

Systematic Review

Comparative Outcomes of Minimally Invasive Versus Open Hallux Valgus Surgery: A Systematic Review and Meta-Analysis

Abdul-Hadi Kafagi ^{1,*}^(D), Abdul-Rhaman Kafagi ², Marwan Tahoun ²^(D), Omar Tariq Al Zareeni ², Khaled El Aloul ²^(D), Mohammad Usman Ahmad ³^(D) and Anand Pillai ¹^(D)

- ¹ Department of Trauma and Orthopaedics, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M23 9LT, UK; anand.pillai@mft.nhs.uk
- ² Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- ³ Department of Surgery, Manchester University Hospitals NHS Foundation Trust, Manchester M23 9LT, UK

* Correspondence: abdul-hadi.kafagi@mft.nhs.uk

Abstract: Objectives: To compare the safety and efficacy of open surgery (OS) and minimally invasive surgery (MIS) techniques in the correction of symptomatic hallux valgus (HV). Methods: A systematic review of studies up to January 2024 was conducted, identifying all the relevant literature comparing OS and MIS for symptomatic HV. Searches were performed across major databases including MEDLINE, Cochrane and EMBASE. A total of 32 studies were included, comprising randomised control trials, prospective and retrospective cohort studies as well as grey literature. Key outcomes assessed included radiographic measures such as the hallux valgus angle (HVA), intermetatarsal angle (IMA), and distal metatarsal articular angle (DMAA), with preoperative and postoperative angles analysed to calculate the power of correction. Secondary outcomes included American Orthopaedic Foot and Ankle Society (AOFAS) scores, operative time, hospital stay duration, radiation exposure and complication rates. Both fixed-effect and random-effects models were applied based on the observed heterogeneity in the data. Results: Thirty-two studies with 2423 patients contributed to the summative outcome. Postoperative HVA and IMA were comparable between OS and MIS groups. However, MIS showed a significantly lower DMAA angle (MD = -0.90, CI: -1.55 to -0.25, p = 0.01). In radiographic correction analysis, MIS demonstrated significantly greater DMAA correction (MD = 1.09, CI: 0.43 to 1.75, p = 0.001). The odds of hardware removal were significantly higher with MIS (OR = 2.37, CI: 1.41 to 4.00, p = 0.001). Functional analysis showed that MIS achieved significantly higher postoperative AOFAS scores (MD = 2.52, CI: 0.92 to 4.13, p = 0.002). MIS was associated with a shorter operative (MD = -12.07 min, CI: -17.02 to -7.11, p < 0.00001) and a significantly shorter hospital stay (MD = -0.76, CI: -1.30 to -0.21, p = 0.007). MIS was linked to higher radiation exposure (MD = 51.18, CI: 28.71 to 73.65, p < 0.00001). **Conclusions:** There is no definitive superiority between MIS and OS for hallux valgus correction. While MIS offers benefits such as improved DMAA correction, higher functional AOFAS scores, shorter operative times and reduced hospital stays, it also carries risks like increased radiation exposure and a higher rate of hardware removal. The decision between MIS and OS should be personalised, taking into account the specific needs and circumstances of each patient. Larger studies are warranted to validate these findings as newer MIS techniques continue to emerge and evolve.

Keywords: hallux valgus; bunion; MIS; minimally invasive; percutaneous; osteotomy; meta-analysis

Academic Editor: Umile Giuseppe Longo

Received: 13 November 2024 Revised: 26 December 2024 Accepted: 3 January 2025 Published: 9 January 2025

Citation: Kafagi, A.-H.; Kafagi, A.-R.; Tahoun, M.; Al Zareeni, O.T.; El Aloul, K.; Ahmad, M.U.; Pillai, A. Comparative Outcomes of Minimally Invasive Versus Open Hallux Valgus Surgery: A Systematic Review and Meta-Analysis. *Osteology* **2025**, *5*, 3. https://doi.org/10.3390/ osteology5010003

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).

1. Introduction

Hallux valgus (HV) is a prevalent foot deformity characterised by the progressive lateral deviation of the great toe and a medial prominence of the first metatarsal head [1]. This multifactorial pathology often leads to significant pain and discomfort, causing patients to shift more weight onto the lesser metatarsals. Consequently, this compensatory mechanism increases the risk of transfer metatarsalgia, hyperkeratosis and stress fractures in the lesser toes [2].

When conservative treatments fail or HV severely affects quality of life, surgical intervention is often necessary. Traditionally, open surgery (OS) has been the gold standard method for correcting HV. OS offers the advantage of direct visualisation and precise correction of the deformity, which can be particularly beneficial in complex cases. It allows for the comprehensive correction of both the bony and soft tissue components of the deformity, contributing to long-term stability and reliable outcomes [3–5].

In contrast, minimally invasive surgery (MIS), specifically defined as minimally invasive percutaneous surgical techniques with internal fixation for correcting hallux valgus, has emerged as an alternative approach. These percutaneous techniques involve procedures performed through small skin punctures without large incisions, with control achieved through fluoroscopic guidance. By minimising soft tissue disruption, percutaneous techniques offer potential benefits such as shorter operation times, reduced hospital stays, faster recovery, less postoperative pain, and smaller scars [6–8].

The evolution of MIS techniques began with first-generation methods reported by Isham et al., which did not utilise internal fixation after osteotomy [9,10]. This was succeeded by second-generation techniques involving an axial Kirschner (K)-wire fixation following distal transverse osteotomy of the first metatarsal to provide greater stability [11,12]. The third generation introduced screw fixation after a distal chevron osteotomy to achieve metatarsal head translation, aiming to replicate the outcomes of an open osteotomy [10,13,14]. The most recent fourth-generation techniques employ double bi-cortical rigid screw fixation after an extra-articular transverse osteotomy to facilitate the translation of the metatarsal head across the coronal, sagittal and rotational planes [15].

Despite the potential advantages of MIS, there remains ongoing debate regarding its comparative effectiveness with OS. While MIS may offer reduced soft tissue damage and quicker recovery, open surgery remains a robust option with the ability to address complex deformities directly. This article aims to systematically review the literature on this topic and compare radiographic and clinical outcomes between OS and MIS techniques.

2. Material and Methods

A systematic review and meta-analysis were conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [16].

2.1. Eligibility Criteria

This meta-analysis included randomised controlled trials (RCTs), prospective cohort studies, retrospective cohort studies and grey literature written in English that compared MIS with OS for symptomatic hallux valgus. For inclusion, MIS procedures had to include percutaneous techniques. Only studies reporting at least one outcome related to radiographic measures, complications or patient satisfaction were considered. Studies were excluded if they focused on biomechanical research without clinical outcomes, lacked relevant outcome measures, concentrated on learning curves or skill acquisition or were cadaveric in nature.

2.2. Primary Outcomes

The primary outcomes assessed included radiographic measurements and complication rates. Studies were required to report both preoperative and postoperative angles, including the Hallux Valgus Angle (HVA), the Intermetatarsal Angle (IMA), and the Distal Metatarsal Articular Angle (DMAA), to calculate correction. Additionally, outcomes such as the rates of revision surgeries, hardware removals, recurrences and incidences of infections, chronic pain and osteoarthritis were evaluated. These measures were selected to comprehensively assess the effectiveness and safety of MIS versus OS for hallux valgus.

