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Abstract: Three decades after A. P. de Silva’s seminal paper introduced the concept of logic gates
at the molecular level, the field of molecular logic gates (MLGs) has witnessed significant advance-
ments. MLGs are devices designed to perform logical operations, utilizing one or more physical
or chemical stimulus signals (inputs) to generate an output response. Notably, MLGs have found
diverse applications, with optical detection of analytes emerging as a notable evolution of traditional
chemosensors. Organic synthesis methods are pivotal in crafting molecular architectures tailored
as optical devices capable of analyte detection through logical functions. This review delves into
the fundamental aspects and physical–chemical properties of MLGs, with a particular emphasis on
synthetic strategies driving their design.

Keywords: molecular logic gates; chemosensors; chemodosimeters; lab-on-a-molecule; optical
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1. Introduction

The investigation of the chemical composition of matter has long been a subject of
broad interest. Nowadays, this interest has become more of a case of necessity. The constant
threat of chemical contamination of soil, air, water, food, beverages, and cosmetics has
threatened human security. In this context, scientists have devoted countless efforts to
developing analytical tools capable of detecting and quantifying different chemical species.
The efficiency of these tools is directly linked to their ability to detect and quantify analytes
in low concentration (ppm or ppb) quickly, selectively, and inexpensively. The World
Health Organization states that an optical detection device should be affordable, sensitive,
specific, user-friendly, rapid/robust, equipment-free, and deliverable (ASSURED) [1,2].

Organic and analytical chemists have joined forces, in an interdisciplinary environ-
ment, to develop optical detection sensors for the selective recognition of an analyte.
Organic synthesis plays a crucial role as a tool for the development of sensitive materials
in chemical sensors [3–5]. These materials encompass functionalized polymeric materi-
als, nanomaterials, or simply molecular ligands, as long as they exhibit affinity toward
specific analytes and translate this affinity into analytically useful signals [6]. In the case
of optical chemical sensors, it is evident that the chemical environment influences the
optical properties of chromophores and fluorophores. Changes in pH, solvent composition,
oxygen presence, and the introduction of analytes, which can be neutral, radical, cationic,
or anionic, are some examples of perturbations that can induce significant alterations in the
photophysical behavior of such devices [5,7,8]. Under this perspective, analytical chemistry
addresses qualitative and quantitative analyses to process this sign and determine the
chemical composition by recognizing these analytes [9,10].

The design of these compounds has evolved over the last few decades to increase
their efficiency. One of the most modern approaches is the concept of molecular logic
gates (MLGs)—molecules capable of performing logical operations based on one or more
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physical or chemical stimulus signals (inputs) to produce an output response [11]. The
study of MLGs is a new interdisciplinary field involving chemistry, physics, electronics,
Boolean algebra, and computing concepts related to molecular structures [12].

We perceive logic gates as fundamental mathematical constructs that can be applied
in different fields. This applicability extends to the field of chemistry, where notable
advancements have been observed in recent years. Among the areas of particular interest,
we highlight (1) the construction of nanodevices, especially nanoenzymes [13] or even
functionalized carbon dots [14] used as MLGs. These systems are particularly interesting
because of their increasingly small size, which lengthens the prediction of Moore’s law.
(2) Dynamic systems, which aim to generate a cascade system, are also exciting: a logical
and modulable sensing output is responsible for subsequent movements/reactions. We
envision such systems potentially resolving challenges in pharmacological or medical
domains, such as managing pharmacokinetics for specific compounds [15,16]. (3) Regarding
the application, MLGs focused on food security currently stand out not only because of
the current global scenario and the growing concern about the indiscriminate use of
pesticides and polluting agents but also because of the prospect of constructing multi-
analyte detection systems. In this sense, detection systems based on combinatorial MLGs,
such as lab-on-a-molecule [17], adders, and comparators [18], stand out.

Although the development of MLGs is structured in an interdisciplinary field, organic
synthesis plays a primary role in elaborating most of these devices. In this sense, this
review aims to discuss several synthetic strategies in planning MLGs associated with their
applications and optical properties. Therefore, the examples discussed here were selected
to bring a diversity of fluorescent cores, analytes, and optical responses. These examples
were mainly selected based on the synthesis and diversity strategies in MLG classifications.

2. Analytes
2.1. Potential Toxic Metals

Exposure to potentially toxic metals, such as lead, cadmium, mercury, and aluminum,
can result in severe health damage [19]. These exposures originate from different sources,
mainly environmental pollution, contaminated air, soil, and water.

Among these toxic contaminants, mercury is notable for its damage to human health,
even at low doses, compromising nervous, renal, cardiorespiratory, immune, and repro-
ductive systems [20–22]. Its affinity with compounds containing thiol groups, present in
proteins and enzymes, is the leading cause of the harmful effect on life [7–9]. Another
example of a toxic metal is lead [23,24], whose prolonged exposure severely damages
health, mainly through nerve system damage [25,26]. Cd2+ ions have a high affinity for
metallothioneins in the liver, kidneys, intestines, and brain [27–29]. For this reason, this
metal can also lead to several effects on the body. Despite aluminum’s abundance in the
earth’s crust and its versatility in various applications [30,31], exposure to this metal may
be associated with neurological disorders, such as Alzheimer’s disease, osteomalacia, and
breast cancer [32–34].

Other metals, such as nickel, copper, and zinc, are deemed essential micronutrients
and play important roles in maintaining the healthy functioning of the human body [35].
Even so, the excessive accumulation of these substances can also compromise health. For
instance, Ni2+ is crucial for biosynthesis and metabolism, but its excess may cause dermatitis,
asthma, pneumonitis, disorders of the central nervous system, and cancer [36,37]. In excess,
Cu2+, fundamental in redox activity, can provoke amyloid precipitation and contribute
to developing Wilson’s, prion, and Parkinson’s diseases [35,38–40]. Zinc accumulation
in the human body can cause diabetes, epilepsy, brain, Alzheimer’s, and Parkinson’s
disease [41–44].

2.2. Alkaline and Alkaline Earth Metals

Alkaline cations such as Na+ and K+, predominantly found in saline water, are related
to critical biological processes. These include regulating blood and body fluid homeostasis,
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skeletal and smooth muscle, taste and pain sensation, and signal transduction in ani-
mals [45–50]. In excess in the human body, Na+ is associated with various health issues,
including water retention and hypertension [51]. Alteration of K+ ions in the human system
can provoke effects such as muscle cramps or weakness, diarrhea, dehydration, changes in
heart rhythms, and others [52–56]. The deficiency of Ca2+, present in the composition of
teeth and bones, can result in osteoporosis. However, excessive amounts of calcium intake
can result in muscle relaxation, kidney stones, and bone pain [57–59].

2.3. Anionic Species

Anions such as cyanide, fluoride, acetate, and phosphate, among many others, can
also significantly interfere with different aspects of life. For instance, cyanide displays toxic
effects by forming complexes with ferric ions in some enzymes’ active sites. This reaction
interferes with the electron transport chain, compromising the tissue’s ability to utilize
oxygen effectively [60,61]. Therefore, this anion can cause acute and systemic toxicity,
leading to rapid cardiovascular collapse [60,62–64].

The fluoride (F−) ion, added in toothpaste and drinking water to prevent dental caries,
is associated with healthy bones, hair, and nails. However, excessive F− intake can result in
dental or skeletal fluorosis, renal lithiasis, and other disorders [65].

The acetate (AcO−) anion is highly important due to its application as an indicator of
organic decomposition in marine sediments [66,67], in controlling microbial growth, and
as an additive in foods to extend shelf life and also to improve sensory properties [68,69].
Phosphates, used as fertilizer for agriculture, may exhibit risks to communities when
used excessively [70], leading to the growth of algae and plants, hampering their use [71].
Consequently, excessive algae growth can decrease dissolved oxygen, ultimately resulting
in the death of aquatic organisms.

Despite their relevance, the detection of anions poses greater complexity than cations.
Designing anionic recognition sensors requires considering molecular geometry, stereo-
chemistry, and energy-related properties, such as enthalpy, entropy, Gibbs free energy,
and solvation [72,73]. In addition, anions such as HCO3

−, NO3
−, PO4

3−, and HSO4
− can

exhibit different sizes and charges at various pH values, impacting their recognition and
detection [74].

2.4. Neutral Species

The detection of ionic species by optical sensors relies on the interaction between
electron-rich and electron-poor sites, involving or not chemical reaction. Therefore, detect-
ing electrically neutral species represents a challenge in the sensing field [75]. Still, many
sensors have been developed to identify and quantify neutral species, such as amines,
warfare agents, and toxic volatile compounds, among many others [75–77]. Examples
of target-neutral analytes include amino acids, which are essential for various metabolic
processes and biological functions. Lysine (Lys), fundamental in the Krebs–Henseleit cycle
and polyamine synthesis, plays a vital role in animal development [78,79]. Histidine (His)
is essential for the active sites of many enzymes and functional proteins, and it controls the
transmission of metallic elements in biological systems [80,81]. Tryptophan (Trp) is crucial
for protein biosynthesis, animal growth, and plant development. The deficiency of certain
amino acids can lead to various abnormalities [82].

