The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns
Abstract
:1. Introduction
2. Burn Injury: An Overview
3. What Factors Are Released by Resorbing Bone?
3.1. Calcium
3.2. Phosphorus and Magnesium
3.3. Transforming Growth Factor (TGF)-β
3.4. Osteocalcin
4. Discussion and Questions
4.1. Questions about Products of Bone Resorption
4.2. Pathological Conditions That Generate Bone Resorption and Subsequent Factor Release
4.2.1. Inflammation
4.2.2. Immobilization
4.2.3. Glucocorticoids
4.2.4. Hyperparathyroidism
4.2.5. Renal Osteodystrophy
4.2.6. Paget’s Disease
4.2.7. Rare Diseases Which Reduce Bone Resorption
4.3. Therapeutic Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, G.L. The role of the musculoskeletal system in post-burn hypermetabolism. Metabolism 2019, 97, 81–86. [Google Scholar] [CrossRef]
- Klein, G.L.; Herndon, D.N.; Goodman, W.G.; Langman, C.B.; Phillips, W.A.; Dickson, I.R.; Eastell, R.; Naylor, K.E.; Maloney, N.A.; Desai, M.; et al. Histomorphometric and biochemical characterization of bone following acute severe burns in children. Bone 1995, 17, 455–460. [Google Scholar] [CrossRef]
- Klein, G.L.; Bi, L.X.; Sherrard, D.J.; Beavan, S.R.; Ireland, D.; Compston, J.E.; Williams, W.G.; Herndon, D.N. Evidence supporting a role of glucocorticoids in short-term bone loss in burned children. Osteoporos. Int. 2004, 15, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Sharma, S. Physiology, Calcium 2020 Aug 29 in StatPearls (Internet); StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar] [PubMed]
- Klein, G.L.; Benjamin, D.; Herndon, D.N. Calcemic response differs between adults and children: A review of the literature. Osteoporos. Sarcopenia 2017, 3, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.L. The role of calcium in inflammation-associated bone resorption. Biomolecules 2018, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L.; Nicolai, M.; Langman, C.B.; Cuneo, B.F.; Sailer, D.E.; Herndon, D.N. Dysregulation of calcium homeostasis after severe burn injury in children: Possible role of magnesium depletion. J. Pediatrics 1997, 131, 246–251. [Google Scholar] [CrossRef]
- Murphey, E.D.; Chattopadhyay, N.; Bai, M.; Kifor, O.; Harper, D.; Traber, D.L.; Hawkins, H.K.; Brown, E.M.; Klein, G.L. Up-regulation of the parathyroid calcium-sensing receptor after burn injury in sheep: A potential contributory factor to post-burn hypocalcemia. Crit. Care Med. 2000, 28, 3885–3890. [Google Scholar] [CrossRef]
- Nielsen, P.K.; Rasmussen, A.K.; Butters, R.; Feldt-Rasmussen, U.; Bendtzen, K.; Diaz, R.; Brown, E.M.; Olgaard, K. Inhibition of PTH secretion by interleukin-1 beta in bovine parathyroid glands in vitro is associated with an up-regulation of the calcium-sensing receptor mRNA. Biochem. Biophys. Res. Commun. 1997, 238, 880–885. [Google Scholar] [CrossRef]
- Toribio, R.E.; Kohn, C.W.; Capen, C.C.; Rosol, T.J. Parathyroid hormone (PTH) secretion, PTH mRNA and calcium-sensing receptor mRNA expression in equine parathyroid cells, and effects of interleukin(IL)-1, IL-6, and tumor necrosis factor-alpha on equine parathyroid cell function. J. Mol. Endocrinol. 2003, 31, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Canaff, L.; Zhou, X.; Hendy, G.N. The pro-inflammatory cytokine, interleukin-6 up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp 1/3. J. Biol. Chem. 2008, 283, 13586–13600. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L.; Herndon, D.N.; Rutan, T.C.; Sherrard, D.J.; Coburn, J.W.; Langman, C.B.; Thomas, M.L.; Haddad, J.G., Jr.; Cooper, C.W.; Miller, N.L.; et al. Bone disease in burn patients. J. Bone Min. Res. 1993, 8, 337–345. [Google Scholar] [CrossRef]
- Rousseau, A.F.; Damas, P.; Ledoux, D.; Lukas, P.; Carlisi, A.; LeGoff, C.; Gadisseur, R.; Cavalier, E. Vitamin D status after a high dose of cholecalciferol in healthy and burn subjects. Burns 2015, 41, 1028–1034. [Google Scholar] [CrossRef]
- Rossol, M.; Pierer, M.; Raulien, N.; Quandt, D.; Meusch, U.; Rothe, K.; Schubert, K.; Schoneberg, T.; Schaefer, M.; Krugel, U.; et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium-sensing receptors. Nat. Commun. 2012, 3, 1329. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L.; Castro, S.; Garofalo, R.P. The calcium-sensing receptor as a mediator of inflammation. Semin. Cell Dev. Biol. 2016, 49, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Finnerty, C.C.; Jeschke, M.G.; Qian, W.J.; Kaushal, A.; Xiao, W.; Liu, T.; Gritsenko, M.A.; Moore, R.J.; Camp, D.G., 2nd; Moldawer, L.L.; et al. Investigators of the Inflammation and the Host Response Glue Grant. Determination of the best patient outcome by large-scale quantitative discovery proteomics. Crit. Care Med. 2013, 41, 1421–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsheim, E.; Herndon, D.N.; Hawkins, H.K.; Suman, O.E.; Cotter, M.; Klein, G.L. Pamidronate attenuates muscle loss after pediatric burn injury. J. Bone Min. Res. 2014, 29, 