2.3. Secondary Outcomes

Secondary outcomes included operation duration in minutes, hospital stay in days, radiation exposure in seconds, postoperative Visual Analog Scale (VAS) score and American Orthopaedic Foot and Ankle Society (AOFAS) score. The AOFAS score evaluates pain, function and alignment through a combination of clinician-reported and patient-reported components [3]. The VAS score is a patient-reported measurement of pain intensity [3]. These measures provided a comprehensive view of patient satisfaction and overall surgical impact.

2.4. Literature Search Strategy

Two authors (AHK and MT) independently conducted comprehensive searches across multiple databases, including AMED, Cochrane, EMBASE, Google Scholar, MEDLINE and Scopus. The search strategy, developed using both text words and Medical Subject Headings (MeSH) terms, utilised Boolean operators "AND" and "OR" to construct a comprehensive search string. This strategy included terms such as "Hallux valgus", "Bunion", and "bunionectomy" combined with "Minimally invasive", "MIS", "minimally invasive chevron and akin", "MICA", "percutaneous", "percutaneous chevron akin", "PECA", "PDO", "percutaneous distal osteotomy", "Isham", "Bosch", "Bösch", "SERI", and "Simple, Effective, Rapid, Inexpensive", as well as "Open osteotomy", "Open akin", "open chevron", "open scarf", "open surgery", and "open osteotomy". The search was conducted without language or publication date restrictions to encompass both historical and contemporary studies. Databases were searched from their inception up to 25 January 2024, when the final search was completed.

2.5. Selection of Studies

Titles and abstracts of articles identified through the literature searches were independently evaluated by two authors, AHK and MT. Full texts of the pertinent reports were then retrieved for further review. Articles that satisfied the eligibility criteria were selected for inclusion in the meta-analysis. Any disagreements regarding study selection were resolved through discussion between the authors.

2.6. Data Extraction and Management

An electronic data extraction spreadsheet was created and pilot-tested on a sample of randomly selected articles, with adjustments made as needed. The spreadsheet included fields for study-related information such as primary author, year of publication, country, study type and details on the surgical approach for both minimally invasive and open surgeries. It also recorded cohort size, follow-up length and both primary and secondary outcome data. Two authors cooperatively collected and documented the data. Any discrepancies were resolved through discussion among the authors to ensure consistency and accuracy.

2.7. Data Synthesis

Data analysis was conducted by two authors using Review Manager 5.3 software (The Cochrane Collaboration, London, UK) [17–19]. For outcomes with heterogeneity levels below 50%, a fixed-effect model was applied, while a random-effects model was used for outcomes with higher heterogeneity. The results were presented in forest plots with 95% confidence intervals (CIs), and statistical significance was set at p < 0.05. For dichotomous outcomes, odds ratios (ORs) were calculated, while mean differences (MDs) were used for continuous data.

Statistical analysis was performed to evaluate the corrective power of outcome measures pre- and postintervention in each study. For this, the mean, standard deviation and sample size from two independent samples within the same intervention group were used to compute mean differences and standard errors. The standard deviation of the mean difference was derived by multiplying the standard error by the square root of the sample size [17].

2.8. Assessment of Heterogeneity

Heterogeneity among the studies was assessed using Cochran's Q test (χ^2). The degree of inconsistency was quantified using the I² statistic, which was interpreted as follows: 0% to 25% indicating low heterogeneity, 25% to 75% indicating moderate heterogeneity, and 75% to 100% indicating high heterogeneity.

2.9. Quality Assessment

The quality of all non-randomised studies was evaluated using the ROBINS-I tool, which assesses bias across domains such as confounding, participant selection and outcome measurement. For randomised controlled trials, the RoB 2 tool, a revised Cochrane risk-ofbias tool, was used to analyse potential biases in randomisation, deviations from intended interventions and outcome reporting.

2.10. Publication Bias

This was assessed using a funnel plot and use of a statistical test as suggested by Egger et al. [20]

3. Results

3.1. Literature Search Results

Our search strategy retrieved 617 studies, and after thoroughly screening the retrieved articles, the authors identified 32 studies that met the eligibility criteria (Figure 1).

3.2. Baseline Characteristics

A total of 33 studies were included, combining a total of 2423 patients, with 1209 in MIS and 1214 in the open surgery group. A table of baseline patient characteristics can be seen below (Table 1).

					Feet Number					
Author	Year	Country	Study Design	MIS Technique	Total	MIS	OS			
Balesar et al. [19]	2024	Netherlands	Prospective	MICA	68	42	26			
Kim et al. [21]	2024	South Korea	Retrospective	Modified MICA	65	32	33			
Nicolas et al. [22] *	2023	UK	RCT	MIS	31	17	14			
Toepfer et al. [23] **	2023	Switzerland	Matched Pair	MICA	112	56	56			
Hwang et al. [24]	2023	Korea	Retrospective	SERI	60	30	30			
Tang et al. [25] ***	2023	China	Retrospective	MIS-Chevron	60	28	32			
Tay et al. [26]	2022	Singapore	Matched Cohort	MICA	60	30	30			
Li et al. [27]	2022	China	Retrospective	MIS	36	16	20			
Patnaik et al. [4]	2022	UK	Retrospective	MIS-Chevron	54	27	27			
Dragosloveanu et al. [28]	2022	Romania	RCT	Percutaneous Chevron	50	24	26			
Xu et al. [29]	2022	China	Retrospective	MIS-Chevron Screw	54	31	23			
Vieria et al. [30]	2022	Switzerland	Retrospective	MI Lapidus	91	47	44			
Siddiqui et al. [31]	2021	USA	Retrospective	MIDMO	61	31	30			
Guo et al. [32]	2021	China	Retrospective	POO	112	48	64			
Torrent et al. [33]	2021	Spain	RCT	MI Scarf Osteotomy	58	30	28			
Palmanovich et al. [34]	2020	Israel	RCT	SERI	36	21	15			
Kaufmann et al. [35]	2020	Austria	RCT	MI Chevron	39	19	20			
Schilde et al. [36]	2020	Germany	Retrospective	MI Akin	210	124	86			
Lim et al. [37]	2020	Singapore	Prospective	MIS	104	52	52			
Schulze et al. [38]	2019	Germany	Retrospective	Kramer	174	72	102			
Choi et al. [39]	2019	South Korea	Retrospective	MIS	55	25	30			
Frigg et al. [40]	2019	Switzerland	Prospective	MICA	98	48	50			
Boksh et al. [41]	2018	UK	Prospective	Mini-scarf	37	16	21			
Lai et al. [42]	2017	Singapore	Retrospective	PECA	87	29	58			
Lee et al. [43]	2017	Australia	RCT	PECA	50	25	25			
Brogan et al. [44]	2016	UK	Retrospective	MI distal chevron	65	41	24			
Othman et al. [45]	2016	Egypt	RCT	Bosch	58	33	25			
Poggio et al. [46]	2015	Spain	Retrospective	Kramer	202	69	133			
Giannini et al. [47]	2013	Italy	RCT	SERI	40	20	20			
Radwan et al. [11]	2012	Egypt	RCT	PDO	64	31	33			
Maffulli et al. [12]	2009	Italy	Matched Cohort	Bosch	72	36	36			
Roth et al. [48]	1996	Austria	Retrospective	Bosch	124	88	36			

Table 1.	Baseline	characteristics	of include	d studies.
Iubic I.	Dubenne	citatacteribticb	or micruace	a bruarco.