Biogenic amines, which bear biologically active nitrogen, exhibit essential physio-
logical functions, such as increased DNA, RNA, and protein synthesis and membrane
stabilization [83,84]. However, their high concentration in food may indicate microbial
contamination [85]. Chemical warfare agents, used to incapacitate people during conflict,
threaten society’s safety [86]. One example of these agents is phosgene (COCl2), a gas
capable of irritating the respiratory tract and even causing death [87,88].
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3. Optical Detection Devices

From the pioneering studies of Pedersen [89,90], Lehn [91], and Cram [92], a new era
emerged in the development of receptors capable of identifying and selectively forming
complexes with various substrates, some of which are mentioned above, through non-
covalent interactions. These advances led to the development of the field known as
Supramolecular chemistry, initially conceptualized by Lehn as “chemistry beyond the molecule”.
Based on concepts of molecular recognition and stored information within molecules,
along with planning through self-assembly and preorganization, it has become essential to
redefine supramolecular chemistry as the “chemistry of informed systems” [93–96].

The integration of analytical sciences into supramolecular chemistry has dramatically
expanded our understanding of molecular recognition, self-assembly, and other fundamen-
tal processes. The construction of macrocycles and their interaction with substances form
the basis of molecular recognition, understood as the energy and information involved in
binding a substrate by a receptor molecule [97–99]. The combination of supramolecular
chemistry and optical detection has paved the way for numerous applications, including
chemical sensors, biosensing, drug delivery systems, and materials science.

IUPAC defines chemical sensors as devices that convert chemical information into an
analytically useful signal [6,100]. Sensors can be designed as electrical, magnetic, optical,
or colorimetric devices, depending on the type of signal they present [4,101–103]. Optical
detection devices respond to specific analytes and can be created by connecting a molecule
with intrinsic signaling behavior to a recognition system, which may be either molecular
or supramolecular [99,104]. In a simplified manner, optical devices can be categorized
based on their interaction with the corresponding substance being detected. When optical
devices interact with the analyte reversibly, they are known as Chemosensors (Scheme 1a).
On the other hand, if their interaction is irreversible, they are referred to as Chemodosimeters
(Scheme 1b).
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Scheme 1. General representation of (a) a chemosensor building strategy and strategies for building
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ing an optical response, (b) the analyte binding to the chemodosimeter and catalyzing a chemical
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Scheme 1 shows the main strategies used when considering the development of a
chemodosimeter: (a) the analyte can covalently bind to the chromogenic or fluorogenic
chemosensor, leading to a variation in its optical properties; (b) the analyte can interact with
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the chemodosimeter and catalyze a chemical reaction that generates changes in color or
fluorescence emission; and finally, (c) the analyte reacts with the chemodosimeter, releasing
a leaving group with chromogenic or fluorogenic properties [104,105].

4. Planning Optical Devices Based on Sensing Mechanism

Comprehending the connection between the molecular structure and photophysical
phenomena is crucial in designing fluorescent and colorimetric-based detection systems.
The design of fluorescent devices employs several sensing mechanisms, including photoin-
duced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance
energy transfer (FRET), chelation-enhanced fluorescence (CHEF), excited state intramolecu-
lar proton transfer (ESIPT), and aggregation phenomena.

4.1. Photoinduced Electron Transfer (PET)

Photoinduced electron transfer (PET) occurs when an electron is transferred to or
from an electronically excited state of a molecule. An orbital in a portion of the molecule
may possess energy between the energy levels of the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) of the fluorophore [106].
Electron-donating groups possess an outer orbital that is filled with electrons, and during
electronic excitation, PET can occur from this orbital to the previously highest occupied
molecular orbital (HOMO) of the fluorophore. Conversely, regions of the molecule with
empty orbitals can accept electrons via PET from the fluorophore’s lowest unoccupied
molecular orbital (LUMO) [105,107].

4.2. Intramolecular Charge Transfer (ICT)

Intramolecular charge transfer (ICT)-based chemosensors contain an acceptor directly
connected, via a π-system, to an electron-donating fluorophore. This design allows efficient
electron transfer from the electron-rich donor moiety to the electron-poor acceptor moiety,
both located within the same molecule. The donor and acceptor groups are connected
through a π electron bridge [108].

4.3. Fluorescence Resonance Energy Transfer (FRET)

Fluorescence resonance energy transfer (FRET) is a non-radiative energy transfer
process between a donor and an acceptor molecule. For FRET to occur, the donor and
acceptor molecules must be in close proximity, and the emission spectrum of the donor
molecule must overlap with the emission spectrum of the acceptor molecule to which
it provides the energy transfer. Unlike PET, no electrons are transferred between the
molecules [109,110].

4.4. Chelation-Enhanced Fluorescence (CHEF)

Chelation-enhanced fluorescence (CHEF) involves complexing a metal cation by a
ligand within a fluorophore. During this process, the heteroatoms within the fluorophore
form a chelate complex with cation, enhancing fluorescence [111].

4.5. Metal-to-Ligand Charge Transfer (MLCT)

Metal-to-ligand charge transfer (MLCT) transitions are prevalent in coordination
complexes and organometallic compounds that feature π-acceptor ligands, where the metal
exists in a lower oxidation state, indicating an electron-rich state. Upon light absorption,
electrons residing on the metal orbitals become energized, transitioning to the π∗ orbitals
of the ligand [112,113].

4.6. Excited State Intramolecular Proton Transfer (ESIPT)

Excited state intramolecular proton transfer (ESIPT) occurs in molecules containing
proton donors and acceptors that allow the exchange of a hydrogen atom upon excitation.
This process is often associated with the formation of isomers, such as tautomeric (keto-
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enol) equilibrium (Scheme 2) [114,115], similar to an acid-base reaction. The ESIPT process
primarily occurs in systems where the proton donor is usually a hydroxyl and the acceptor
group is carbonyl or nitrogen. However, donor and acceptor groups are nitrogen-based,
and other similar configurations have also been described [116–119].
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Scheme 2. Generic representation of the ESIPT process and its prevention by basic and metallic
species in case of analyte detection.

An analyte can interfere with the ESIPT process (Scheme 2). A basic analyte, for in-
stance, can remove this acid proton (3), or a cation can coordinate to this site (4), preventing,
in both cases, the ESIPT from occurring. Once this phenomenon is prevented, the optical
properties of the sensor will be modified, and consequently, the presence of the analyte can
be confirmed.

The interruption of ESIPT by an analyte as a strategy in developing optical detection
devices has been widely used. Therefore, different molecular architectures have been
designed to contain proton donor groups close to proton acceptor groups. This is an
efficient strategy, as it enables the detection of both basic and acidic analytes. This review
describes some chemical reactions that have made this molecular architecture possible in
developing MLGs.

4.7. Aggregation

Aggregation-caused quenching (ACQ) occurs when strong intermolecular interactions
in an aggregated state result in fluorescence quenching [120]. Conversely, aggregation-
induced emission (AIE) is a phenomenon where weakly fluorescent chromophores emit
light upon aggregation. These effects may be attributed to phenomena that reduce the
non-radiative relaxation pathways, such as intramolecular rotation restriction (RIR) and
J-aggregate formation (JAF), which are influenced by mechanical and thermal factors [121].

5. Architecture of Optical Sensor Devices

The typical molecular architecture of an optical sensor consists of at least one detector
unit and at least one signaling unit, although these distinctions are blurred in some cases.
The detector unit is designed to interact specifically with an analyte, while the signaling
unit consists of a molecular structure that causes an optical response upon interacting the
receptor unit with the analyte (Scheme 1a). Generally, this response is associated with
changes in the electronic density of the optical sensor. For example, an interruption of
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electronic flow between a donor unit and a receptor unit due to interaction with an analyte
can cause a change in color or fluorescence, allowing analyte recognition.

The design of an optical sensor relies on the combination of detector and signaling
units. With numerous groups already discovered or developed, there are countless possibil-
ities for combinations. In addition, there are cases of planning more than one signaling unit
in the same device, so that after detection, more than one response is given—for example, a
change in color and electrochemical potential [17]. In other cases, more than one molecular
or supramolecular group receptor can be installed in the signaling unit to obtain a device
capable of detecting different chemical species [122–126]. This last scenario is a classic
strategy for planning optical and multi-analyte sensors.

The diversity in optical responses and the richness of structural possibilities demon-
strate that the architecture of optical sensors offers a wide array of opportunities. In this
context, organic synthesis is vital in designing sensor molecules.

The following topics illustrate typical examples of signaling and detector units with
different molecular arrangements involving electron density donor and acceptor units.
Examining each component of the structure is crucial in designing an optical sensor. The
process entails connecting one or more receptors (molecular or supramolecular) to a signal-
ing unit, either with a spacer or directly.

5.1. Choosing the Signaling Unit

The structural features of a molecule influence the dissipation of absorbed energy
in the form of fluorescence. For instance, rigid and flat molecules bearing conjugated
systems, such as aromatic groups, are inclined to exhibit fluorescent properties [127,128].
The planar structure of a molecule enhances the interaction and conjugation within the π

electron system, resulting in absorption through π → π* transitions (between antibonding
π orbital and bonding π orbital). Absorption may also occur less frequently through n → π*
transitions (between antibonding π orbital and non-bonding orbital) [120].

In this regard, aromatic hydrocarbons and heterocycles have been intensely inves-
tigated due to their potential application as fluorescent and colorimetric signaling units
(Figure 1). For instance, polydiacetylenes have been elaborated as supramolecular scaffolds
in analyte sensing [129,130]. Classical condensation reactions have been employed in
synthesizing fluorescent heterocycles. For instance, highly conjugated imidazoles (5) can
be synthesized through a multicomponent reaction between an aldehyde, an ammonium
salt, and 1,2-dicarbonyl compounds [131–137]. Furthermore, this last substrate can also
be used for the preparation of fluorescent phenazine (6), quinoxaline (7), and oxazoles
(8) [138,139]. Other examples of fluorescent heterocycles obtained in diverse synthetic
strategies include quinoline (9) [140–144], pyrazine (10) [145,146], acridine (11) [147–152],
BODIPy (12) [153–158], benzothiadiazoles (BTDs) (13) [159–166], coumarin (14) [167–170],
fluorescein (15) [171–178], rhodamine (16) [179–183], auramine O (17) [184–186], proflavine
(18), phenoxazine (19), xanthene (20) [187,188]. Examples of aromatic hydrocarbons include
naphthalene (21) [189–193], anthracene (22) [194–198], and pyrene (23) [199–202].

