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Abstract: In this study, we developed an efficient strategy for constructing thieno[3,2-b]thiophene
molecules from 3-nitrothiophenes, containing carbonyl fragments at the C-2 and C-5 atoms, by
nucleophilic aromatic substitution of the nitro group in these substrates. It was shown that the reaction
of 3-nitrothiophene-2,5-dicarboxylates with thiophenols, thioglycolates and 2-mercaptoacetone in
the presence of K2CO3 proceeds rapidly via nucleophilic displacement of the nitro group with the
formation of 3-sulfenylthiophene-2,5-dicarboxylates. Further treatment of the resulting thiophene-
2,5-dicarboxylates, which have -SCH2CO2Alk or -SCH2COMe moiety at C-3 atom, with sodium
alcoholates afford obtaining 2,3,5-trisubstituted thieno[3,2-b]thiophene derivatives according to the
Dieckman condensation. In turn, the reaction of methyl 5-formyl-4-nitrothiophene-2-carboxylate
with methyl thioglycolate or 2-mercaptoacetone in the presence of K2CO3 proceeds to directly form
2,5-disubstituted thieno[3,2-b]thiophenes.

Keywords: 3-nitrothiophenes; leaving nitro group; thiols; thieno[3,2-b]thiohenes; nucleophilic
aromatic substitution

1. Introduction

Thieno[3,2-b]thiophene (TT) is a simple bicyclic ring system based on two fused
thiophene units, whose scaffold has attracted considerable attention of researchers due
to its wide application for the development of photo- and electroactive compounds, in-
cluding π-conjugated small molecules, oligomers and polymers [1,2]. Thus, a rigid and
planar TT framework, having capabilities of end-to-end π conjugation and intermolec-
ular S···S contacts [2], was used to design organic semiconductor materials for organic
light-emitting diodes [3–5] and organic field-effect transistors [6–10], polymer [11–17] and
small-molecule [18–23] materials for organic solar cells, and hole transport materials for
perovskite solar cells [24–26]. In addition, TT derivatives have been shown to be appli-
cable to the development of biologically active compounds [27]. Among them, there are
TT-glycine-linked cephalosporin derivatives as a potential antibiotic agent [28], and TT-
2-sulfonamides as carbonic anhydrase inhibitors [29]. It should also be mentioned that
TT-linked distamycin A analog is a DNA binding ligand to treat drug-resistant bacteria [30]
as well as 3,5-disubstituted TT-2-carboxylic acids as G protein-coupled receptor 35 ago-
nists [31]. From these data, it is clear that TT derivatives are high in demand due to their
practical application, and the TT molecule is an important objective for organic synthe-
sis. In regard to synthetic routes for TT scaffold, the main strategy for its construction is
based on annulation reactions of a second thiophene unit onto a single-ring thiophene
substrate. Indeed, the halogen-to-sulfur exchange of 3-chloro- and 3-bromo-substituted
thiophene compounds is a more often used reaction for the synthesis of TT derivatives [2].
Among these approaches, there are main group of methods based on nucleophilic aromatic
substitution (SNAr) of the activated halogen atom at C-3 of thiophene substrates, bearing
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electron-withdrawing group at its C-2 position, with S-nucleophiles, such as thioglycolic
acid esters in the present of bases, followed by base-promoted cyclization to form TT
molecules (Scheme 1) [32–40]. In addition, several protocols for the synthesis of TTs based
on cyclization of 3-alkylthio-substituted thiophenes should also be mentioned, which, in
turn, were formed by the treatment of thiophen-3-yl lithium intermediates with elemental
sulfur and alkylating agents [41–45] or dialkyl disulfides [46,47].
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At the same time, it is a well-known fact that the aromatic nitro group is a good
leaving group in various SNAr reactions [48]. Indeed, nucleophilic displacement of the
nitro group in a number of nitroaromatic substrates with nucleophiles, including thiolates,
was reported in the literature, and these reactions were used for the synthesis of different
functionalized aromatic compounds [49,50]. Moreover, several effective protocols based on
the aromatic nitro group substitution reaction were previously suggested for the synthesis
of benzo[b]thiophenes starting from 2-nitrobenzhaldehydes [51–53], 2-nitrobenzoates [54],
and 2-nitrobenzonitriles [55–57] by their reaction with thioglycolates in the presence of
bases. Given these data, it is very surprising that 3-nitro-substituted thiophenes have
not been previously used for the synthesis of thieno[3,2-b]thiophenes. Nitro-substituted
thiophenes are accessible substrates, since the electron-rich character of the thiophene
ring is favorable to proceeding with its nitration process, even for those derivatives that
already contain electron-deficient substituents due to the high electrophilic activity of
nitronium ion.