MI: minimally invasive, MICA: minimally invasive chevron akin, MIDMO: minimally invasive distal metatarsal osteotomy, MIS: minimally invasive surgery, PDO: percutaneous distal-metatarsal osteotomy, PECA: percutaneous chevron and akin, POO: percutaneous oblique osteotomy, RCT: randomised control trial, SERI: simple, effective, rapid, and inexpensive, UK: United Kingdom. * abstract only, ** poster only, *** preprint.

Figure 1. Prisma flow diagram. The PRISMA diagram details the search and selection processes applied during the overview. PRISMA, preferred reporting items for systematic reviews and meta-analyses.

3.3. Radiographic Outcomes

3.3.1. Postoperative HVA Angle

Postoperative HVA angle was reported in 22 studies with 1480 patients (Figure 2) [4,11,12,21,24–26,28–34,37,39,42–45,47,48]. The mean difference was -0.17 degrees (CI: -0.96 to 0.61), indicating a slight, non-significant difference between OS and MIS groups. Overall, heterogeneity was high (I² = 76%, *p* < 0.00001). The difference in postoperative HVA angle was not statistically significant (*p* = 0.66).

The postoperative IMA angle was reported in 22 studies with 1630 patients (Figure 2) [4,11,12,21,24,26,28–30,34,36,37,39,42–45,47,48]. The mean difference was 0.16 degrees (CI: -0.26 to 0.59), indicating a small, non-significant difference between OS and MIS groups. Overall, heterogeneity was high ($I^2 = 77\%$, p < 0.00001). The difference in postoperative IMA angle was not statistically significant (p = 0.45).

3.3.3. Postoperative DMAA Angle

The postoperative DMAA angle was reported in 11 studies with 654 patients (Figure 2) [12,21,25,29,30,33,34,39,44,45,47]. The MIS group had a significantly lower DMAA angle (MD = -0.90, CI: -1.55 to -0.25, p = 0.007). Heterogeneity was moderate $(I^2 = 57\%, P)$ p = 0.010).

A: HVA Post-op Angle

6.1

Heterogeneity: Tau² = 0.45; Chi² = 23.23, df = 10 (P = 0.010); P = 57% Test for overall effect: Z = 2.72 (P = 0.007) Test for subgroup differences: Not applicable

344

310 100.0%

-0.90 [-1.55 . -0.25]

-10 -5 Favours MIS

5 10 Favours OS

Total (95% CI)

Kim 2024

Figure 2. Forest plots of radiographic outcomes. (A) Postoperative HVA between MIS and open groups; (B) postoperative IMA; (C) postoperative DMAA; (D) HVA correction; (E) IMA correction and (F) DMAA correction. HVA, hallux valgus angle. MIS, minimally invasive surgery. IMA, intermetatarsal Angle. DMAA, distal metatarsal articular angle [4,11,12,21,24-26,28-31,33-37,39,42-45,47,48].

20.8 12.58

 Total (95% CI)
 344

 Heterogeneity: Chi² = 18.28, df = 10 (P = 0.05); P = 45%
 Test for overall effect: Z = 3.24 (P = 0.001)

 Test for subgroup differences: Not applicable
 Test for subgroup differences: Not applicable

13.34

1.1% 8.30 [2.00 , 14.60]

-10 -5 Favours OS

5 10 Favours MIS

310 100.0% 1.09 [0.43 , 1.75]

3.3.4. HVA Angle Correction

HVA correction was calculated from 22 studies with 1480 patients (Figure 2) [4,11,12,21,24–26,28–34,37,39,42–45,47,48]. The mean difference was 0.73 degrees (CI: -0.47 to 1.93), indicating a small, non-significant difference in corrective power between OS and MIS groups. The higher HVA correction suggests stronger corrective power, but the difference was not statistically significant (p = 0.23). Overall, heterogeneity was moderate ($I^2 = 55\%$, p = 0.001).

3.3.5. IMA Angle Correction

IMA correction was calculated from 22 studies with 1630 patients (Figure 2) [4,11,12,21,24,26,28–31,33,34,36,37,39,42–45,47,48]. The mean difference was 0.22 degrees (CI: -0.32 to 0.76), indicating a small, non-significant difference in deformity correction between the OS and MIS groups. The higher angle suggests a greater correction of the deformity, but the difference was not statistically significant (p = 0.43). Overall, heterogeneity was moderate ($I^2 = 59\%$, p = 0.0002).

3.3.6. DMAA Angle Correction

DMAA correction was calculated from 11 studies with 654 patients (Figure 2) [12,21,25,29,30,33,34,39,44,45,47]. MIS had significantly greater DMAA correction compared to the OS group (MD = 1.09, CI: 0.43 to 1.75, p = 0.001), indicating that MIS surgery was more effective in correcting the deformity. Overall, heterogeneity was moderate (I² = 45%, p = 0.05).

3.4. Analysis of Complications

3.4.1. Revision Surgery

Revision surgery rates were reported in 14 studies with 1125 patients (Figure 3) [4,12,21,25,29–34,37,39,40,46]. The analysis indicated higher odds of requiring revision surgery with MIS compared to OS (OR = 1.64, CI: 0.89 to 3.01), although this difference was not statistically significant (p = 0.11). Heterogeneity was low ($I^2 = 8\%$, p = 0.37).

3.4.2. Recurrence

Recurrence rates were reported in 14 studies with 1046 patients (Figure 3) [21,29–31,33–35,37,39,40,44–46]. The analysis showed slightly lower odds of recurrence with MIS compared to OS (OR = 0.84, CI: 0.44 to 1.61), though the difference was not statistically significant (p = 0.60). Heterogeneity was very low (I² = 0%, p = 0.79).

3.4.3. Infection

Infection rates were reported in 16 studies with 1482 patients (Figure 3) [11,12,21,22,25,30,32,34,36,37,40,42,45,46,48,49]. The analysis showed no significant difference in the odds of infection between OS and MIS (OR = 1.35, CI: 0.75 to 2.42). Heterogeneity was very low ($I^2 = 0\%$, p = 0.46), and the overall effect was not statistically significant (p = 0.32).

3.4.4. Hardware Removal

Hardware removal rates were reported in 19 studies with 1357 patients (Figure 3) [4,12,21,22,25,28–30,32–37,40,43,44,47,49]. The analysis showed significantly greater odds of hardware removal with MIS compared to OS (OR = 2.37, CI: 1.41 to 4.00). Heterogeneity was moderate ($I^2 = 50\%$, p = 0.006), and the overall effect was statistically significant (p = 0.001).