The scientific community is making intensive efforts to continuously develop new
classes of chromophores and fluorophores using numerous synthetic methodologies [203].
For instance, more recently, metal-catalyzed C−H activation [204], particularly through
annulation, has emerged as a powerful synthetic strategy in elaborating fluorescent building
blocks [205,206]. This approach is especially noteworthy for the formation of chromophoric
and fluorophoric groups, as metal-catalyzed C−H activation represents an important
innovation capable of directly connecting aryl halides to (hetero)arenes by metal-promoted
activation of a C−H bond [207–209].
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Figure 1. Examples of chromophores/fluorophores, which are usually used as building blocks for
constructing optical devices.

5.2. Choosing the Receptor Unit

Regarding receptors, there are two approaches to constructing devices capable of iden-
tifying analytes, according to chemosensors and chemodosimeters definitions: association
and chemical bonding.

Figure 2 shows some types of receptors commonly employed in the preparation of
molecular/ionic recognition devices. Crown ethers (24) [210,211] can vary in their het-
eroatom composition (25), thus influencing the selectivity for a particular analyte. More
intricate macrocycles, like cyclodextrins (26) [212–218], calixarenes (27) [219–223], and
calix[4]pyrroles (28) [223–226], can complex organic molecules, ions, and halides. In ad-
dition to macrocycles, simple organic molecules can be structurally and electronically
modified to build receptors that respond to chemical, electrical, or optical inputs. Ligands
containing pyridines or bipyridines (29) are known for their ability to interact with tran-
sition metal cations. Nitrogen-based receptors, such as ureas (30), amino acids (Cys; 31),
amines, and amides (32), are also extensively researched.
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In all these instances, the hard–soft acid-base (HSAB) theory is frequently employed
to elucidate the stability of the formed adducts. However, other factors may also be related,
such as cavity size, ion charge, and solvent effects: polarity, polarizability, acidity, and
temperature [227].

The recognition of analytes based on chemical reactions often considers the type of
functional group on the receptor device. Mohr et al. compiled a list of functional groups
and neutral analytes that could be detected by forming linkages (Scheme 3) [75,228].
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5.3. Choosing the Assembly of the Device

To assemble an optical sensor, molecular devices can be engineered with various donor
and acceptor group arrangements. For a molecule to operate as a sensor, it must efficiently
transfer electrons and respond appropriately to the presence of the analyte. Therefore, some
arrangements of donor and acceptor groups may include (a) D–A (donor–acceptor), (b) D–
A–D (donor–acceptor–donor), and (c) A–D–A (acceptor–donor–acceptor) configurations,
although other combinations are also possible. Figure 3 summarizes the order used to
construct each arrangement, considering one, two, or more donor groups, depending
mainly on the application to which the final molecule will be given.
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D–A or D–pi–A: This configuration comprises the most straightforward system and
the most predictable optical response. In this case, there is a transfer of charge from the
donor region to the acceptor region when the molecule interacts with a specific analyte or
even its surrounding environment. A conjugate spacer may separate donor and acceptor
groups. It is commonly related to the PET and ICT mechanisms [229–231].

D–A–D: Combinational logic gates involving multiple logic operations can be conve-
niently prepared through more complex arrangements, such as D–A–D [232,233].

A–D–A: This configuration refers to opposite structures to D–A–D systems. In A–D–A
arrangements, electron acceptor groups are introduced into the donor structure. Designing
MLGs with an acceptor–donor–acceptor architecture also offers an intriguing platform for
preparing optical devices [234–236].

5.4. Integrating the Molecular Architecture

So far, we have demonstrated that an optical detection device is built by signaling
and detector units articulated to present structural combinations with donor and acceptor
regions. The optical response of this device is related to changes in molecular electronic
density, involving processes such as PET, ICT, FRET, CHEF, MLCT, ESIPT, and aggregation.
In this context, the molecular structure of an optical detection device is elaborated through
the observation and understanding of these critical aspects. In implementing this structural
planning, numerous synthetic tools provided by organic chemistry have been fundamental
in elaborating the architecture of such devices. These tools serve various purposes in
sensor design. For instance, joining signaling units with detectors, associating donor and
acceptor units, pre-functionalize the molecule for sequential modification, changing optical
properties by altering molecular conjugation, and changing the sensors’ physical–chemical
properties (increasing solubility, stability, and restricting conformation, among others).

Although there are numerous synthetic methods for building these devices, we can
mention classic methodologies, such as imine formation, Knoevenagel reaction, nucle-
ophilic aromatic and aliphatic substitutions, and functionalization of arenes. Additionally,
other successful methodologies that have been explored include multicomponent (MCRs),
pericyclic, and coupling reactions.

Multicomponent reactions (MCRs) offer an efficient and versatile approach to synthe-
sizing complex molecules, making them essential tools in modern organic synthesis [237].
In these reactions, three or more commercially available or readily accessible starting ma-
terials react to form a product, involving the contribution of essentially all or most of the
atoms to the newly formed product, using a one-pot approach [238]. MCRs have been
successfully employed in constructing fluorescent building blocks suitable for application
as signaling units in an optical detection device [239–242].

Heterocycles and aromatic rings are frequently synthesized or modified through
cycloaddition reactions involving breaking pi bonds and forming sigma bonds. Var-
ious cycloaddition methods are employed to construct both essential units (signaling
unit or receptor), and they can be used to connect these units (spacers). The copper-
catalyzed azide-alkyne cycloaddition (CuAAC), a 1,3-dipolar cycloaddition reaction, to
afford 1,4-disubstituted 1,2,3-triazoles is an important synthetic methodology in construct-
ing optical detection devices (Scheme 4a). The triazole unit can perform three functions:
(a) it serves as a connector for different molecular groups (donors, acceptors, receptors);
(b) due to its nature as an aromatic heterocycle, the triazole ring conjugates with aromatic
systems of the fluorophores/chromophore, modifying the optical properties of the de-
vice; (c) the nitrogen atom of the triazole, in association with other molecular groups, can
function as a detector unit for metallic species (Scheme 4b) [243–247].

Halogenation reactions, characterized by substituting hydrogen atoms with halogens,
such as chlorine, bromine, and iodine, hold considerable importance in synthetic processes.
They serve as precursors for more intricate transformations, including coupling reactions,
and are also utilized in simple substitution and elimination reactions.
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The advent of coupling reactions, predominantly mediated by palladium, opened up
an avenue of synthetic possibilities in the development of optical detection devices. Among
these methodologies, noteworthy examples include Suzuki, Sonogashira, Heck, Stille, and
Buchwald–Hartwig reactions (Scheme 4c). Using these synthetic methodologies in the
construction of optical detection devices yields two fundamental effects: first, the extension
of the molecular pi conjugation modulating optical properties, and second, the junction of
units (donor, acceptor, fluorophore, chromophore, signaling, detector unit). The Buchwald–
Hartwig reaction enables the formation of C–N bonds, and the NH group offers the
possibility to unite two groups, afford a hydrogen atom that can interact with basic analytes,
and be involved in ESIPT processes. Furthermore, the lone nitrogen electron pair can
interact with cations and acid detector units. Conversely, Heck and Sonogashira reactions
enable the formation of C–C bonds. In these reactions, the alkene and alkyne groups,
respectively, join two molecular groups, contributing to the extension of pi conjugation.

6. Strategies for Building Optical Devices Based on Interaction Type
6.1. Acid-Base Reactions or Hydrogen Bonding (H-Bonds) Interactions

The principles related to acid-base reactions can be effectively applied in the develop-
ment of optical devices. In this strategy, H-bonds-based chemosensors contain hydrogen
donor groups, such as OH, NH, and SH, within their molecular structure. These groups
can interact with a basic analyte and trigger an acid-base reaction, changing the behavior
of the signaling unit and allowing the sensor to detect and quantify the analyte [248].

Ghosh et al. developed the chemosensor 53 (Scheme 5a), an azine-based molecule pre-
pared from the coupling of 2-hydroxy-1-naphthaldehyde (51) using hydrazine (N2H4·H2O;
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52), designed for the recognition of acetate and Al3+ [249]. The interaction with Al3+ de-
pends on inhibition of the ESIPT phenomenon, isomerization of the CH–N bond, and
enhancement of fluorescence resulting from metal complexation. On the other hand, the
detection of acetate anion is attributed to H-bond formation with hydroxyl hydrogens.
Scheme 5b illustrates the H-bonds mechanism between the chemosensor and acetate anion,
and Scheme 5c shows the proposed Al3+ sensing mechanism.
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6.2. Displacement Assays

An alternative approach that has been used involves planning direct and indirect
detection assays, working with a unique system containing molecular groups compet-
ing for a single receptor. In a simplified manner, a chromogenic or fluorogenic indicator
(sensor–indicator) binds reversibly to a receptor, forming a receptor–indicator complex.
This complex alters the optical properties of the system, either the change in the solution’s
color or the intensity of fluorescence emission. The indicator is displaced upon adding a
competitive analyte, and the receptor and the new analyte form a new complex. This new
complex has a stability constant of greater magnitude than the previous complex. Conse-
quently, the free indicator in solution will again present the optical properties observed
before adding the receptor to the medium [250].