Herein, we wish to report the results of our study on the nucleophilic displacement of
the nitro group to thiolates in 3-nitro-substituted thiophenes, bearing electron-withdrawing
groups at C-2 and C-5 atoms, and the application of this reaction to construct thieno[3,2-
b]thiophene molecules.

2. Results and Discussion

3-Nitrothiophene-2,5-dicarboxylic acid esters 2a,b were selected as accessible sub-
strates to study their reactions with thiols for implementing our research plan. To this end,
these compounds were prepared in multigram-scale quantities from corresponding esters
1a,b by their nitration with a mixture of concentrated nitric and sulfuric acids (Scheme 2). It
should be noted that dimethyl 3-nitrothiophene-2,5-dicarboxylate (2a) was first described
in 2015 [58]. However, there are only two reactions for this compound in the literature,
namely its acidic hydrolysis to form 3-nitrothiophene-2,5-dicarboxylic acid [58], and its
nitro group reduction with hydrogen on Pd catalyst to form methyl 3-aminothiophene-2,5-
dicarboxylate [59].

To find optimal reaction conditions for the nucleophilic substitution of the nitro group
in the thiophene ring, we performed several experiments on the treatment of ester 2a with
methyl thioglycolate using various bases and solvents (Table 1). In all these cases, we
observed a rapid color change of a reaction mixture from colorless to deep red after its
heating began, and subsequent weakening of the red color to pale pink during the progress
of the reaction. Compound 3a was isolated in 25–30% yield when KOH or LiOH was used
as a base for the reaction (Table 1, entries 1–3), and we suggest that there was occurred
partial saponification of ester groups leading to low product yield in these cases. In contrast
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to this, the yield of product 3a turned out to be significantly higher using alkali metal
carbonates, and the best result was obtained using acetone as a solvent and K2CO3 as a
base (Table 1, entry 6). It is important to note that we failed to obtain compound 3a using
alcohols, such as methanol, ethanol or isopropanol, as solvents for this reaction. Thus, it
can be stated that polar aprotic solvents and moderate bases are suitable for this reaction.
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1 MeCN KOH 90 25
2 MeCN LiOH 90 30
3 DMF LiOH 100 29
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5 DMF K2CO3 100 83
6 acetone K2CO3 70 93
7 acetone Na2CO3 70 90

a Ester 2a (245 mg, 1 mmol), HSCH2CO2Me (0.10 mL, 1.1 mmol), base (2 mmol), and solvent (10 mL) were used in
these experiments.

In a similar manner, we were also able to perform the nucleophilic substitution of the
nitro group in substrate 2a with some other thiols, such as 2-mercaptoacetone, using its
commercially available dimer-2,5-dimethyl-2,5-dihydroxy-1,4-dithiane, as well as thiophe-
nols, to obtain product 4a in an 89% yield and products 5a-c in a yield ranging from 78 to
90% (Scheme 3).

At the same time, a reaction of ester 2a with benzyl mercaptan or isopropyl mercaptan
under the same conditions has afforded a complex mixture of compounds in both these
cases, while the desired 3-alkylthio-substituted derivatives were only detected in trace
amounts. We suggest that treatment of substrate 2a with these mercaptans in the presence
of K2CO3 causes a reduction in its nitro group since the corresponding disulfides and
small amounts of methyl 3-aminothiophene-2,5-dicarboxylate were also detected in the
reaction mixtures.