D: Hardware Removal

A: Revision Surgery

 Total events:
 38
 23

 Helerogeneity:
 Ch² = 14.83, df = 15 (P = 0.46); P = 0%
 Test for overall effect:
 Z = 0.99 (P = 0.32)

 Test for subgroup differences:
 Not applicable

Study or Subgroup	MIS Events	Total	OS Events	S Total	Weight	Odds ratio IV, Fixed, 95% CI	Odds ratio IV, Fixed, 95% Cl	Study or Subgroup	MIS Events	Total	OS Events	Total	Weight	Odds ratio IV, Fixed, 95% CI	Odds ratio IV, Fixed, 95% Cl
					0.00	5 00 10 05 444 401		Maffulli 2009	1	36	5	36	5.6%	0 18 [0 02 1 60]	
Manulii 2009	2	30	0	30	3.9%	5.29 [0.25 , 114.16]		Giannini 2013	2	20	0	20	2.8%	5 54 10 25 123 081	
Poggio 2015	2	09	0	133	4.0%	3.69 [0.47 , 206.90]		Brogan 2016	4	41	1	24	5.4%	2.49 10.26 . 23.641	
Ering 2019	12	20	1	50	25 6%	2.32 [U.22 , 29.38] A 27 [1 28 14 24]		Lee 2017	6	25	. 0	25	3.2%	17.00 [0.90 , 320.37]	
Palmanovich 2020	2	21	4	15	12 306	4.27 [1.20, 14.24]		Frigg 2019	12	48	4	50	18.5%	3.83 [1.14 , 12.89]	
Lim 2020	2	52	4	52	6 204	2 04 0 10.05 , 2.45]		Kaufmann 2020	16	19	4	20	10.0%	21.33 [4.10, 111.03]	
Siddigui 2021	2	21	2	30	2.006	2.04 [0.10 , 23.22]		Schilde 2020	0	124	13	86	3.4%	0.02 [0.00 , 0.37]	
Guo 2021	1	48	2	64	3.6%	4 07 [0 16 102 21]		Lim 2020	1	52	. 0	52	2.6%	3.06 [0.12 , 76.82]	
Torrent 2021	1	30	0	28	3.5%	2 90 [0 11 74 13]		Palmanovich 2020	1	21	1	15	3.3%	0.70 [0.04 , 12.16]	
Patanaik 2022	2	27	0	20	3.0%	5 39 10 25 117 771		Torrent 2021	1	30	0	28	2.6%	2.90 [0.11 , 74.13]	.
Yu 2022	0	31	1	23	3.5%	0.24 [0.01 6 12]		Guo 2021	1	48	0	64	2.6%	4.07 [0.16 , 102.21]	
Vieria 2022	3	47		44	15 306	0.68 [0.14 3.23]		Patanaik 2022	7	27	0	27	3.2%	20.12 [1.09 , 372.82]	
Tang 2023	1	28	4	32	3 504	3 55 10 14 90 59		Dragosloveanu 2022	3	24	1	26	5.0%	3.57 [0.35 , 36.94]	
Kim 2024	0	42	1	26	3.5%	0.20 [0.14 , 30.33]		Xu 2022	2	31	3	23	7.7%	0.46 [0.07 , 3.01]	
10111 2024	0	42		20	3.570	0.20 [0.01 , 0.10]		Vieria 2022	6	47	3	44	12.9%	2.00 [0.47 , 8.54]	
Total (95% CI)		535		590	100.0%	1 64 10 99 3 011		Nicholas 2023	5	17	0	14	3.0%	12.76 [0.64 , 254.31]	—
Total ovente:	32	000	19	030	100.078	1.04 [0.03 , 0.01]	-	Tang 2023	1	28	0	32	2.6%	3.55 [0.14 , 90.59]	
Hotorogonoity: Chil - 1	4 09 df -	13 (P -	0.37): 8 -	804			J 	Balesar 2024	0	42	2	26	2.9%	0.12 [0.01 , 2.50]	
Test for overall effect:	7 - 1 59 (D	- 0.11	0.57),1 =	0.0		0	.005 0.1 1 10 200 Eavours MIS Eavours OS	Kim 2024	1	32	0	33	2.6%	3.19 [0.13 , 81.25]	
Test for subgroup diffe	rences: No	t applic	able					T-4-1 (05% CI)		740		6.45	400.0%	0.07 14 44 4 001	
								Total events:	70	712	37	045	100.0%	2.37 [1.41 , 4.00]	•
B. Recurre	nce							Heterogeneity: Chi ² =	36.28, df =	18 (P =	0.006); I ² =	50%		(
D. Recurre	nee							Test for overall effect:	Z = 3.25 (F	e = 0.00	1)				Favours MIS Favours OS
	MIS		os			Odds ratio	Odds ratio	Test for subgroup diffe	erences: No	ot applica	able				
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI								
								F. Chronic	Dain						
Poggio 2015	3	69	1	133	8.1%	6.00 [0.61 , 58.80]	+	E. Chronic	Pain						
Brogan 2016	1	41	1	24	5.3%	0.57 [0.03 , 9.64]			M	IS	0	s		Odds ratio	Odds ratio
Othman 2016	0	33	1	25	4.0%	0.24 [0.01 , 6.24]		Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Frigg 2019	3	48	2	50	12.5%	1.60 [0.26 , 10.02]									
Choi 2019	0	25	1	30	4.0%	0.39 [0.02 , 9.89]		Roth 1996	5	6 8	38 0) 3	6.2%	4.81 [0.26 , 89.25]	1
Palmanovich 2020	2	21	0	15	4.4%	3.97 [0.18 , 89.00]		Giannini 2013	C	1 2	20 1	2	0 5.0%	0.32 [0.01 , 8.26]	ı
Kaufmann 2020	2	19	3	20	11.5%	0.67 [0.10 , 4.51]		Poggio 2015	4	6	39 1	13	3 10.9%	8.12 [0.89 , 74.15]	1
Lim 2020	0	52	1	52	4.1%	0.33 [0.01 , 8.21]		Brogan 2016	C	1 4	1 1	2	4 5.1%	0.19 [0.01 , 4.82]	ı
Siddiqui 2021	0	31	2	30	4.5%	0.18 [0.01 , 3.93]		Lee 2017	C	1 2	25 2	2	5 5.6%	0.18 [0.01 , 4.04]	1
Torrent 2021	2	30	0	28	4.4%	5.00 [0.23 , 108.84]		Frigg 2019	7		18 5	5	0 35.5%	1.54 [0.45 , 5.22]	1
Xu 2022	0	31	1	23	4.0%	0.24 [0.01 , 6.12]		Siddigui 2021	3	1 3	31 2	: 3	0 15.3%	1.50 [0.23 , 9.68]	
Vieria 2022	2	47	3	44	12.5%	0.61 [0.10 , 3.82]		Guo 2021	C	. 4	18 2	. 6	4 5.7%	0.26 [0.01 , 5.49]	
Hwang 2023	3	30	4	30	16.7%	0.72 [0.15 , 3.54]		Dragosloveanu 2022		1 2	24 1	2	6 5.0%	0.35 [0.01 . 8.93]	
Kim 2024	0	32	1	33	4.0%	0.33 [0.01 , 8.49]		Xu 2022	3	1 3	31 0) 2	3 5.8%	5.77 [0.28 , 117.46]	
Total (95% CI)		509		537	100.0%	0 84 10 44 1 611									
Total events:	18	003	21	557	100.078	0.04 [0.44 , 1.01]	—	Total (95% CI)		42	25	43	1 100.0%	1.32 [0.64 , 2.73]	• 🔶
Heterogeneity: Chi ² = 8	81 df = 13	3 (P = 0	70) F = 0	96				Total events:	22	2	15	i			
Test for overall effect: 7	- 0.53 (P	- 0.60)	18),1 = 0	70		0.0	05 0.1 1 10 200 Eavours MIS Eavours OS	Heterogeneity: Chi ² :	= 9.77, df =	9 (P = 0	0.37); l ² = 8	96			0.005 0.1 1 10 200
Test for subgroup differ	ances: Not	annlica	blo				1 400413 1110 1 400413 0 0	Test for overall effect	t: Z = 0.74	(P = 0.4)	6)				Favours MIS Favours OS
rescror subgroup union	611063. 1401	applice	1016					Test for subgroup dif	ferences: 1	vot appli	cable				
C. Infaction	-														
C. mection	1							E. Osteoar	thiriti	ic C	tiffno		r No	crosis	
	MIS		0	s		Odds ratio	Odds ratio	F. Ostebai		is, 5	unne	35 U	INC	CI 0515	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl		MIS	s	05	s		Odds ratio	Odds ratio
D-# 4000	40	~			40.7**	1011051 710		Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Roth 1996	13	88	5 3	36	19.7%	1.91 [0.51 , 7.14]	+						-		
Matfulli 2009	1	36	o 0	36	3.3%	3.08 [0.12 , 78.27]		Roth 1996	10	8	3 1	34	6 13.0%	4.49 [0.55 , 36.42]	
Radwan 2012	2	31	2	33	8.4%	1.07 [0.14 , 8.09]		Radwan 2012	2	3	1 3	3	3 16.5%	0.69 [0.11 , 4.43]	
Poggio 2015	1	69	1	133	7.7%	14.90 [1.79, 123.78]		Giannini 2013	3	20) 4	2	0 21.1%	0.71 [0.14 , 3.66]	
Ouriman 2016	3	33	2 1	25	6.4%	2.40 [0.23 , 24.57]		Choi 2019	0	2	5 1	3	5.4%	0.39 [0.02 . 9.89]	
Lai 2017 Erica 2010	0	29	3	58	3.8%	0.27 [0.01, 5.38]		Frigg 2019	1	44	3 2	5	9.6%	0.51 [0.04 , 5.82]	
Frigg 2019 Dolmonouiob 2022	2	40	, 0	50	3.1%	0.43 [0.25 , 110.09]		Kaufmann 2020	0	19	ə 1	20	0 5.4%	0.33 [0.01 , 8.70]	
Faimanovich 2020	1	21	. 0	15	3.2%	2.27 [U.U9 , 59.56]	` _	Guo 2021	1	41	3 2	6	4 9.7%	0.66 [0.06 , 7 49]	
Schilde 2020	2	124	+ 3 	86	10.5%	0.45 [0.07 , 2.77]		Siddigui 2021	2	3	1 2	31	13.9%	0.97 [0.13 7 33]	
Cup 2020	2	52	: 3	52	10.3%	0.05 [0.10 , 4.08]		Balesar 2024	1	1	, <u>,</u>	21	5 4%	1 92 [0 08 48 70]	
Guo 2021	0	48) 1 , .	64	3.3%	0.44 [0.02 , 10.95]		Duicodi 2024	'	4,	- 0	20	J J.+170	1.02 [0.00 , 40.78]	
viena 2022	0	47	4	44	3.9%	0.09 [0.00 , 1.81]		Total (95% CI)		35	,	201	100.0%	0 88 10 41 1 991	1
Nicholas 2023	2	17	0	14	3.5%	4.08 [0.21, 105.89]		Total (95% CI)		35	<u>د</u>	30	9 100.0%	0.00 [0.41 , 1.88]	—
lang 2023	0	28	3 1	32	3.3%	0.37 [0.01 , 9.41]		rotal events:	20	o (n -	16				
Balesar 2024	2	42	2 1	26	5.7%	1.25 [0.11 , 14.51]		Heterogeneity: Chi ² =	3.52, df =	8 (P = 0	.90); P = 09	70		C	0.01 0.1 1 10 100
Kim 2024	1	32	2 0	33	3.3%	3.19 [0.13 , 81.25]	_ 	Test for overall effect:	∠ = 0.32 (⊢ = 0.75	r) Nabla				Favours MIS Favours OS
Total (95% CI)		745		737	100.0%	1.35 [0.75 . 2.42]		rest for subgroup diff	erences: N	ot applic	able				

