrossRef]
- Zhao, H.; Negash, L.; Wei, Q.; LaCour, T.G.; Estill, S.J.; Capota, E.; Pieper, A.A.; Harran, P.G. Acid promoted cinnamyl ion mobility within peptide derived macrocycles. J. Am. Chem. Soc. 2008, 130, 13864–13866. [Google Scholar] [CrossRef]
- Thombare, V.J.; Hutton, C.A. Rapid, traceless, AgI-promoted macrocyclization of peptides possessing an N-Terminal thioamide. Angew. Chem. 2019, 58, 4998–5002. [Google Scholar] [CrossRef]
- Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Manganese-Catalyzed C− H Alkynylation: Expedient Peptide Synthesis and Modification. Angew. Chem. Int. Ed. 2017, 56, 3172–3176. [Google Scholar] [CrossRef]
- Kaplaneris, N.; Rogge, T.; Yin, R.; Wang, H.; Sirvinskaite, G.; Ackermann, L. Late-Stage Diversification through Manganese-Catalyzed C−H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. Angew. Chem. 2019, 131, 3514–3518. [Google Scholar] [CrossRef]
- Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem. 2017, 134, 159–184. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Acevedo, L.; Miranda, L.D. Synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/microwave assisted click-cycloaddition reaction protocol. Org. Biomol. Chem. 2015, 13, 4408–4412. [Google Scholar] [CrossRef]
- McCarver, S.J.; Qiao, J.X.; Carpenter, J.; Borzilleri, R.M.; Poss, M.A.; Eastgate, M.D.; Miller, M.M.; MacMillan, D.W.C. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew. Chem. 2017, 56, 728–732. [Google Scholar] [CrossRef] [Green Version]
- Kisselev, A.F.; Goldberg, A.L. Proteasome inhibitors: From research tools to drug candidates. Chem. Biol. 2001, 8, 739–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthelot, A.; Piguel, S.; Le Dour, G.; Vidal, J. Synthesis of macrocyclic peptide analogues of proteasome inhibitor TMC-95A. J. Org. Chem. 2003, 68, 9835–9838. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Milbradt, A.G.; Moroder, L. Synthesis of TMC-95A analogues. Structure-based prediction of cyclization propensities of linear precursors. Lett. Pept. Sci. 2002, 9, 65–70. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.; Yan, Z.; Yan, J.; Zhu, Q. Recent Advances in Late-Stage Construction of Stapled Peptides via C−H Activation. ChemBioChem 2021, 22, 2762–2771. [Google Scholar] [CrossRef]
- Liu, L.; Fan, X.; Wang, B.; Deng, H.; Wang, T.; Zheng, J.; Zheng, J.; Chen, J.; Shi, Z.; Wang, H. PIII-Directed Late-Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew. Chem. 2022, 134, e202206177. [Google Scholar]
- Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr.; Liu, K.K.C.; Fink, S.J.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2013 new drugs. Bioorg. Med. Chem. 2015, 23, 1895–1922. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, X.; Wu, Y.; Chen, X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido) ethyl] maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J. Nucl. Med. 2006, 47, 1172–1180. [Google Scholar] [PubMed]
- Peng, J.; Li, C.; Khamrakulov, M.; Wang, J.; Liu, H. Rhodium (III)-catalyzed C–H alkenylation: Access to maleimide-decorated tryptophan and tryptophan-containing peptides. Org. Lett. 2020, 22, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheekatla, S.R.; Barik, D.; Anand, G.; Mol K. M., R.; Porel, M. Indole-Based Macrocyclization by Metal-Catalyzed Approaches. Organics 2023, 4, 333-363. https://doi.org/10.3390/org4030026
Cheekatla SR, Barik D, Anand G, Mol K. M. R, Porel M. Indole-Based Macrocyclization by Metal-Catalyzed Approaches. Organics. 2023; 4(3):333-363. https://doi.org/10.3390/org4030026
Chicago/Turabian StyleCheekatla, Subba Rao, Debashis Barik, Geethanjali Anand, Rakhi Mol K. M., and Mintu Porel. 2023. "Indole-Based Macrocyclization by Metal-Catalyzed Approaches" Organics 4, no. 3: 333-363. https://doi.org/10.3390/org4030026
APA StyleCheekatla, S. R., Barik, D., Anand, G., Mol K. M., R., & Porel, M. (2023). Indole-Based Macrocyclization by Metal-Catalyzed Approaches. Organics, 4(3), 333-363. https://doi.org/10.3390/org4030026