In the next part of our study, we carried out the construction of thieno [3,2-b]thiophene
molecules using NO2/thiolate displacement in esters 2a,b. To this end, we initially explored
the cyclization ability of substrates 3a and 4a according to Dieckman condensation and
found that treatment of these compounds with NaOMe and subsequent acidic workup of a
reaction mixture readily afforded 2,3,5-trisubstituted TT derivatives 6a and 7a in 79% and
87% yields, respectively (Scheme 4).
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Compounds 6a and 7a were also prepared directly from ester 2a without purification
of substrates 3a and 4a. In this case, acetone solutions of these compounds, obtained after
treatment of ester 2a with methyl thioglycolate or 2-mercaptoacetone, were concentrated
under reduced pressure; the residues were dissolved in dry THF and then treated with
NaOMe in methanol to afford products 6a and 7a in 73% and 77% yields based on ester 2a
(Scheme 5). In the same manner, TT derivatives 6b and 7b were synthesized in 61% and
63% yields based on ester 2b by its reaction with ethyl thioglycolate or 2-mercaptoacetone
in the presence of K2CO3 followed by treatment of the formed intermediates with NaOEt.
It should be noted that the present protocol is suitable for the gram-scale synthesis of TT
compounds due to the availability of the starting materials and easy-to-perform procedures.
For instance, compound 6a was readily produced in a quantity of almost 20 g from 0.1 mol
of ester 2a.
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We are also able to apply our approach for the synthesis of the 2,5-disubstituted TTs
(Scheme 6). To this end, nitro-thienaldehyde 9 was prepared in 71% yield from methyl
5-methyl-4-nitrothiophene-2-carboxylate (8) [60] by its condensation with dimethylfor-
mamide dimethyl acetal (DMF-DMA) and oxidative cleavage of the enaminic C=C double
bond in intermediate 8-i with NaIO4. We found that substrate 9 reacted with methyl
thioglycolate and 2-mercaptoacetone in the presence of K2CO3 afforded directly to form
2,5-disubstituted TT compounds 10 and 11. This can be explained by the formyl group
of thienaldehyde 9 being more electrophilic compared to the CO2Me group of ester 2a,
which increases the rate of initial nucleophilic substitution of the nitro group in substrate
9 with thiolates and facilitates the process of intramolecular cyclization in the formed
intermediates to the TT scaffolds. Indeed, both these reactions proceeded efficiently under
mild conditions, and products 10 and 11 were obtained in 86% and 94% yields, respectively,
without any purification procedures after dilution of the reaction mixtures with water.

Organics 2024, 5, FOR PEER REVIEW 5 
 

 

 
Scheme 5. The synthesis of 2,3,5-trisubstituted TT derivatives 6a,b and 7a,b. 

We are also able to apply our approach for the synthesis of the 2,5-disubstituted TTs 
(Scheme 6). To this end, nitro-thienaldehyde 9 was prepared in 71% yield from methyl 5-
methyl-4-nitrothiophene-2-carboxylate (8) [60] by its condensation with dimethylforma-
mide dimethyl acetal (DMF-DMA) and oxidative cleavage of the enaminic C=C double 
bond in intermediate 8-i with NaIO4. We found that substrate 9 reacted with methyl thio-
glycolate and 2-mercaptoacetone in the presence of K2CO3 afforded directly to form 2,5-
disubstituted TT compounds 10 and 11. This can be explained by the formyl group of 
thienaldehyde 9 being more electrophilic compared to the CO2Me group of ester 2a, which 
increases the rate of initial nucleophilic substitution of the nitro group in substrate 9 with 
thiolates and facilitates the process of intramolecular cyclization in the formed intermedi-
ates to the TT scaffolds. Indeed, both these reactions proceeded efficiently under mild con-
ditions, and products 10 and 11 were obtained in 86% and 94% yields, respectively, with-
out any purification procedures after dilution of the reaction mixtures with water. 

 
Scheme 6. The synthesis of 2,5-disubstituted TT derivatives 10 and 11. 

In addition, we performed alkylation of the hydroxy group in TTs 6a and 7a to show 
the next modification of these molecules. Thus, methoxy- and butoxy-substituted TT de-
rivatives 12a,b and 13a,b were synthesized by treatment of substrates 6a and 7a with di-
methyl sulfate or 1-bromobutane and K2CO3 in a solution of acetonitrile in yields of 81–
98% (Scheme 7). 

Scheme 6. The synthesis of 2,5-disubstituted TT derivatives 10 and 11.



Organics 2024, 5 512

In addition, we performed alkylation of the hydroxy group in TTs 6a and 7a to show
the next modification of these molecules. Thus, methoxy- and butoxy-substituted TT
derivatives 12a,b and 13a,b were synthesized by treatment of substrates 6a and 7a with
dimethyl sulfate or 1-bromobutane and K2CO3 in a solution of acetonitrile in yields of
81–98% (Scheme 7).
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3. Conclusions

To sum up, we have demonstrated for the first time that 3-nitrothiophenes with
electron-deficient groups at C-2 and C-5 atoms are convenient and accessible substrates
for the synthesis of TTs as an alternative to the similar 3-chloro- and 3-bromothiophenes
that were previously used to construct TT compounds. We investigated the reaction of
3-nitro-substituted thiophene-2,5-dicarboxylates with thiols in the presence of bases and
found that nucleophilic aromatic substitution of the nitro group to thiolate proceeded under
mild reaction conditions to afford 3-sulfenyl-substituted derivatives. This process was used
by us for constructing TT molecules bearing hydroxy, alkoxycarbonyl and acetyl groups. In
turn, the prepared compounds, due to the presence of different functional groups in their
structures, are of interest as building blocks for the next design of more complex molecules
with TT scaffolds.