1 10 500 Favours OS

Figure 3. Forest plots of complications. (**A**) Odds of revision surgery between MIS and open groups; (**B**) recurrence; (**C**) infection; (**D**) hardware removal; (**E**) chronic pain and (**F**) osteoarthritis, stiffness or necrosis. MIS, minimally invasive surgery. [4,11,12,21,22,25,28–37,39,40,42–49].

3.4.5. Chronic Pain

0.002 0.1

Chronic pain was reported in 10 studies with 856 patients (Figure 3) [28,29,31,32,40,43,44,46–48]. The analysis showed no significant difference in the odds of chronic pain between OS and MIS (OR = 1.32, CI: 0.64 to 2.73). Heterogeneity was low ($I^2 = 8\%$, p = 0.37), and the overall effect was not statistically significant (p = 0.46).

3.4.6. Osteoarthritis, Stiffness and Necrosis

Osteoarthritis, stiffness, or necrosis rates were reported in nine studies with 661 patients (Figure 3) [11,31,32,35,39,40,47–49]. The analysis showed no significant difference in the odds of these complications between OS and MIS (OR = 0.88, CI: 0.41 to 1.88). Heterogeneity was very low ($I^2 = 0\%$, p = 0.90), and the overall effect was not statistically significant (p = 0.75).

3.5. Postoperative Outcomes and Surgical Metrics

3.5.1. Operative Time (In Minutes)

Operative time was reported in nine studies with 738 patients (Figure 4) [11,12,21,33,37–39,42,45]. The analysis showed that MIS surgery had significantly shorter operative times compared to OS (MD = -12.07 min, CI: -17.02 to -7.11, p < 0.00001). Heterogeneity was very high (I² = 94%, p < 0.00001), reflecting substantial variability among the studies.