For instance, Mawai et al. reported a dual-response OFF–ON–OFF system (61) pre-
pared by condensing 2,6-diformyl-4-methylphenol (59) and 2-(1-phenylhydrazinyl)pyridine
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(60) through refluxing in methanol (Scheme 6a) [251]. The weakly emissive compound
61 could selectively recognize zinc ions via a fluorescent ON response in a DMSO/water
mixture (1:9, vol/vol). Subsequent investigations into the fluorescence emission behavior
of the zinc complex (62) revealed significant suppression of emission upon the addition of
pyrophosphate (PPi; 64) (Scheme 6b). Furthermore, a bathochromic shift was observed in
the emission band, shifting from λmax = 521 nm to 526 nm.
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6.3. Chromo- and Fluororeagents

In the chromo- and fluororeagent approaches, chemosensors establish a reversible
covalent bond with the analyte, inducing significant changes in absorbance or fluorescence.
The reaction between the chromoreagent and analyte builds the covalent bond, thereby
altering the electronic delocalization of the chromophore and resulting in observable color
changes. The reaction between an analyte and a fluorophore group, connected via a spacer
with the receptor unit, frequently results in enhanced (or newly observed) fluorescence
intensity by blocking the PET phenomenon [75,228]. Such chemosensor allows the optical
detection of electrically neutral analytes like alcohols, amines, thiols, and aldehydes.

For instance, Nedeljko et al. devised an optical detection system for continuous
determination of biogenic amines, such as isopentylamine (67), n-propylamine (68), and pu-
trescine (69), based on a layer of a sensitive dye in its trifluoroacetyl form (66) immobilized
in SiO2 (Scheme 7) [252]. The commercial chromoreagent ETH4001 (66) was immobilized in
sol–gel layers prepared by different combinations of hydrophilic precursors of tetraethoxysi-
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lane and hydrophobic sol–gel. The response to primary amines was achieved through
their reversible reaction with the chromoreagent. This reaction forms a covalent bond
with the dye, transforming it into the hemiaminal form (70), whereby the color changes
from red to yellow. According to the authors, the decrease in absorbance at 500 nm (red)
can be attributed to the presence of 66. Conversely, the increase in absorbance at 420 nm
(yellow) results from the formation of several products: a hemiacetal form (resulting from
the interaction between TFA and alcohols), a diol form (resulting from the interaction
between TFA and water), and a hemiaminal form (resulting from the interaction between
TFA and amines).
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6.4. Chemosensor

Chemosensors are optical devices based on reversible interaction with the analyte [106].
For example, in some of these devices, a basic analyte can interact with proton donor
groups (NH, OH, SH) via hydrogen bonding [248,253]. These interactions, regardless of
the complete transfer of hydrogen ions, can induce changes in the color or fluorescence
emission of the chemosensor, thereby enabling the detection and quantification of the
analyte [254,255].

One example of a chemosensor was described by Bhaumik et al. via synthesis
of the phenanthro[9,10-d]imidazole (73) for the detection of fluoride, Fe2+, and Zn2+

(Scheme 8a) [256]. Compound 37 behaves as a solvatochromic chemosensor with dif-
ferent emission colors ranging from violet, blue, and green to yellow, which suggests that
73 could be used as a solvent polarity indicator. The colorless 73 solution (λabs 341–371 nm)
becomes bright yellow (λabs 413 and 279 nm) upon adding F− or HO− (Scheme 8b; 74).
Furthermore, F− induced a fluorescence quenching and a redshift in emission maximum
from 475 to 485 nm. NMR investigation suggested that this phenomenon might be as-
sociated with the interaction or removal of the proton from NH groups. Adding Fe2+

modified the colorless solution of compound 73 into a deep violet solution (75), attributed
to a strong MLCT band at 575 nm (Scheme 8c). The authors described that no color change
was observed for Fe3+, indicating that this cation did not interfere with the detection of Fe2+.
The progressive addition of Zn(ClO4)2 reduced the band’s intensity centered at 370 nm,
accompanied by a simultaneous increase in absorbance at 395 and 284 nm. Both Fe2+ and
Zn2+ ultimately led to the complete quenching of emission at 475 nm. However, Zn2+

also induced a distinct linear emission enhancement at 600 nm. The synthetic strategy
employed by the authors to obtain 73 is particularly interesting because the signaling
unit (imidazole) is obtained by joining the detector unit (pyridine groups). This approach
has been widely used in developing phenanthro[9,10-d]imidazole-based fluorescent and
colorimetric sensors [124]. Generally, a substrate containing a formyl group is also de-
signed to hold a detector unit, enabling the construction of an optical detection device in a
single step.
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Designing molecules with energy gaps according to the substituents also presents
opportunities for constructing chemosensors. For instance, Kim et al. prepared a series of
pyrene-based molecules, 1,6-bis[(N,N-p-(R)-diphenylamine)phenyl]pyrene (82–86), contain-
ing N,N-bis(p-(R)-phenyl)aniline as an electron donor and pyrene as an electron acceptor
by using the Suzuki cross-coupling reaction (Scheme 9) [257]. As previously discussed
(Scheme 4), the Suzuki-coupling reaction is an essential synthetic tool in the general design
of optical devices. In this instance, the authors devised a highly conjugated molecular
system based on this coupling reaction. Compounds 82–86 were used as chemosensors to
detect nitroaromatic explosives by controlling their energy gap decreasing the fluorescence
due to the FRET mechanism. Sensor 82 exhibited the highest Stern–Volmer constant of all
the compounds tested, measured to be 3171 M−1.
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6.5. Chemodosimeters

A chemodosimeter is an optical device that does not consider intermolecular interac-
tions as the driving forces of the analyte detection system. Instead, it involves the formation
of irreversible covalent bonds between the analyte and the detection system [258,259].

An example of a chemodosimeter was described by Souto et al. via a new azo-
silylated compound (91) derived from naphthol (88) for the selective detection of CN–

in acetonitrile/water and an aqueous micellar system (Scheme 10a) [260]. To synthesize
91, 4-nitroaniline (87) was first diazotized and then condensed with 1-naphthol (88). The
chemodosimeter 91 was obtained through nucleophilic substitution to introduce the tri-
isopropylsilane group. In the sensing process, the CN– anion breaks the Si–O bond in
91, releasing the dye 92 and inducing a color change in the solution from yellow to blue
(Scheme 10b).

Organics 2024, 5, FOR PEER REVIEW 17 
 

 

A chemodosimeter is an optical device that does not consider intermolecular interac-
tions as the driving forces of the analyte detection system. Instead, it involves the for-
mation of irreversible covalent bonds between the analyte and the detection system 
[258,259]. 

An example of a chemodosimeter was described by Souto et al. via a new azo-si-
lylated compound (91) derived from naphthol (88) for the selective detection of CN– in 
acetonitrile/water and an aqueous micellar system (Scheme 10a) [260]. To synthesize 91, 
4-nitroaniline (87) was first diazotized and then condensed with 1-naphthol (88). The che-
modosimeter 91 was obtained through nucleophilic substitution to introduce the triiso-
propylsilane group. In the sensing process, the CN– anion breaks the Si–O bond in 91, 
releasing the dye 92 and inducing a color change in the solution from yellow to blue 
(Scheme 10b). 

 
Scheme 10. (a) Synthetic route for preparation of compounds 89 and 91. (b) Reaction of compound 
91 with CN–, generating the phenolate 92, proposed by Souto et al. [260]. 

The development of sensors containing the Si–O bond is inspired by the high affinity 
of silicon for species such as CN– and F–, which leads to the breaking of the Si–O bond 
[261], as exemplified here by Souto et al. Thus, installing groups such as TIPS, tetrame-
thylsilane (TMS), dimethylphenylsilane, and tert-butyldimethylsilane in the molecular ar-
chitecture is a direct strategy to obtain devices capable of detecting chemical species such 
as CN– and F– [253,262–266]. 

Song et al. developed a fluorescence turn-on chemodosimeter benzimidazole-based 
(98) to detect cysteine (31). In their device, the benzimidazole (96) is linked to an acrylate 
group (97) and easily synthesized in two steps (Scheme 11a) [267]. The acrylate functional 
group controls the π-electron system and initiates the fluorescence turn-on effect-based 
ICT. However, when the -SH group in cysteine undergoes a Michael addition to the acry-
late of 98, followed by the elimination of a seven-membered ring (100), it disrupts the ICT 

Scheme 10. (a) Synthetic route for preparation of compounds 89 and 91. (b) Reaction of compound
91 with CN–, generating the phenolate 92, proposed by Souto et al. [260].

The development of sensors containing the Si–O bond is inspired by the high affinity
of silicon for species such as CN– and F–, which leads to the breaking of the Si–O bond [261],
as exemplified here by Souto et al. Thus, installing groups such as TIPS, tetramethylsilane
(TMS), dimethylphenylsilane, and tert-butyldimethylsilane in the molecular architecture is
a direct strategy to obtain devices capable of detecting chemical species such as CN– and
F– [253,262–266].