4. Materials and Methods

Analytical studies were carried out using equipment of the Center for Joint Use
“Spectroscopy and Analysis of Organic Compounds” at the Postovsky Institute of Organic
Synthesis of the Russian Academy of Sciences (Ural Division). Elemental analysis was
carried out using an automated CHNS Euro EA 3000 analyzer (Eurovector Instruments,
Pavia, Italy). NMR measurements were performed on NMR spectrometers DRX-400 and
AVANCE 500 (Bruker BioSpin, Ettlingen, Germany) in CDCl3 or DMSO-d6 with SiMe4
as an internal standard for 1H and 13C spectra (see Supplementary Materials to obtain
the copies of NMR spectra of compounds). Unless otherwise stated, all reagents were
purchased from commercial sources and used without further purification. Melting points
were determined on combined heating stages and were uncorrected. 3-Nitrothiophene-2,5-
dicarboxylates 2a,b were synthesized from dialkyl thiophene-2,5-dicarboxylates 1a,b using
a slightly modified procedure for the preparation of ester 2a described in the literature [58].
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Procedure for nitration of thiophene-2,5-dicarboxylates 1a,b

Dimethyl thiophene-2,5-dicarboxylate (1a) (56 g, 0.28 mmol) was added portion-wise
to a stirred sulfuric acid (400 mL, 98% wt.) at 0 ◦C. Nitric acid (17.6 mL, 97% wt.) was
added dropwise to this solution at the same temperature. A mixture was stirred at ambient
temperature for 1 h, and then poured into water and crushed ice (1 L/500 g) with continuous
stirring for 0.5 h. The formed precipitate was filtered, washed with water (10 × 100 mL) and
dried under vacuum at ambient temperature to give ester 2a in a yield of 93%. Nitration of
diethyl thiophene-2,5-dicarboxylate (1b) (18.6 g, 81.5 mmol) with H2SO4 (140 mL, 98% wt.)
and HNO3 (5 mL, 97% wt.) using the same procedure afforded to obtain ester 2b in a yield
of 90%.

Dimethyl 3-nitrothiophene-2,5-dicarboxylate (2a)

White solid, yield 64 g (93%), m.p. 89–90 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.26 (s,
1H), 3.90 (s, 6H); 1H NMR (500 MHz, CDCl3) δ 8.03 (s, 1H), 3.97 (s, 3H), 3.96 (s, 3H).

Compound 2a was previously described in the literature and its analytical data are
identical to the reported data [58].

Diethyl 3-nitrothiophene-2,5-dicarboxylate (2b)

White solid, yield 20 g (90%), m.p. 56–57 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.24 (s,
1H), 4.67–4.05 (m, 4H), 1.32 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz,
DMSO-d6) δ 159.4, 158.1, 146.9, 135.6, 132.7, 127.9, 63.0, 62.4, 13.8, 13.5. Anal. Calcd for
C10H11NO6S: C, 43.95; H, 4.06; N, 5.13; S, 11.73. Found: C, 43.93; H, 4.13; N, 5.20; S, 11.63.
HRMS (ESI) calcd for C10H12NO6S m/z 274.0380 [M + H]+, found m/z 274.0379 [M + H]+.

General procedure for the synthesis of thiophene-2,5-dicarboxylates 3a, 4a and 5a–c

K2CO3 powder (1.66 g, 12 mmol) was added in one portion to a stirred solution of
ester 2a (1.47 g, 6 mmol) and an appropriate thiol (6.6 mmol) in acetone (30 mL), and
the suspension was stirred and heated at reflux (70 ◦C) for 1 h. The color of the liquid
phase first changes from colorless to deep red, and then toward the end of the reaction
to pale pink. A reaction mixture was cooled to ambient temperature, diluted with water
(45 mL) and stirred for 30 min. The formed precipitate was filtered, washed with water
(3 × 15 mL), and dried at 80 ◦C. The crude substance was crystallized from ethanol to give
an analytically pure form of the desired product.