D: Post-operative AOFAS Score

A: Operative Time

Study or Subgroup	Mean	MIS SD	Total	Mean	OS SD	Total	Weight	Mean differe	nce 5%Cl		Mean IV, Rand	difference fom, 95%	сі	Ste	udy or Subg	roup	Mean	MIS SD	Total	Mean	OS SD	Total	Weight I	Mean difference V, Random, 95% Cl	Mean difference IV, Random, 95% CI
Maffulli 2009 Radwan 2012	19 50.86	7.3	36 31	42 58	12.4	36 33	11.6%	-23.00 [-27.70	-18.30]		+			Ma	affulli 2009		85	11	36	86	8	36	7.2%	-1.00 [-5.44 , 3.44]	-+-
Othman 2016	28.81	3.75	33	39.12	4.5	25	12.7%	-10.31 [-12.4	, -8.13]					Gia	annini 2013		81.2	15.1	20	77.6	16.6	20	2.3%	3.60 [-6.23 , 13.43]	
Lai 2017	44.3	6.1	29	56.6	11.8	58	12.1%	-12.30 [-16.0	, -8.54]		+			Ot	hman 2016		89.6	3.5	33	86.8	5.5	25	11.7%	2.80 [0.34 , 5.26]	_
Schulze 2019	31	14	72	44	12	103	12.0%	-13.00 [-16.9	, -9.02]		-			Le	e 2017		88.7	2.1	25	83	3.5	25	13.9%	5.70 [4.10 , 7.30]	-
Choi 2019	23	2.4	25	45.2	7.8	30	12.4%	-22.20 [-25.15	-19.25]					La	i 2017		87.4	17.8	29	88.4	13.8	58	3.6%	-1.00 [-8.39 , 6.39]	
Lim 2020	133	39	52	98	32	52	6.5%	35.00 [21.29	, 48.71]				-	Ch	ioi 2019		88.9	6.4	25	88.9	6.2	30	9.5%	0.00 [-3.35 , 3.35]	
Kim 2024	10.7	3.25	30	20.1	3.25	28	12.8%	-9.40 [-11.0	, -1.13]		•			Ka	ufmann 2020	D	95	10	19	95	14	20	3.5%	0.00 [-7.61 , 7.61]	
10112024	00.2	0.0	02	01.1	20.0	00	0.170	-20.00 [-00.17	-10.00]	_				Lin	n 2020		84.7	18.9	52	83.Z	10.1	52	4.2%	1.50 [-5.25 , 8.25]	` _
Total (95% CI)			340			398	100.0%	-12.07 [-17.0	, -7.11]		•			Ta	v 2021		83.3	18.1	40	79.5	12.4	30	4.076	-3.20 [-11.05 4.65]	
Heterogeneity: Tau ² =	49.22; Ch	i² = 139.5	i1, df = 8 (l	P < 0.000	01); I² = 9	4%					. •			Dr	agosloveanu	2022	85.6	4.1	24	79.4	3.6	26	12.5%	6.20 [4.05 . 8.35]	
Test for overall effect	Z = 4.77 (P < 0.000	001)							-50	-25	0 2	5 50) Xu	2022		90.2	13.3	31	89.5	10.8	23	4.5%	0.70 [-5.73 , 7.13]	
Test for subgroup diff	erences: N	ot applica	able							Favo	ours MIS	Favo	urs OS	Tai	ng 2023		89.93	4.96	28	87.97	5.96	32	10.9%	1.96 [-0.80 , 4.72]	
B: Length of Stay									Mean	difference		To He Te: Te:	tal (95% CI) terogeneity: st for overall st for subgro	Tau ² = 4. effect: Z up differe	16; Chi² = = 3.08 (P nces: No	= 29.64, (= 0.002) t applica	431 df = 13 (P) ble	= 0.005);	I ² = 56%	474	100.0%	2.52 [0.92 , 4.13]	-10 -5 0 5 10 Favours OS Favours MIS		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random,	95% CI		IV, Ran	dom, 95%	CI		D					C C					
Maffulli 2009	1.1	0.4	36	2.1	1.4	3	6 34.1%	6 -1.00 [-1.4	, -0.52]	-	•			E	: Pos	st-o	pera	πν	e v <i>F</i>	15 50	core				
Kim 2024	5.1	1	32	6.2	1.7	3	3 27.1%	6 -1.10 [-1.70	, -0.42]	_	-	1		St	udy or Subg	group	Mean	MIS SD	Total	Mean	OS SD	Total	Weight	Mean difference IV, Fixed, 95% CI	Mean difference IV, Fixed, 95% CI
Total (95% CI)	0.47.013	7.00	120		7.00	12	1 100.0%	-0.76 [-1.30	, -0.21]		•	•			: 2017		0.7	1.0	20	0.4	4.5	50	0 EN	0.201.0.40 1.001	
Heterogeneity: Tau* =	- 7 - 2 70 /	P = 0.00	af = 2 (P =	0.02); P	= 74%					⊢		-		La	e 2017		0.7	0.9	29	0.4	1.5	25	13 1%	-0.20[-0.49, 1.09]	
Test for subgroup diff	ferences: N	Int applic	able							-2 Faw	-1 ours MIS	0 Eavo	1 2 Jurs OS	Z Ka	ufmann 202	0	0	1	19	0	2	20	4.2%	0.00[-0.99.0.99]	
reaction aubgroup un	ierences. r	or applic	auro							1 6141	ours mis	1 840	/4/3 0.0	Lir	n 2020		0.9	2.3	52	0.8	2	52	5.9%	0.10 [-0.73 , 0.93]	
														Gu	JO 2021		1.55	1.11	48	2.56	2.88	64	6.8%	-1.01 [-1.78 , -0.24]	
C: Radiat	ion l	Fxnd	osur	e										To	rrent 2021		2.3	1.75	30	3.7	2	28	4.3%	-1.40 [-2.37 , -0.43]	
e. maanae		-//p	Jour	•										Та	y 2022		1.1	2.4	30	0.5	1.3	30	4.3%	0.60 [-0.38 , 1.58]	+
		MIS			OS			Mean differ	ence		Mear	n differenc	e	Pa	tanaik 2022		1.4	1.7	27	0.85	1.4	27	5.9%	0.55 [-0.28 , 1.38]	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random,	95% CI		IV, Rar	ndom, 95%	% CI	Dr	agosloveanu	1 2022	0.2	0.6	24	0.4	0.7	26	31.3%	-0.20 [-0.56 , 0.16]	
		-												Xu	2022		1.3	2	31	1.2	1.5	23	4.7%	0.10 [-0.83 , 1.03]	
Lai 2017	44.6	5.9	29	8.9	3.7	58	40.7%	35.70 [33.3	5,38.05					Ta	ng 2025		2.04	1.1	20	2	1.11	32	13.0%	0.04 [-0.02 , 0.00]	
Lim 2020 Dragosloveanu 2022	1/5.6	141.4	52	8.6	5.3	52	18.6%	12 70 111 0	, 205.41	() n			-	то	tal (95% CI)				343			385	100.0%	-0.13 [-0.33 . 0.08]	
Diagosioveanu 2022	10.0	0.0	24	1.0	5.0	20	40.770	13.70 [11.0	5, 10.51	1				He	terogeneity:	Chi ² = 18	8.58, df =	10 (P =	0.05); F =	46%					1
Total (95% CI)			105			136	100.0%	51.18 [28.7	1,73.65	5]				Te	st for overall	effect: Z	= 1.21 (F	= 0.22)							-2 -1 0 1 2
Heterogeneity: Tau ² =	321.41; C	hi² = 198.	14, df = 2	(P < 0.000	001); F =	99%		-		· .		•		Te	st for subgro	oup differe	ences: No	ot applica	ble						Favours MIS Favours OS
Test for overall effect:	Z = 4.46 (I	P < 0.000	101)							-200	-100	0 1	100 20	50											
lest for subgroup diff	erences: N	ot applica	ible							Fa	vours mis	Fav	ours US												
												F: A0	OFA	S C	Corre	ctio	n								
							Study or S	Subgroup N	ean	MIS SD	Total	Mean	OS SD	Total	Weight	Mean dif IV, Fixed	ference , 95% CI		Mean IV, Fix	difference ed, 95% C	1	_			
							Maffulli 20	09	31	14.87	30	35	15.20	30	3 3.9%	-4.00 [-10	.96 , 2.96	B]		+					
							Radwan 20	012	45.64	18.15	31	40.2	12.89	33	3 3.1%	5.44 [-2.3	32 , 13.20	D]		+					
							Giannini 20	D13	30.2	18.11	20	29.6	18.88	20	D 1.4% (0.60 [-10.	87,12.07	7]		+	_				
							Othman 20)16	46.45	5.13	33	44.76	6.52	25	5 19.6%	1.69 [-1	.41 , 4.79	9]		+					
							Lee 2017		27.4	3.83	25	24.5	5.55	25	5 26.9%	2.90 [0	26,5.54	4j							
							Lai 2017 Choi 2040		20.0	24.34	29	35.2	20.09	58	o 1.8% ·	0.601	01 6 01	ין 11		+					
							Kaufmann	2020	30.5	20.59	25	28.8	34.92	30	0.2% 0.6%-1	0-] 00.0	39 19 20	ני חו	_						
							l im 2020	LVLV	30.4	20.00	52	26.5	22.48	5	2 2.5%	4 00 [-4]	74 12 74	41 –	_		_				
							Guo 2021		38.8	17.1	48	35.8	28.1	64	4 2.7%	3.00 [-5	41, 11,41	11	_		_				
							Tay 2022		29	24.76	30	33.3	19.85	30	0 1.5%	-4.30 [-15	.66 , 7.00	6] _							
							Dragoslow	eanu 2022	19.9	5.59	24	18	5.76	26	6 19.0%	1.90 [-1	.25 , 5.05	5]		+					
						:	Xu 2022		46.2	17.84	31	41.9	15.06	23	3 2.4%	4.30 [-4.4	49 , 13.09	9]	-		_				
							Tang 2023		35.32	9.07	28	30.66	9.65	32	2 8.4%	4.66 [-0	.08 , 9.40	0]		+					
т								6 CI)			431			474	4 100.0%	2.03 [0	.66 . 3.41	11							