Song et al. developed a fluorescence turn-on chemodosimeter benzimidazole-based
(98) to detect cysteine (31). In their device, the benzimidazole (96) is linked to an acrylate
group (97) and easily synthesized in two steps (Scheme 11a) [267]. The acrylate functional
group controls the π-electron system and initiates the fluorescence turn-on effect-based ICT.
However, when the -SH group in cysteine undergoes a Michael addition to the acrylate of
98, followed by the elimination of a seven-membered ring (100), it disrupts the ICT process,
leading to the fluorescence turn-on effect from signaling released moiety (101, Scheme 11b).
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7. Logical-Based Devices: Molecular Logic Gates (MLGs)

Thirty years ago, A. P. de Silva published the seminal work that revolutionized the
field of supramolecular analytical chemistry [11]. By leveraging information science as an
analytical tool, he introduced the molecular logic gates (MLGs) concept. These molecular
devices could operate following binary logic and generate potential applications with
significant promise in various fields.

The combinations of responses caused by perturbations of the pre-associated system
can potentially be interpreted in terms of logical operations. In electronics, a logic gate
(LG) corresponds to a model that performs a logic operation on one or more logic inputs
and produces a logic output [268]. When this concept is transferred to supramolecular
chemistry, the optical response of a perturbation (input) can be interpreted as an output,
particularly in scenarios where more than one receptor is present in a supramolecular
structure, enabling the recognition of more than one chemical species [269–272].

The researchers who continued the work of George Boole developed the control of
information flow by formulating a language whose variables can assume one of two pos-
sible values, which can be denoted by [F, V] (false or true), [H, L] (high and low; high
and low) or [0, 1]. This model performs a logic operation on one or more logic inputs
and produces one or more logic outputs [273]. The combination of two inputs results in
responses that characterize the three fundamental types of logic gates: NOT, AND, and OR.
These gates can be combined to obtain more complex operations (XOR, XNOR, INH, NOR,
etc.), whose logic is illustrated in Figure 4 through its truth tables and respective diagrams.
All processors and digital equipment on the market are operated by systems comprising
the combinations of those three basic LGs according to well-defined rules, receiving or
generating signals compatible with the binary language [271,274,275].
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Figure 4. Symbolic representation of logic gates and their corresponding truth tables built from
values of inputs and outputs.

In 1993, Prasanna de Silva et al. described an anthracene core attached to a crown ether
(Figure 5) [11]. Although anthracenyl may exhibit fluorescent properties, compound 102
displayed a weakened fluorescence emission due to the PET process. Therefore, without
additives (inputs “0”), 102 exhibited weak emission (output “0”). Upon adding acid (input1
“1”) to 102, the protonation of the tertiary amine occurred; yet, this did not prevent the
PET process, resulting in a low fluorescence response (output “0”). Another operation is
adding Na+ (input2 “1”), in the absence of acid (input1 “0”), allowing the crown ether to
recognize this cation. However, this interaction also failed to prevent the occurrence of
PET, and likewise, a low fluorescence response (output “0”) was observed. Remarkably, the
simultaneous addition of acid and Na+ cation (input1 “1” and input2 “1”) led to a six-fold
increase in fluorescence intensity (output “1”). In this case, the two stimulus signals (H+

and Na+) were necessary for a response with a significant increase in fluorescence (output).
Therefore, this MLG could be classified as type AND (Figure 5).
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8. The Architecture of MLGs Based on Truth Tables’ Interpretation

So far, we have shown the importance of various analytes, provided examples of opti-
cal detection devices, their architecture involving signaling and detector units, elucidated
the general arrangement comprising units serving as both electron density donors (D) and
electron density acceptors (A), and expounded upon the fundamental concepts of MLGs.
These concepts will be used to discuss different MLGs that can be constructed from a binary
analysis of the responses generated as detection devices.

Similarly to a general optical detection device, the development of an MLG entails
the integration of electron-donating and electron-accepting groups via a signaling unit
connected to one or more analyte receptor groups. This architecture allows for interpreting
chemical signals in terms of binary logic. A traditional chemical sensor can be transformed
into a sophisticated logic gate capable of processing and responding to specific chemical
inputs. For instance, we recently described several examples of MLGs that can be proposed
from traditional sensors exploiting aspects of reversibility [276].

Most MLGs involve supramolecular systems in solution to respond to different stimuli,
including chemical, light, and electrical inputs. Physical–chemical processes, such as the
interaction of a cation with a chelating site, protonation–deprotonation of an acid-base
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site, oxidation reduction, photochemical event, formation or breaking of chemical bonds,
etc., can give rise to a spectroscopic response, such as changes in fluorescence emission or
absorption in the UV–Vis region [268,277–283]. Thus, based on the concepts of conventional
microelectronics, the stimuli transferred to a molecule are understood as inputs, and the
changes in the emission/absorption of that medium as outputs. We presented below some
commonly used logic functions in constructing optical detection devices.

8.1. “YES” Logic

YES logic is one of the most straightforward logic gates that require the output to
follow the input, and most cases can be simplified as an “OFF–ON” switch [283–293].
Boolean YES logic can be described if the output signal increases with increasing stimulus,
i.e., when an input is present, the output signal is increased.

A simple “OFF–ON” chemosensor (109) able to discriminate glutathione (GSH) from
cysteine (Cys)/homocysteine (Hcy) was introduced by Li et al. (Scheme 12) [290]. First, the
authors started with a formylation reaction of 3-(N,N-diethylamine)phenol (103) to afford
104, followed by a reaction with ethyl acetoacetate (105) to generate 106, formylated again
by the Vilsmeier–Haack protocol. Finally, 107 reacted with malononitrile (108), producing
109 (Scheme 12a). The authors identified two potential reaction sites for the chemosensor:
Site 1, the chlorine atom at the 3-position of the coumarin moiety as a leaving group, and
Site 2, the α,β-unsaturated malononitrile as a Michael acceptor (Scheme 12b). The sensor
109 could discriminate between GSH and Cys/Hcy through fluorescence response. The
proposed detection mechanism involves thiol-halogen substitution, where the chlorine
atom is replaced by thiolates of the three evaluated thiols, leading to intramolecular rear-
rangements for Cys and Hcy. Then, an intramolecular Michael addition reaction between
the α,β-unsaturated malonitrile and the thiol group interrupts the π conjugation system.
GSH only leads to substitution due to its tripeptide structure, making it difficult for the
amino group to attack. The structural modifications increased the fluorescence emission
intensity up to 505 nm. The mechanism was investigated using fluorescence, UV–Vis, NMR,
and ESI-MS techniques. In this case, an increased fluorescence intensity is only obtained in
the presence of GSH. In other words, 109 generates an output “1” exclusively when the
GSH input matches “1”. Therefore, it can be described as a YES MLG.

8.2. “NOT” Logic

NOT logic causes the output to behave opposite to the input. Unlike YES gates, NOT
logic devices respond to an input in an “ON–OFF” manner [280,281,291–293]. If the output
signal decreases in the presence of an input, the NOT logic is the result.

Noushija et al. proposed the optical sensor 115 based on quinizarin dye for de-
tecting acetate anions through the anion-induced deprotonation of phenolic-OH groups
(Scheme 13) [294]. The fluorescence quenching of 115 can be attributed to the PET pro-
cess from the oxygen atom to the π* orbitals of anthraquinone. The authors applied the
Stern–Volmer equation to analyze the fluorescence titration curve, which yielded a linear
graph. Based on this analysis, the Stern–Volmer extinction constant was 2.3 × 103 M−1.
The turn-OFF behavior can be interpreted as a NOT gate.

In general, traditional sensors that exhibit optical signal intensification (ON, output
“1”) or suppression (OFF, output “0”) responses can be classified, respectively, as YES and
NOT MLGs. However, this is a very generic classification because there are no combinations
of inputs in these cases, as these are generic systems. Hence, in numerous instances, as
those described by Li et al. [290] and Noushija et al. [294], the sensors are not explicitly
characterized as MLGs. Even so, these two classes of MLGs are essential to be discussed, as
they are used to compose more complex systems.
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8.3. “AND” Logic

AND logic produces an output “1” only when both inputs, designated as input1 and
input2, correspond to “1” concurrently. In other words, it occurs when two or more inputs
are present simultaneously and produce a single output value only obtained under these
conditions. Since the first molecular AND logic gate was created in 1993 [11], the field
of molecular-logic-based computation based on this particular logic gate has garnered
significant attention. Recently, Gauci and Magri designed compounds based on crown-
ether-fused 4-piperazino-N-aryl-1,8-naphthalimides (121 and 122) and investigated the
effect of the polarity of the solvent on the reconfiguration of the identified logics, between
the TRANSFER logic and the AND logic (Scheme 14) [295]. The 4-chloro-N-aryl-1,8-
naphthalimides (117) reacted with piperazine (118) in N,N-dimethylformamide (DMF) to
afford compounds 119–122. The molecular structure exhibits dual interaction sites: the
crown ether, engaging to binding with Na+ (for compound 121) or Ba2+ (for compound
122), and a piperazine unit capable of undergoing protonation. The naphthalimide unit
functions as a signaling moiety. The authors point out that the molecules correspond to
two-input TRANSFER logic gates, activated by Na+ or H+ (121), triggered by Ba2+ (122),
in water, and as logic gates of the two-input AND type, controlled by Na+ or H+ (121),
activated by Ba2+ (122), when studied in methanol (Scheme 14b,c).
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8.4. “NAND” Logic