Dimethyl 3-[(2-methoxy-2-oxoethyl)thio]thiophene-2,5-dicarboxylate (3a)

White needles, yield 1.70 g (93%), m.p. 101–102 ◦C. 1H NMR (500 MHz, DMSO-d6)
δ 7.77 (s, 1H), 4.17 (s, 2H), 3.87 (s, 3H), 3.84 (s, 3H), 3.67 (s, 3H). 13C NMR (126 MHz,
DMSO-d6) δ 169.6, 161.2, 160.9, 143.2, 136.3, 131.8, 125.6, 53.0, 52.6, 52.5, 33.8. Anal. Calcd
for C11H12O6S2: C, 43.41; H, 3.97; S, 21.07. Found: C, 43.42; H, 3.94; S, 20.71. HRMS (ESI)
calcd for C11H13O6S2 m/z 305.0148 [M + H]+, found m/z 305.0149 [M + H]+.

Dimethyl 3-[(2-oxopropyl)thio]thiophene-2,5-dicarboxylate (4a)

White crystals, yield 1.54 g (89%), m.p. 118–119 ◦C. 1H NMR (500 MHz, DMSO-d6)
δ 7.66 (s, 1H), 4.29 (s, 2H), 3.87 (s, 3H), 3.84 (s, 3H), 2.25 (s, 3H). 13C NMR (126 MHz,
DMSO-d6) δ 202.9, 161.2, 160.9, 143.6, 136.3, 131.9, 125.4, 52.9, 52.6, 42.8, 28.6. Anal. Calcd
for C11H12O5S2: C, 45.82; H, 4.20; S, 22.24. Found: C, 45.66; H, 4.13; S, 22.21. HRMS (ESI)
calcd for C11H13O5S2 m/z 289.0199 [M + H]+, found m/z 289.0201 [M + H]+.

Dimethyl 3-(phenylthio)thiophene-2,5-dicarboxylate (5a)

White crystals, yield 1.63 g (88%), m.p. 158–159 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ 7.68–7.50 (m, 5H), 6.77 (s, 1H), 3.88 (s, 3H), 3.77 (s, 3H). 13C NMR (126 MHz, CDCl3) δ
162.1, 161.5, 145.3, 136.4, 134.8, 132.5, 131.6, 129.8, 129.6, 125.9, 52.6, 52.4. Anal. Calcd for
C14H12O4S2: C, 54.53; H, 3.92; S, 20.79. Found: C, 54.36; H, 3.83; S, 20.69. HRMS (ESI) calcd
for C14H13O4S2 m/z 309.0250 [M + H]+, found m/z 309.0245 [M + H]+.
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Dimethyl 3-[(3-methoxyphenyl)thio]thiophene-2,5-dicarboxylate (5b)

White crystals, yield 1.83 g (90%), m.p. 106–107 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ 7.54–7.39 (m, 1H), 7.22–7.18 (m, 2H), 7.15–7.11 (m, 1H), 6.84 (s, 1H), 3.88 (s, 3H), 3.80 (s,
3H), 3.78 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 162.1, 161.6, 160.3, 145.2, 136.5, 132.7, 132.5,
130.6, 127.0, 125.9, 119.8, 115.7, 55.4, 52.6, 52.4. Anal. Calcd for C15H14O5S2: C, 53.24; H,
4.17; S, 18.95. Found: C, 53.18; H, 3.93; S, 19.86. HRMS (ESI) calcd for C15H15O5S2 m/z
339.0355 [M + H]+, found m/z 339.0354 [M + H]+.

Dimethyl 3-[(2,5-dimethoxyphenyl)thio]thiophene-2,5-dicarboxylate (5c)

Yellowish crystals, yield 1.73 g (78%), m.p. 123–124 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ 7.24–7.07 (m, 3H), 6.74 (s, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 3.74 (s, 3H), 3.72 (s, 3H). 13C NMR
(126 MHz, CDCl3) δ 162.2, 161.7, 154.0, 153.7, 144.6, 136.0, 132.8, 125.9, 121.5, 119.7, 117.1,
112.8, 56.5, 55.8, 52.5, 52.4. Anal. Calcd for C16H16O6S2: C, 52.16; H, 4.38; S, 17.40. Found:
C, 52.06; H, 4.16; S, 17.30. HRMS (ESI) calcd for C16H17O6S2 m/z 369.0461 [M + H]+, found
m/z 369.0457 [M + H]+.

CCDC 2378472 (5c) contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/structures/Search?ccdc=2378472, accessed on 15 October 2024.