Figure 4. Forest plots of postoperative outcomes and surgical metrics. (A) Operative time between MIS and open groups; (B) length of stay; (C) radiation exposure; (D) postoperative AOFAS score; (E) postoperative

open groups; (**B**) length of stay; (**C**) radiation exposure; (**D**) postoperative AOFAS score; (**E**) postoperative VAS score and (**F**) AOFAS correction. MIS, minimally invasive surgery. AOFAS, American Orthopedic Foot and Ankle Society. VAS, visual analogue score [4,11,12,21,25,26,28,29,32,33,35,37–39,42,43,45,47].

3.5.2. Length of Stay (In Days)

Length of stay was reported in three studies with 241 patients (Figure 4) [12,21,37]. The analysis showed significantly shorter hospital stays with MIS compared to OS (MD = -0.76, CI: -1.30 to -0.21, p = 0.007). Overall, heterogeneity was moderate (I² = 74%, p = 0.02).

3.5.3. Radiation Exposure (In Seconds)

Radiation exposure was reported in three studies with 241 patients (Figure 4) [28,37,42]. The analysis showed significantly higher radiation exposure with MIS compared to OS (MD = 51.18, CI: 28.71 to 73.65, p < 0.00001). Overall, heterogeneity was very high (I² = 99%, p < 0.00001), indicating substantial variability among the studies.

3.5.4. Postoperative AOFAS Score

Postoperative AOFAS score was reported in 14 studies with 905 patients (Figure 4) [11,12,25,26,28,29,32,35,37,39,42,43,45,47]. The analysis showed significantly higher AOFAS scores with MIS compared to OS (MD = 2.52, CI: 0.92 to 4.13), indicating better functional outcomes. Overall, heterogeneity was moderate ($I^2 = 56\%$, p = 0.005). The difference in postoperative AOFAS score was statistically significant (p = 0.002).

3.5.5. Postoperative VAS Score

Postoperative VAS scores were reported in 11 studies with 728 patients (Figure 4) [4,25,26,28,29,32,33,35,37,42,43]. The analysis showed a slight reduction in pain with MIS compared to OS (MD = -0.13, CI: -0.33 to 0.08), though this difference was not statistically significant (p = 0.22). Heterogeneity was moderate (I² = 46%, p = 0.05).

3.5.6. AOFAS Correction

The mean difference between preoperative and postoperative AOFAS scores was calculated in 14 studies with 905 patients (Figure 4) [11,12,25,26,28,29,32,35,37,39,42,43,45,47]. MIS had significantly better AOFAS correction compared to OS (MD = 2.03, CI: 0.66 to 3.41, p = 0.004). Overall, heterogeneity was low (I² = 0%, p = 0.70).

3.6. Quality Assessment Results

The modified Cochrane Collaboration tool was used to assess the risk of bias in both randomised controlled trials (RCTs) and retrospective cohort studies. The risk of bias graphs for RCTs and non-RCTs are presented in Figure 5 and Figure 6, respectively [4,11,12,21–30,32–49].

3.7. Publication Bias

Publication bias was evaluated across the included studies using Egger's test, a linear regression method applied to the postoperative IMA angle data [20]. The results, depicted in Figure 7's funnel plot, indicated no significant evidence of publication bias (p = 0.12).

Figure 7. Egger's test funnel plot.

4. Discussion

This meta-analysis compares the outcomes of open surgery (OS) and minimally invasive surgery (MIS) for hallux valgus (HV) correction, focusing on radiographic corrections, complication rates and functional outcomes. As surgical techniques continue to evolve, the use of MIS for HV correction has gained attention due to its potential benefits in reducing tissue trauma and recovery time. The recent NICE guidance recommends minimally invasive percutaneous techniques with internal fixation as a viable option for HV correction, provided standard clinical governance and audit measures are in place. NICE concluded that MIS performs comparably to OS regarding pain and recovery, with no major safety concerns, but noted a lack of strong evidence favouring one MIS technique over another [50].

Our analysis revealed that while MIS and OS exhibit similar radiographic results for key parameters such as the HVA and IMA, MIS demonstrates notable advantages in certain areas. Specifically, MIS shows superior postoperative alignment in DMAA and better functional recovery, as evidenced by higher AOFAS scores, shorter operative times and length of stay. However, MIS is associated with higher rates of hardware removal and increased radiation exposure. Overall, these results suggest that MIS offers comparable if not slightly improved outcomes in terms of postoperative recovery and functional performance. However, considerations regarding radiation and hardware-related issues should be considered when choosing the appropriate surgical approach.

To our knowledge this meta-analysis is the most comprehensive to date, including 32 studies—surpassing the scope of previous analyses by Ji et al. (22 studies), Lu et al. (11 studies), Singh et al. (9 studies) and Alimy et al. (seven RCTs) [3,5,51,52]. In addition to the larger number of studies, our meta-analysis offers several novel contributions. We are the first to systematically calculate and analyse angle corrections across all studies, providing a more detailed evaluation of deformity correction. Previous works did not offer this level of precision. Furthermore, our study breaks down specific complications, rather than pooling them together as earlier analyses did, offering a more nuanced understanding of the risks associated with each surgical approach. Another unique aspect of our analysis is the calculation of improvement in AOFAS scores, as opposed to only reporting final scores, giving a clearer picture of functional recovery over time.

When comparing radiographic outcomes, our findings revealed no significant differences between MIS and OS in key postoperative angles such as HVA and IMA. However, our analysis identified a significant advantage for MIS in the correction of the DMAA, a finding not emphasised in previous studies. The DMAA is the angle between the distal articular surface and the longitudinal axis of the first metatarsal. The superior correction of DMAA with MIS can be attributed to the transverse osteotomy technique typically employed in MIS. This offers surgeons greater control of the distal segment compared to the chevron or scarf osteotomies used in OS. This enhanced control in DMAA correction makes MIS particularly beneficial in patients with higher angle deformities, where achieving optimal realignment is crucial in prevent recurrence or revision surgeries. The correction in HVA and IMA between the two techniques were non-significant, suggesting both techniques are effective for typical HV cases. For patients with mild to moderate deformities, the choice of technique may therefore be guided by other factors such as patient preference, surgeon experience and the specific clinical scenario. However, in cases with severe deformities, MIS may offer an edge due to its superior control over DMAA, improving overall alignment and long-term outcomes.