NAND can be considered a combination of the NOT and AND gates. Precisely, the
output of the AND gate is linked to the input of the NOT gate, which inverts the output of
the AND gate [296]. Unlike the AND gate, the NAND gate does not generate an increased
output signal if two analytes are present simultaneously; instead, it does so in all other
conceivable situations: the absence of both inputs, the presence of input1, or the presence
of input2 individually. Fang et al. synthesized examples of NAND MLGs (128 and 129)
through the coupling of tetrathiafulvalene (127) and 5-methoxy-2-pyridylthiazoles (123–124;
Scheme 15) [297]. Palladium-catalyzed coupling reactions offer a reliable and efficient ap-
proach to constructing carbon–carbon bonds, which is particularly useful when considering
the requirements for building a fluorophore. Halogenated groups are important starting
materials for such reactions. Using Pd(PPh3)4 as the catalyst, the authors achieved a 58%
yield of both 128 and 129 by performing a Stille coupling reaction that joined 5-methoxy-2-
pyridylthiazole (125–126) (a fluorophore) with Bu3Sn substituted tetrathiafulvalene (127).
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Due to the unique reversible and selective oxidation property of tetrathiafulvalene, the
fluorescent emission of 128–129 can be switched ON and OFF based on the oxidation
states of the tetrathiafulvalene unit. Therefore, the researchers noted that adding Fe2+ or
NOBF4 individually did not affect the emission, resulting in a high fluorescence output
“1” from the gate. However, the presence of both Fe2+ and NOBF4 resulted in fluorescence
quenching. This phenomenon was attributed to the sequential quenching by Fe2+, induced
by the oxidation of Fe2+ by NOBF4. This output pattern corresponds to the performance of
an electronic NAND gate (Scheme 15b,c).
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8.5. “INHIBIT” Logic

The INHIBIT logic gate blocks or inhibits the output when a signal is present at a
specific input, regardless of the other inputs. This behavior corresponds to AND gates with
one of the inputs inverted through a NOT function, essentially acting as a veto power over
an input [298].

This type of logic is recognized in detection systems based on displacement assays.
Introducing a competitive analyte disrupts the binding/interaction between the chemosen-
sor and the initial analyte, restoring the optical properties of the primary system [276]. In a
simplified way, the presence of a second input inhibits the response of the first input.

A traditional approach for designing sensors for Hg2+ detection involves using rho-
damine and naphthalimide bases via ring-opening reactions. These sensors can undergo
rhodamine lactam ring opening upon exposure to Hg2+ ions, forming mercury–ion com-
plexes [299]. For instance, Bai et al. designed a rhodamine-6G-based MLG (135) for
colorimetric and fluorimetric recognition of Hg2+ and I− (Scheme 16a) [300].

The colorless and non-fluorescent solution of MLG 135 submitted to input1 of Hg2+

resulted in a yellow solution via a naked-eye perception, with fluorescence emission at
560 nm. This phenomenon was attributed to the spirolactam ring-opening amide induced
by Hg2+ (Scheme 16b), investigated via FT-IR and HRMS spectra. The sequential input2
of I− to MLG 135 solution led to fluorescence quenching, indicating the recovery of the
spirolactam form.

The authors have described that the reversibility of this process could be repeated
up to eight times without significant loss in fluorescence efficiency. In this sense, input1
(Hg2+) enhanced fluorescence (YES operation), while the interaction of input2 (I−) with 135
resulted in fluorescence quenching (135), implementing the required NOT gate. MLG 135
operates parallel with the fluorescence output signals, which implements the necessary
AND function. Therefore, when evaluating the fluorescence at 560 nm after introducing
Hg2+, I− and an equimolar mixture of Hg2+ and I−, 135 can be characterized as an INHIBIT
logic gate (Scheme 16c,d). In other words, I− inhibits the Hg2+ input.
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Scheme 16. (a) MLG rhodamine-6G-based (135) described by Bai et al. [300]; (b) Sensing mechanism 
for detection of Hg2+ and I−; (c) Truth table and (d) the corresponding diagram. 
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for detection of Hg2+ and I−; (c) Truth table and (d) the corresponding diagram.

Considering sensors designed for the primary detection of Hg2+, complexing agents
such as sulfides, EDTA, and other chelating agents can effectively decomplex the Hg2+ ions
and reinstate the system’s original properties [301,302].

For instance, Kumar et al. designed the MLG 140, based on 2-amino pyrazine and
phthalaldehyde, via a condensation reaction (Scheme 17a) [303]. Upon addition of Hg2+

(input1 “1”), the initially non-fluorescent (output “0”) 140 resulted in a turn-on response,
displaying intense emission at 410 nm (141; output “1”). This phenomenon was attributed to
the binding of 140 with Hg2+ interrupting the PET process, thereby inducing the chelation-
enhanced fluorescence (CHEF) effect. Subsequent addition of EDTA (input2 “1”) to 141
solution led to fluorescence quenching (output “0”) due to the formation of the EDTA–Hg2+

complex and the release of MLG 140 (Scheme 17b). The sequential increment of Hg2+

recovered the fluorescence emission, indicating the reversibility of the MLG 140. Five more
alternative cycles of additions of Hg2+ and EDTA were performed without affecting the
process. The suggested sensing mechanism involves the coordinating Hg2+ with carbonyl
groups. The CHEF effect increases the rigidity of the sensor, interrupting the PET process
and leading to fluorescence emission. The reversibility of 140 induced by EDTA allowed the
description of 98 as an INHIBIT molecular logic gate. Considering the input1 (Hg2+) and
input2 (EDTA) and emission at 410 nm as output, an INHIBIT logic gate may be established.
The truth table and the MLG 140 are described in Schemes 17c and 17d, respectively.
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INHIBIT gates can also be devised by introducing a suppressor to the system. In
Scheme 18a, compound 145 features a dioxobenzene group (ether crown), an electron
density donor via internal charge transfer (ICT), and the group bis(2-pyridin)pyridazine,
an electron acceptor [304]. Logical operations can be constructed by adding K+ and Zn2+

(Scheme 18b) cations as inputs and the fluorescence emission as an output (response). These
operation outcomes are summarized in the truth table in Scheme 18c.
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In this example, in the absence of cations (input “0”), MLG 145 exhibits emission at
396 nm (output396 “1”). However, when Zn2+ cation (input1 “1”) binds to the pyridinyl
groups, the ICT intensifies, causing the emission to shift to 460 nm (output460 “1”). In the
absence of the Zn2+ cation (input1 “0”), K+ (input2 “1”) coordinates to the crown ether,
leading to a reduction in ICT due to the diminished electron-donor effect in the ether
crown. This coordination results in emission maintenance at 396 nm (output396 “1”). The
simultaneous addition of Zn2+ (input1 “1”) and K+ (input2 “1”) preserves the emission
at 396 nm (output396 “1”). Conversely, the opposite operation (sequence) maintains the
fluorescence emission unchanged at 460 nm.

As previously discussed, this MLG is classified as the INHIBIT type, an integration
between the NOT and AND operations. In this case, the NOT operation is applied only
to the second input (input2–K+ addition), which reduces the effect of the first input (Zn2+

addition input). In other words, adding Zn2+ (input1) shifts the MLG emission from 396 nm
to 460 nm, whereas adding K+ (input2) reduces this change, reverting to the emission value
at 396 nm. Furthermore, 145 can be understood as an OFF–ON–OFF molecular device
triggered by Zn2+ and K+.

A remarkable example was introduced by Guo et al., wherein the authors explored
an asymmetrical Receptor1–Chromophore–Receptor2 bis-condensed dicyanomethylene-
4H-pyran (DCM)-type derivative as an MLG (151) [305]. Compound 151 was synthe-
sized by the condensation of 4-dicyanomethylene-2,6-dimethyl-4H-pyran (147) with 4-
hydroxybenzaldehyde (148) and then with 4-[bis(pyridin-2-yl-methyl)amino]benzaldehyde
(150) with 35% yield (Scheme 19a). The two receptors of 151 display different spectral
responses upon hosting the two guests: Zn2+ and OH− (Scheme 19b). A noticeable hyp-
sochromic shift from 442 to 415 nm is observed upon the incremental addition of Zn2+

to 151. This shift is accompanied by a visible color change from orange-yellow to light
green. These observations suggest that upon coordination with Zn2+, the electron-donating
character of the amine nitrogen atom within the chromophore group is reduced, resulting
in a decrease in the efficiency of ICT. The authors observed a slight hypsochromic shift in
emission spectra and an almost complete fluorescence quenching. Conversely, upon base
being added to 154 in the presence of Zn2+, a shift from 415 to 442 nm in the absorption
spectrum is observed (153). The varying electron-donating character of the receptor moiety
in the ICT mechanism was exploited to produce logic operations such as XOR and INHIBIT,
considering both Zn2+ and OH− as inputs (Scheme 19c).

8.6. “IMPLICATION” Logic

IMPLICATION logic is a type of logic operation embodying a conditional statement,
such as “If A, then B”. If A is true (or “1”) and B is false (or “0”), the output is false (or “0”).
However, if A is true or B is true, or both are true (or “1”), the output will be true (or “1”).
The only situation in which the IMPLICATION gate returns false (or “0”) is when the first
condition is true but the second condition is false.

A recent example of an IMPLICATION MLG was described by Souto and Machado
via structural functionalization of ethyl(hydroxyethyl)cellulose (EHEC) and a silica-based
xerogel (SBX) with a precursor of 18-crown-6-styrylpyridine 158 (Scheme 20a) [306]. The
resulting materials were employed as fluorescent devices to detect Hg2+ in water. The
precursor 158 was easily synthesized with a yield of 57% by an aldolic condensation
of aldehyde 156 and methylpyridine (157). This compound was incorporated into the
polymeric matrix via a covalent bond formed between the pyridine nitrogen and the
chloropropyl groups of XSB. This covalent bond generates a positively charged pyridine
group in 159. Upon Hg2+ complexation by the macrocyclic moiety, there was a modification
in the transfer of electronic density from the crown ether to the positive end of the molecule.
Consequently, a shift in the emission from yellow to green occurred.
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Scheme 20. (a) Synthesis of compound 158 and functionalized material 159, produced by
Souto and Machado; (b) The truth table of INHIBIT-type and (c) IMPLICATION-type logic [306].