General procedure for the synthesis of TT compounds 6a,b and 7a,b from esters 2a,b

Ester 2a (4.90 g, 20 mmol) or ester 2b (5.47 g, 20 mmol) as well as alkyl thioglycolate
(22 mmol) or 2-mercaptoacetone, used its dimer-2,5-dimethyl-2,5-dihydroxy-1,4-dithiane,
(2.0 g, 11 mmol) were dissolved in acetone (90 mL). A powdered K2CO3 (5.52 g, 40 mmol)
was added in one portion to this solution, and the suspension was stirred and heated at
reflux (70 ◦C) for 1 h. The solid was filtered and washed on a filter with warm acetone
(3 × 25 mL). The combined filtrates were concentrated under reduced pressure, and the
formed semi-solid residue of a crude 3-substituted thiophene-2,5-dicarboxylate was dis-
solved in dry THF (30 mL). This solution was dropped rapidly to a solution of NaOMe
(40 mmol) in MeOH (20 mL), in the case of using 2a, or NaOEt (40 mmol) in EtOH (20 mL),
in the case of using 2b. A reaction mixture was stirred and heated at reflux (80 ◦C) for 1 h to
form a yellowish suspension. It was diluted with water (100 mL), neutralized with AcOH
(5 mL), and stirred for 30 min. The formed precipitate was filtered, washed with water
(5 × 20 mL), and dried at 80 ◦C. The crude substance was purified by the crystallization
from i-PrOH to give an analytically pure form of the desired product. The solutions of
sodium alcoholates for these experiments were prepared by dissolving Na metal (0.92 g,
40 mmol) in MeOH or EtOH, respectively.

Dimethyl 3-hydroxythieno [3,2-b]thiophene-2,5-dicarboxylate (6a)

White powder, yield 4.0 g (73%), m.p. 208–209 ◦C. 1H NMR (500 MHz, DMSO-d6) δ
11.25 (s, 1H), 8.17 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 162.8,
161.8, 152.9, 138.6, 137.4, 133.6, 127.6, 109.7, 52.8, 51.9. Anal. Calcd for C10H8O5S2: C, 44.11;
H, 2.96; S, 23.55. Found: C, 44.07; H, 2.71; S, 23.36. HRMS (ESI) calcd for C10H9O5S2 m/z
272.9886 [M + H]+, found m/z 272.9885 [M + H]+.

Diethyl 3-hydroxythieno [3,2-b]thiophene-2,5-dicarboxylate (6b)

White crystals, yield 3.67 g (61%), m.p. 111–112 ◦C. 1H NMR (400 MHz, DMSO-d6) δ
11.17 (s, 1H), 8.14 (s, 1H), 4.34 (q, J = 7.1 Hz, 3H), 4.30 (q, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz,
4H), 1.30 (t, J = 7.1 Hz, 4H). 13C NMR (126 MHz, DMSO-d6) δ 162.5, 161.3, 153.1, 138.5,
137.8, 133.5, 127.3, 109.6, 61.6, 60.6, 14.2, 14.1. Anal. Calcd for C12H12O5S2: C, 47.99; H, 4.03;
S, 21.35. Found: C, 47.88; H, 4.06; S, 21.20. HRMS (ESI) calcd for C12H13O5S2 m/z 301.0199
[M + H]+, found m/z 301.0197 [M + H]+.

Methyl 5-acetyl-6-hydroxythieno [3,2-b]thiophene-2-carboxylate (7a)

Yellowish needles, yield 3.95 g (77%), m.p. 144–145 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ 12.30 (s, 1H), 8.13 (s, 1H), 3.88 (s, 3H), 2.54 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 191.1,

www.ccdc.cam.ac.uk/structures/Search?ccdc=2378472
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161.8, 152.3, 140.0, 138.0, 133.6, 127.4, 123.7, 52.7, 28.7. Anal. Calcd for C10H8O4S2: C, 46.86;
H, 3.15; S, 25.02. Found: C, 46.97; H, 3.00; S, 25.10. HRMS (ESI) calcd for C10H9O4S2 m/z
256.9937 [M + H]+, found m/z 256.9932 [M + H]+.

Ethyl 5-acetyl-6-hydroxythieno [3,2-b]thiophene-2-carboxylate (7b)

Yellow crystals, yield 3.41 g (63%), m.p. 176–177 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ 12.25 (s, 1H), 8.12 (s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.54 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H).
13C NMR (126 MHz, DMSO-d6) δ 191.1, 161.3, 152.3, 140.0, 138.4, 133.5, 127.2, 123.6, 61.6,
28.7, 14.1. Anal. Calcd for C11H10O4S2: C, 48.88; H, 3.73; S, 23.72. Found: C, 48.73; H, 3.73;
S, 23.82. HRMS (ESI) calcd for C11H11O4S2 m/z 271.0093 [M + H]+, found m/z 271.0092
[M + H]+.