1369–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, G.L.; Wimalawansa, S.J.; Kulkarni, G.; Sherrard, D.J.; Sanford, A.P.; Herndon, D.N. The efficacy of acute administration of pamidronate on the conservation of bone mass following severe burn injury in children: A double-blind, randomized, controlled study. Osteoporos. Int. 2005, 16, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Przkora, R.; Herndon, D.N.; Sherrard, D.J.; Chinkes, D.L.; Klein, G.L. Pamidronate preserves bone mass for at least two years following acute administration for pediatric burn injury. Bone 2007, 41, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L.; Herndon, D.N.; Le, P.T.; Andersen, C.R.; Benjamin, D.; Rosen, C.J. The effect of burn on serum concentrations of sclerostin and FGF-23. Burns 2015, 41, 1532–1535. [Google Scholar] [CrossRef]
- Miller, R.T. Control of renal calcium, phosphate, electrolyte and water excretion by the calcium sensing receptor. Best. Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 345–358. [Google Scholar] [CrossRef]
- Dallas, S.L.; Rosser, J.L.; Mundy, G.R.; Bonewald, L.F. Proteolysis of latent transforming growth factor beta (TGF beta) binding protein 1 by osteoclasts. A cellular mechanism for release of TGF beta from bone matrix. J. Biol. Chem. 2002, 277, 21352–21360. [Google Scholar] [CrossRef] [Green Version]
- Waning, D.L.; Mohammad, K.S.; Reiken, S.; Xie, W.; Andersson, D.C.; John, S.; Chiechi, A.; Wright, L.E.; Umanskaya, A.; Niewolna, M.; et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat. Med. 2015, 21, 1262–1271. [Google Scholar] [CrossRef]
- Pin, F.; Bonetto, A.; Bonewald, L.F.; Klein, G.L. Molecular mechanisms responsible for the rescue effect of pamidronate on muscle atrophy in pediatric burn patients. Front. Endocrinol. 2019, 10, 543. [Google Scholar] [CrossRef] [Green Version]
- Mera, P.; Laue, K.; Ferron, M.; Confavreux, C.; Wei, J.; Galan-Diez, M.; Lacampagne, A.; Mitchell, S.J.; Mattison, J.A.; Chen, Y.; et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 2016, 23, 1078–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.; Schulz, L.; Palmisano, B.; Singh, P.; Berger, J.M.; Yadav, V.K.; Mera, P.; Ellingsgaard, H.; Hidalgo, J.; Bruning, J.; et al. Muscle-derived interleukin-6 increases exercise capacity by signaling in osteoblasts. J. Clin. Investig. 2020, 130, 2888–2902. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L.; Wolf, S.E.; Langman, C.B.; Rosen, C.J.; Mohan, S.; Keenan, B.S.; Matin, S.; Steffen, C.; Nicolai, M.; Sailer, D.E.; et al. Effects of therapy with recombinant human growth hormone on insulin-like growth factor system components and serum levels of biochemical markers of bone formation in children after severe burn injury. J. Clin. Endocrinol. Metab. 1998, 83, 21–24. [Google Scholar] [PubMed]
- Arnaud, S.B.; Sherrard, D.J.; Maloney, N.A.; Whalen, R.T.; Fung, P. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system. Aviat. Space Environ. Med. 1992, 63, 14–20. [Google Scholar] [PubMed]
- Togari, A.; Arai, M.; Mizutani, S.; Koshihara, Y.; Nagatsu, T. Expression of mRNAs for neuropeptide receptors and beta adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci. Lett. 1997, 233, 125–128. [Google Scholar] [CrossRef]
- Suzuki, T.; Notomi, T.; Miyajima, D.; Mizoguchi, F.; Hayata, T.; Nakamoto, T.; Hanyu, R.; Kamolratanaku, P.; Mizuno, A.; Suzuki, M.; et al. Osteoblastic differentiation enhances expression of TRPV4 that is required for calcium oscillation induced by mechanical force. Bone 2013, 54, 172–178. [Google Scholar] [CrossRef]
- Uda, Y.; Azab, E.; Sun, N.; Shi, C.; Pajevic, P.D. Osteocyte mechanobiology. Curr. Osteoporos. Rep. 2017, 15, 318–325. [Google Scholar] [CrossRef]
- Duque, E.J.; Elias, R.M.; Moyses, R.M.A. Parathyroid hormone: A uremic toxin. Toxins 2020, 12, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compston, J.E. Glucocorticoid-induced osteoporosis: An update. Endocrine 2018, 61, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.G.; Lau, Y.S.; Itonaga, I.; Sabokbar, A.; Athanasou, N.A. Bone stromal cells in pagetic bone and Paget’s osteosarcoma express RANKL and support human osteoclast formation. J. Pathol. 2006, 209, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Russell, G.; Mueller, G.; Shipman, C.; Croucher, P. Clinical disorders of bone resorption. Novartis Found. Symp. 2001, 232, 251–267, discussion 267–271. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, G.L. The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns. Osteology 2021, 1, 73-79. https://doi.org/10.3390/osteology1020007
Klein GL. The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns. Osteology. 2021; 1(2):73-79. https://doi.org/10.3390/osteology1020007
Chicago/Turabian StyleKlein, Gordon L. 2021. "The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns" Osteology 1, no. 2: 73-79. https://doi.org/10.3390/osteology1020007
APA StyleKlein, G. L. (2021). The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns. Osteology, 1(2), 73-79. https://doi.org/10.3390/osteology1020007