The strong affinity between the Hg2+ and sulfur-containing ligands like cysteine
(Cys) allows the design of competitive assays, and therefore, an interpretation based on
INHIBIT logic (Scheme 20b,c). However, when binding Hg2+, Cys displaces the material
with the free macrocycle, restoring its yellow color. In other words, the presence of Cys
inhibits (or suppresses) the fluorescence emission output signal at 506 nm due to the
presence of Hg2+. Nevertheless, considering the opposite interpretation, that is, taking the
fluorescence emission at 540 nm as the output, rewriting the truth table, the authors identify
an IMPLICATION logic function, i.e., the absence of both inputs (Hg2+ and Cys) and their
combined presence result in the same output “1”. INHIBIT and IMPLICATION operations
are often interpreted together, since they correspond to inverse truth tables (Figure 4).

Diverse examples of MLGs bearing crown ether groups have been reported in the
literature due to their suitability as chelating groups for different metals, depending on the
macrocycle size and the environment in which it is inserted [294]. For example, benzo-15-
crown-5 ether and benzo-18-crown-6 ether groups are often employed to recognize sodium
and potassium cations, respectively [295]. Prasanna de Silva’s seminal work (Figure 5) [11]
already included the benzo-15-crown-5 group as a sodium ion detector unit [227].

Sharma et al. described the modification of phenothiazine-5-oxide (160–162) via Suzuki
cross-coupling reaction to insert a benzaldehyde group, with behavior as the acceptor unit,
to afford the MLGs (164–166) (Scheme 21) [235]. The authors have demonstrated a practical
application of acidofluorochromism of MLG 164–166 by fabricating filter paper strips coated
with them. Under UV light (λ = 365 nm), these paper strips exhibited an intense fluorescence
emission, suppressed upon exposure to TFA vapors. The sequential exposition to TEA
vapors recovered the fluorescence. The reversible acidofluorochromic behavior of MLG
164–166 toward TFA and TEA in the solid state was described as an IMPLICATION logic
gate, as indicated by the truth table (Scheme 21a,b). DFT studies revealed that the reversible
acidochromism is related to the protonation/deprotonation of the sulfinyl oxygen atom.
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Another example of an IMPLICATION-type logic gate was described by Tripathy et al.
through the synthesis of the azo dye 168 bearing a D-π-A architecture, with salicylaldehyde
as a donor group and nitrobenzene as an acceptor (Scheme 22a) [307]. Compound 168
displayed a reddish-pink color in the DMSO-water medium, attributed to the ICT from
the electron-donating phenolic moiety to the electron-withdrawing nitrobenzene group.
Adding Hg2+ as input to MLG 168 decreased the absorption at 502 nm (attributed to the
ICT) with a concomitant emergence of an absorption band centered at 361 nm. This change
corresponded to a color change from reddish-pink to a colorless solution (169). The authors
have attributed this phenomenon to the partial positive charge of the oxygen atom from
the hydroxyl group upon binding to Hg2+ (Scheme 22b). This interaction significantly
decreases the conjugation of the molecular system and electron-donating ability for ICT,
reducing the D-π-A phenomenon.
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tion of H+ and Fe3+ (input1 “1” and input2 “1”, operation D); H+ and Na+ (input1 “1” and 
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Additionally, the researchers described a weaker binding of MLG 168 with Cu2+,
evidenced by a little hypsochromic shift with increased intensity of the shoulder peak from
405 nm to 395 nm, also associated with a decrease in absorbance at 502 nm. Sequentially
adding F− (input2) to 169 recovered the reddish-pink color, and the absorption centered at
502 nm, demonstrating the system’s reversibility. This anion may promote the demetallation
of 169, increasing the electron density on the phenolic oxygen atom and the consequent
increase in the ICT process. This phenomenon was repeated over several cycles in a
“rhythmic manner”. Considering the input1 (Hg2+) and input2 (F−), the absorption band
centered at 502 nm as output in an ON–OFF–ON input/output response, the MLG 168 was
described as an IMPLICATION-type logic (Scheme 22c,d).

8.7. More Elaborated MLGs

More elaborated MLGs, such as half-adders, half-subtractors, encoders, decoders, mul-
tiplexers, and demultiplexers, can be built by combining basic MLGs [308–315]. However,
a detailed discussion about them is beyond this review’s scope. The growing interest in
using probes to detect and quantify multiple analytes in competitive assays has motivated
researchers to pursue increasingly integrated arrays.

One of these systems is “Lab-on-a-Molecule” [316], proposed almost twenty years ago
as a device that can recognize three species in an assay and generate an output response
only at the intersection of the three species. In 2019, Scerri et al. introduced device 172 as
an example of Lab-on-a-Molecule (Scheme 23), bearing the fluorescent naphthalimide core
and three receptors: (1) ferrocene, as an electron donor in the recognition of Fe3+; (2) the
basic site piperazine, acting as a receptor for H+; and (3) the ether-N-(2-methoxyphenyl)aza-
15-crown-5 group, functioning as a receptor for Na+ ion through coordination with this
ion [317]. Compound 172 exhibited a weak fluorescence quantum yield (output “0”) and, as
indicated by the truth table in Scheme 23, the separate addition (inputs1, 2, or 3 “1”) of H+,
Fe3+, or Na+ (operations B, C, and E) did not significantly increase the fluorescence quantum
yield (output “0”). A similar result was obtained with the combined addition of H+ and Fe3+

(input1 “1” and input2 “1”, operation D); H+ and Na+ (input1 “1” and input3 “1”, operation
F); or Fe3+ and Na+ (input2 “1” and input3 “1”, operation G). However, the simultaneous
addition of the three ions (inputs1, 2, and 3 “1”) increased about twenty times in fluorescence
quantum yield (output “1”, operation H). Since these systems are constructed to correspond
to a three-input AND logic gate, it is understood as a Lab-on-a-Molecule.
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9. Molecular Machines as Logical Optical Devices

Rotaxanes and catenanes constitute a group of structures that can be modulated to
operate as MLGs due to their inherent adherence to binary logic principles. A careful and
comprehensive synthesis approach is necessary for producing rotaxanes and pseudorotax-
anes. Currently, various strategies are available for creating molecular machines, including
pre-organizing components using hydrogen bonding, metal coordination, hydrophobic
forces, and covalent bonds [318–320]. Rotaxanes containing chelating groups designed to
bind with cations/anions are good candidates for selective sensing of a particular analyte,
depending on the overall construction of a mechanically interlocked system having specific
cavity dimensions tailored to the desired analyte [321–325].

A remarkable structure based on a bistable[1]rotaxane (178) was reported by
Li et al. [326]. The structure of a rotaxane features a dual operation system compris-
ing the interaction of two receptor sites with modulating analytes: one responsive to
acid/base conditions and the other to redox centers. The redox-active Fe unit is intro-
duced as a connecting unit for two portions of the thread and provides a unit sensitive
to oxidizing/reducing agents. The thread bears an amino group sensitive to pH changes
and a positively charged triazole group. Depending on the environmental conditions,
both groups can interact with the 24-crown-8 macrocycle, located at one end of the thread.
Additionally, a 4-morpholinnaphthalimide group was selected as a terminal stopper and
fluorophore, enabling the modulation of its fluorescence through a distance-dependent PET
process between an electron-rich metallocene unit and an electron-deficient fluorophore.

As shown in Scheme 24, the synthetic route employed by the authors incorporates
reactions previously discussed in this review. The connection of 173 and 174 groups was
achieved through a 1,3-dipolar cycloaddition, resulting in the formation of a triazole using
CuI in the presence of N,N-diisopropylethylamine (DIEA), resulting in a 70% yield of
175. Subsequently, 175 underwent methylation with CH3I and anion exchange with an
aqueous NH4PF6 solution, providing 176 with a high yield (90%). Compound 176 was then
linked to the 177 group via a 1,3-dipolar cycloaddition catalyzed by Cu[(CH3CN)4]PF6 in
dichloromethane, yielding the target [1]rotaxane (178) with a 74% yield.

The authors defined “active” and “inactive” signal modes for rotaxane operations.
The relative mechanical movement of its ring and thread in response to external acid-base
stimuli can produce an intense fluorescence signal output, representing the “active” mode
when considering the amino group’s deprotonation upon the base’s presence (DBU input1).
In contrast, in the “inactive” signal mode after oxidation (Fe3+, input2), there was no evident
change in fluorescence, which remained “locked” at its original level in the presence of
Fe(ClO4)3. The fluorescence responses (output) of [1]rotaxane to the different DBU and
Fe3+ combinations correspond to an INHIBIT logic gate, as represented in Scheme 24.