Procedure for the synthesis of thienaldehyde 9

Dimethylformamide dimethyl acetal (9 mL, 67.7 mmol) was added in one portion
to a solution of 5-methyl-4-nitrothiophene-2-carboxylate 8 (10.75 g, 53.4 mmol) in dry
THF (50 mL). A reaction mixture was stirred and heated at reflux (80 ◦C) for 3 h under
an argon atmosphere. The formed dark-red solution of intermediate 8-i was cooled to
ambient temperature and added to a stirred solution of NaIO4 (34.27 g, 160.2 mmol) in
water (300 mL) at 5 ◦C. A reaction mixture was stirred for 12 h at ambient temperature and
filtered to remove the precipitate of inorganic salts. The filtrate was extracted with EtOAc
(2 × 100 mL, 2 × 50 mL), and the combined extracts were washed with water (100 mL)
and brine (2 × 50 mL) and dried with CaCl2. The solvent was evaporated under reduced
pressure, and the residue was dissolved in Et2O (100 mL). This solution was passed through
a silica gel layer (5 cm × 5 cm) on a filter, and the filtrate was concentrated under reduced
pressure to give compound 9 as a brown oil. The oil substance crystallized completely in
the air within a few days.

Methyl 5-formyl-4-nitrothiophene-2-carboxylate (9)

Dark-orange needles, yield 8.62 g (75%), m.p. 49–50 ◦C. 1H NMR (500 MHz, CDCl3)
δ 10.61 (s, 1H), 8.26 (s, 1H), 3.99 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 182.4, 160.2, 147.2,
144.3, 138.1, 129.2, 53.4. Anal. Calcd for C7H5NO5S: C, 39.07; H, 2.34; N, 6.51; S, 14.90.
Found: C, 38.86; H, 2.55; N, 6.32; S, 15.02. HRMS (ESI) calcd for C7H6NO5S m/z 215.9961
[M + H]+, found m/z 215.9959 [M + H]+.

General procedure for the synthesis of TT compounds 10, 11

K2CO3 powder (1.28 g, 9.30 mmol) was added in one portion to a stirred solution
of thienaldehyde 9 (1.0 g, 4.65 mmol) and methyl thioglycolate (0.46 mL, 5.12 mmol)
or 2-mercaptoacetone, used its dimer-2,5-dimethyl-2,5-dihydroxy-1,4-dithiane, (0.46 g,
2.55 mmol) in acetone (25 mL). The obtained suspension was stirred and heated to reflux
(70 ◦C) for 0.5 h and then cooled to ambient temperature. A reaction mixture was diluted
with water (25 mL) and stirred for 0.5 h. The formed precipitate was filtered and washed
with i-PrOH (3 × 5 mL) and water (5 × 10 mL) and dried at 110 ◦C to obtain an analytically
pure form of the desired product.

Dimethyl thieno [3,2-b]thiophene-2,5-dicarboxylate (10)

White powder, yield 1.02 g (86%), m.p. 231–232 ◦C. 1H NMR (400 MHz, DMSO-d6) δ
8.27 (s, 2H), 3.88 (s, 6H). 13C NMR (126 MHz, DMSO-d6) δ 161.9, 142.4, 137.6, 126.9, 52.7.
Anal. Calcd for C10H8O4S2: C, 46.86; H, 3.15; S, 25.02. Found: C, 46.72; H, 3.02; S, 25.12.
HRMS (ESI) calcd for C10H9O4S2 m/z 256.9937 [M + H]+, found m/z 256.9933 [M + H]+.

Methyl 5-acetylthieno [3,2-b]thiophene-2-carboxylate (11)

Cream crystals, yield 1.05 g (94%), m.p. 203–204 ◦C. 1H NMR (400 MHz, DMSO-d6) δ
8.41 (s, 1H), 8.27 (s, 1H), 3.88 (s, 3H), 2.61 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 191.7,
161.8, 148.8, 143.0, 142.6, 137.9, 127.1, 127.1, 52.7, 26.5. Anal. Calcd for C10H8O3S2: C, 49.99;
H, 3.36; S, 26.68. Found: C, 50.05; H, 3.15; S, 26.72. HRMS (ESI) calcd for C10H9O3S2 m/z
240.9988 [M + H]+, found m/z 240.9989 [M + H]+.
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General procedure for the O-alkylation of TT compounds 6a and 7a

K2CO3 powder (0.69 g, 5 mmol) was added in one portion to a stirred solution of
substrate 6a (0.68 g, 2.5 mmol) or 7a (0.64 g, 2.5 mmol) in MeCN (20 mL). The suspension
was stirred for 0.5 h at ambient temperature, and then treated with Me2SO4 (0.48 mL,
5 mmol) or n-BuBr (0.54 mL, 5 mmol). A reaction mixture was stirred and heated to reflux
(95 ◦C) for 2 h, and then diluted with ice water (40 mL). The formed precipitate was filtered,
washed with water (3 × 10 mL) and dried in air. The crude substance was crystallized from
EtOH to obtain an analytically pure form of the desired product.

Dimethyl 3-methoxythieno [3,2-b]thiophene-2,5-dicarboxylate (12a)

White crystals, yield 0.68 g (95%), m.p. 170–171 ◦C. 1H NMR (400 MHz, DMSO-d6)
δ 8.21 (s, 1H), 4.23 (s, 3H), 3.89 (s, 3H), 3.80 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 162.1,
161.9, 154.5, 139.6, 138.4, 132.7, 126.1, 115.2, 60.0, 52.6, 52.0. Anal. Calcd for C11H10O5S2: C,
46.15; H, 3.52; S, 22.39. Found: C, 46.09; H, 3.31; S, 22.21. HRMS (ESI) calcd for C11H11O5S2
m/z 287.0042 [M + H]+, found m/z 287.0041 [M + H]+.

Methyl 5-acetyl-6-methoxythieno [3,2-b]thiophene-2-carboxylate (12b)

Yellowish crystals, yield 0.66 g (98%), m.p. 162–163 ◦C. 1H NMR (500 MHz, CDCl3)
δ 7.88 (s, 1H), 4.33 (s, 3H), 3.94 (s, 3H), 2.59 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 191.2,
161.9, 153.1, 141.2, 138.8, 131.6, 128.2, 126.3, 59.4, 52.6, 29.2. Anal. Calcd for C11H10O4S2: C,
48.88; H, 3.73; S, 23.72. Found: C, 49.07; H, 3.71; S, 23.66. HRMS (ESI) calcd for C11H11O4S2
m/z 271.0093 [M + H]+, found m/z 271.0094 [M + H]+.

Dimethyl 3-butoxythieno [3,2-b]thiophene-2,5-dicarboxylate (13a)

White crystals, yield 0.71 g (86%), m.p. 85–86 ◦C. 1H NMR (400 MHz, DMSO-d6) δ
8.21 (s, 1H), 4.46 (t, J = 6.3 Hz, 2H), 3.88 (s, 3H), 3.80 (s, 3H), 1.77–1.68 (m, 2H), 1.55–1.44
(m, 2H), 0.94 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, DMSO-d6) δ 161.5, 161.2, 153.2, 139.3,
137.4, 132.7, 127.3, 115.6, 72.5, 52.7, 51.9, 31.4, 18.4, 13.5. Anal. Calcd for C14H16O5S2: C,
51.20; H, 4.91; S, 19.53. Found: C, 51.17; H, 5.04; S, 19.27. HRMS (ESI) calcd for C14H17O5S2
m/z 329.0512 [M + H]+, found m/z 329.0512 [M + H]+.

Methyl 5-acetyl-6-butoxythieno [3,2-b]thiophene-2-carboxylate (13b)

Yellowish crystals, yield 0.63 g (81%), m.p. 103–104 ◦C. 1H NMR (500 MHz, CDCl3) δ
7.84 (s, 1H), 4.56 (t, J = 6.4 Hz, 2H), 3.94 (s, 3H), 2.60 (s, 3H), 1.92–1.83 (m, 2H), 1.64–1.48 (m,
2H), 1.03 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 191.3, 162.0, 152.7, 141.3, 138.7,
131.8, 128.3, 126.4, 72.3, 52.6, 31.8, 29.3, 19.0, 13.6. Anal. Calcd for C14H16O4S2: C, 53.83;
H, 5.16; S, 20.53. Found: C, 53.88; H, 5.24; S, 20.82. HRMS (ESI) calcd for C14H17O4S2 m/z
313.0563 [M + H]+, found m/z 313.0566 [M + H]+.

Supplementary Materials: The following supplementary information can be downloaded at: https://
www.mdpi.com/article/10.3390/org5040027/s1, Copies of 1H and 13C NMR spectra of compounds.
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