Klein et al. have described a new benzimidazole–iodotriazole motif based on halogen
bonding, which has been integrated into the photoactive naphthalimide-based axle compo-
nent of a bis [2]rotaxane [327]. Compound 186 was synthesized according to Scheme 25a.
Initially, the naphthalimide-based precursor (181) was condensed to the triazole aldehyde
(180), forming a benzimidazole core containing a 182-functionalized end to serve as a
stopper. By substituting the hydroxyl group at the opposite end of intermediate 182 with
an azide moiety, followed by the subsequent addition of an isophthalamide macrocycle
185 to the system, a [2]rotaxane (186) is produced, representing a chloride anion template
stoppering approach.
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The neutral rotaxane 186 exhibits a yellow color in solution, attributed to the charge
transfer between the electron-rich hydroquinone derivative within the macrocycle and the
electron-deficient naphthalimide along the rotaxane axis. Upon the introduction of HCl,
protonation of the imidazole core ensues, extinguishing this color. However, interestingly,
when HBF4 is added to the solution, no significant change in color is observed, suggesting
that HCl and HBF4 induce distinct perturbations in the rotaxane structure. Further investi-
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gations through the 1H-1H ROESY NMR spectra of each compound demonstrated that the
pronounced alteration induced by HCl is attributed to the relocation of the macrocycle from
naphthalimide toward the benzimidazole nucleus, as indicated in Scheme 25b. A UV–Vis
spectroscopic titration with anions was conducted after the protonation of 186 using HBF4
to assess the significance of the counter anion’s nature in inducing macrocycle translocation.
Upon adding 50 equiv. of tetrabutylammonium chloride (TBACl), a notable shift in ab-
sorbance was observed, closely resembling the spectrum obtained with protonation using
HCl. As a result, the authors deduced that both protonation and chloride ions as external
stimuli are imperative to facilitating macrocycle translocation, exemplifying a system akin
to an AND-type logic gate.

10. MLGs Based on Polymer Matrices

Integrating molecular recognition/detection mechanisms into various materials, such
as silica, membranes, and polymeric films, presents an alternative approach to fabricating
supramolecular systems to detect analytes.

Polymeric matrices—whether as a support solid surface for recognition molecules or
polymers built from responsive monomers—offer several appealing characteristics, making
them attractive in chemosensor and MLG development. Notably, they exhibit inertness
against gases and liquids and have a substantial surface area in solid matrices. Furthermore,
their shorter response time for efficient analyte detection and affordability render them
highly attractive for optical detection device development.

An extensive possibility involves introducing a molecular chemosensor into the poly-
meric matrix through a physical mixture without forming or breaking chemical bonds. A
second and interesting approach involves forming chemical bonds between solid support
and a molecule exhibiting intrinsic photophysical properties that respond sensitively to a
specific analyte.

In 2020, Bai et al. presented the fluorescent dye functionalized PEG 194 capable of rec-
ognizing Al3+ [328]. The synthetic strategy used by the authors consisted of a condensation
reaction of 2,4-dihydroxybenzaldehyde (189) and furan-2-carbohydrazide (190), followed
by the esterification of (191) with carboxylated PEG (192), as shown in Scheme 26a. Com-
pound 193 displayed a pronounced broad absorption band at 330 nm. Upon introducing
Cu2+, Al3+, and Ni2+, a new band centered at 370 nm appeared. Solution 105 exhibits weak
emission, and following the addition of 2.0 equiv. of Al3+, a notable enhancement in fluores-
cence at λem = 436 nm (when excited at λex = 369 nm) becomes evident. The fluorescence
intensity of 193 was enhanced upon adding Al3+, likely due to the complexation of the ions
with the probe through CHEF. Moreover, the interaction between Al3+ and 193 triggers
C=N isomerization, suppresses the PET effect, and contributes to the potential increase
in fluorescence.

A series of detection tests were performed on the 193–Al3+ complex using EDTA to
explore the sensor’s reversibility. Notably, in the presence of EDTA, the solution containing
the material restored its optical properties to their state before complexing agent addition.
This behavior revealed a reversible-type system, allowing analysis of the responses obtained
for Al3+ and EDTA through an INHIBIT-type logic gate (Scheme 26b).

Finally, a third strategy considers the construction of a polymeric matrix from reac-
tive monomers. In 2020, Zhou et al. reported a polymer matrix (PS)-based ratiometric
fluorescent probe (Eu(NTA)3L@PS, 199) and the construction of an AND logic system
with inputs of H+ and ClO− [329]. The preparation of the material consisted of a typical
process of mini-emulsion polymerization (Scheme 27a). In the process, the reactive unit (the
complex responsible for detection, 197) is reacted with styrene (198) to build the polymeric
matrix 199. Concerning detection, in the absence of ClO−, the probe exhibited a strong
red emission at 618 nm, rapidly suppressed with increasing ClO− in the presence of 3 eq
H+. At the same time, an emission at 496 nm increased. According to the authors, this
response is obtained because ClO− can swell the probe’s polymer casing and allow the
access of H+, causing changes in photophysical properties. Only when the system receives
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two inputs, H+ and ClO− together, can the output AND gate for fluorescence be activated
(Scheme 27b).
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11. Other Applications

Considering their potential for monitoring applications, MLGs have demonstrated
their usefulness in several areas as biosensors to detect and monitor changes in cellular
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processes, such as ion flux, enzyme activity, and pH [15,330,331]. They are also valu-
able for measuring blood electrolytes and tracking chemical species and properties in
cells and tissues [332]. In addition to that, they can help detect toxic agents in aquatic
environments, monitor nuclear residues, screen catalysts, and contribute to the field of
theranostics [333–335]. Numerous examples of MLGs exploring the most diverse structural
arrangements for various applications are reported in the literature. In addition to the
examples discussed throughout the review, we present some selected examples in Table 1.

Table 1. Some other selected examples of applications of MLGs and their logic function.

Logic Function Analytes/Inputs Application Ref.

1 AND ONOO− and mitophagy Biological detection [336]

2 AND Na+ and H2PO4
− Ion pair detection [337]

3
AND, OR, INHIBIT,

IMPLICATION, NOR,
and NAND

Cd2+ Food safety [338]

4 NOR Hg2+ and Pb2+ Cell imaging [339]

5 AND Amine and pH-based
neurotransmitters

Visualization of
neurotransmitter exocytosis [340]

6 INHIBIT TFA and TEA Detection of neutral molecules [341]

7 AND Two types of miRNAs Diagnosis and treatment of diseases [342]

8 AND–INHIBIT–OR H+, Na+ and Fe3+ Cation detection [343]

9 Lab-on-a-molecule F−, H2PO4
− and AcO− Anion detection [344]

10 Lab-on-a-molecule SDS and SDBS Differentiation of
commercial surfactants [345]

11 AND Leucine aminopeptidase
and monoamine oxidase Hepatopathy differentiation [346]

12 AND and INHIBIT Protein and DNA Medical diagnostics [347]

13 INHIBIT Sn2+ and Al3+ Cation detection [348]

14 AND, NOT, XNOR,
NAND, and OR CN− and Cd2+ Smartphone-assisted prototype [349]

15 INHIBIT Pb2+ Food safety [350]

16 AND N3–PEG and rBSA Cell imaging [351]

17 NOT, AND, and OR Al3+ and Zn2+ Intracellular detection of Al3+ levels
in living plant tissue

[352]

18 AND H2S and tyrosinase Imaging of melanoma cells [353]

19 AND Ag+, Cd2+, and
2,2,2-trifluoroacetic acid

Catalysis [354]

20 AND ORF1ab and N genes
of SARS-CoV-2 Detection of SARS-CoV-2 [355]

12. Conclusions

The shift in optical device concepts from single analyte detection to multiple analyte
detection has been an area of much interest in recent decades. Thirty years ago, a new field
began using Boolean logic, treating molecules as logic gates. Since then, much research
has been carried out aiming at the elaboration of molecular architectures capable of de-
tecting multiple analytes in a logical/sequential way. In this context, organic synthesis
has presented a set of tools capable of inspiring scientists to elaborate different molecular
architectures capable of acting as various logic gates. The present review described the
fundamental concepts in the architecture of MLGs by discussing examples from the litera-
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ture. Despite all the advances made in the last three decades, the search for such devices
is still constant, always seeking to diversify the possibilities of detections with different
responses, high degrees of sensitivity and selectivity, and low cost in the preparation of
MLGs. In addition, there is still a long way to go before making these compounds viable for
real applications and their transposition to different matrices to enable the real application
of these devices. Progress in the development of intelligent drug delivery systems, the ap-
plication of chemical communication technologies in nanotechnology, and the evolution of
environmental monitoring emerge as promising application areas for developing molecular
logic gates. Even in the face of everything that has already been done, there is still much
to be done, and we hope that this review will be a source of inspiration for expanding the
state of the art in molecular logic gates.
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Abbreviations

ACQ Aggregation-caused quenching
AIBN Azobisisobutyronitrile
AIE Aggregation-induced emission
CHEF Chelation-enhanced fluorescence
Cys Cysteine
CTBA Cetrimonium bromide
DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DIEA N,N-Diisopropylethylamine
DMAP 4-(Dimethylamino)pyridine
EDTA Ethylenediamine tetraacetic acid
EHEC Ethyl(hydroxyethyl)cellulose
ESIPT Excited state intramolecular proton transfer
ESI-MS Electrospray ionization–mass spectrometry
FRET Fluorescence resonance energy transfer
FT-IR Fourier-transform infrared spectroscopy
GSH Glutathione
Hcy Homocysteine
HRMS High-resolution mass spectrometry
HSAB Hard–soft acid base
ICT Intramolecular charge transfer
JAF J-aggregate formation (JAF)
RIR Intramolecular rotation restriction
SBX Silica-based xerogel
LG Logic gate
MLCT Metal-to-ligand charge transfer
MLG Molecular logic gates
NIS N-Iodosuccinimide
NMR Nuclear magnetic resonance spectroscopy
NTA 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dione
PET Photoinduced electron transfer
ppb Parts per billion
ppm Parts per million
PPi Pyrophosphate
PS Polymer matrix
TBACl Tetrabutylammonium chloride
TFA Trifluoroacetic acid
TIPS Triisopropyl silane
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