The American Orthopaedic Foot and Ankle Society (AOFAS) score is a widely used tool for evaluating foot and ankle conditions. It integrates both patient-reported and physician-determined factors to gauge pain, function, and alignment on a scale from 0 to 100 [53]. In this analysis, MIS demonstrated significantly improved postoperative AOFAS scores, indicating patients who undergo MIS may achieve better functional recovery than those who have OS. As a non-validated measure that combines subjective patient inputs with objective clinician assessments, it is susceptible to bias and requires careful interpretation [54]. This raises the possibility of the AOFAS score exaggerating the effectiveness of techniques like MIS, potentially inflating perceived functional recovery benefits. While these limitations are crucial to acknowledge, the AOFAS score widespread implementation facilitates comparisons across various studies. Its findings, despite being potentially biased, still provide meaningful insights when understood within the scope of its limitations.

Another key advantage of MIS our analysis highlighted is its shorter operative durations and reduced hospital stays. MIS has the potential to reduce productivity loss and absenteeism costs by enabling patients to resume their daily activities and responsibilities sooner. This efficiency not only enhances patient quality of life but also mitigates the economic impact of lost wages and reduced productivity for both employees and employers. By minimising time off work due to surgery, MIS can contribute to a more sustainable workforce and lower overall healthcare costs.

In terms of complications, our analysis found no significant differences between OS and MIS in major adverse outcomes such as revision surgery, recurrence, wound infection, chronic pain, or osteoarthritis. This suggests that both techniques offer comparable safety profiles and these results are reassuring for both surgeons and patients when considering surgical options for HV correction. However, MIS was associated with a higher likelihood of hardware removal, an area of concern that warrants attention. This may be due to the use of more hardware in MIS or patient discomfort caused by its proximity to soft tissues.

The most frequent complication in our analysis was implant removal, particularly in earlier-generation techniques such as SERI and Bösch osteotomies with K-wires and third-generation minimally invasive chevron-akin osteotomies with cannulated screws. While this presents a clear challenge, recent improvements in screw morphology have reduced soft tissue irritation, potentially decreasing the need for hardware removal in future fourth-generation MIS techniques [15]. Additionally, a finite element analysis (FEA) model by Lewis et al. demonstrated that fixation with two screws, one bicortical and one intramedullary, was the optimal screw configuration in producing the lowest values for osteotomy displacement, minimum and maximum stress, and von Mises stress on both bone and screws [55]. This fourth-generation technique shows promise for improving outcomes, allowing for early weight-bearing and rehabilitation, and potentially reducing the incidence of implant removal. As these newer techniques become more widely adopted and improved screw designs are implemented, we anticipate further advancements in patient recovery and a reduction in hardware-related complications.

The learning curve is a critical factor to consider when adopting MIS for HV. Baumann et al. concluded that the learning curve for MIS in HV typically plateaus after approximately 35.5 surgeries (range 27–40) [51]. During this learning phase, surgeons experienced longer operating times and greater reliance on fluoroscopy. Despite these challenges, Baumann et al. found no significant difference in patient outcomes or complication rates between the learning phase and the plateau phase, suggesting that patient safety remains largely unaffected by the learning curve. However, they emphasised the need for further research to fully understand the impact of the learning curve on long-term outcomes. In our meta-analysis, several studies accounted for the learning curve by excluding early cases to mitigate the potential for complications. For example, two papers excluded the first 10 and first 20 cases, respectively, and one study initially abandoned MIS due to a high rate of burn wounds before resuming once the technique was perfected [34,35]. By excluding these early cases, the reported complication rates may reflect selective reporting

bias, as complications during the learning curve were not included. Complications during the learning phase should not be viewed as just a byproduct, as they can have lasting effects on patients. To mitigate these risks, cadaveric training and thorough practice with MIS-specific instruments are highly recommended. This allows surgeons to develop the necessary tactile skills and lessen the learning curve's influence on patient outcomes.

This meta-analysis has several limitations that should be considered when interpreting the results. First, the inclusion of different generations of MIS techniques, some utilising K-wires and others one or two screws, contributes to high heterogeneity, complicating direct comparisons. Furthermore, the studies included in this meta-analysis span over two decades (1996–2024), a period during which there have been significant advancements in surgical techniques and peri-operative care. Newer fourth-generation MIS techniques have emerged in recent years, while older first- and second-generation techniques are likely to be phased out. This evolution complicates direct comparisons of surgical outcomes, as older techniques may no longer represent contemporary practice. Improvements in perioperative care over the years and its variability across the globe, including better patient preparation, anaesthesia protocols and postoperative management, may have contributed to reduced operative times and shorter lengths of hospital stay, further complicating the interpretation of pooled outcomes. Advances in screw morphology and design over the past two decades also add complexity, as newer screws are designed to improve fixation and outcomes, making comparisons with older methods less reliable. Additionally, non-randomised studies and grey literature were included, which introduces potential biases inherent to retrospective designs. Variability in study duration and differing time points also affect consistency across pooled data. Furthermore, the incomplete reporting of primary and secondary outcomes in several studies limits the robustness of our findings. The AOFAS score, although widely used, is non-validated and may result in biased assessments. Moreover, some studies excluded early MIS cases to account for the learning curve, introducing selective reporting bias. Finally, the possibility of publication bias may have influenced the overall results.

5. Conclusions

In conclusion, this meta-analysis demonstrates that both OS and MIS for HV correction achieve similar radiographic outcomes, with MIS showing advantages in certain areas, such as superior DMAA correction, shorter operative times and improved functional recovery. However, MIS is associated with higher rates of hardware removal and increased radiation exposure, which must be carefully considered. While the learning curve for MIS presents challenges, adequate training can help mitigate complications. Overall, MIS offers comparable and, in some cases, improved outcomes, but requires careful patient selection and surgeon expertise.

Author Contributions: Conceptualisation, A.-H.K. and A.P.; methodology, A.-H.K. and M.U.A.; validation, M.T., A.-R.K. and O.T.A.Z.; formal analysis, A.-H.K.; investigation, A.-H.K., M.T., O.T.A.Z. and K.E.A.; resources, A.-H.K. and A.P.; data curation, A.-H.K., A.-R.K., M.T., O.T.A.Z. and K.E.A.; writing—original draft preparation, all authors; writing—review and editing, all authors.; visualisation, A.-H.K. and A.-R.K.; supervision, A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.

Acknowledgments: Generative AI (ChatGPT, OpenAI) was used only for grammar and language refinement. No AI tools were used for data analysis or content creation. The authors are fully responsible for the manuscript's content.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Kuhn, J.; Alvi, F. Hallux Valgus. In *StatPearls*; StatPearls: Treasure Island, FL, USA, 2024.
- 2. Greisberg, J.; Sperber, L.; Prince, D.E. Mobility of the first ray in various foot disorders. Foot Ankle Int. 2012, 33, 44–49. [CrossRef]
- 3. Ji, L.; Wang, K.; Ding, S.; Sun, C.; Sun, S.; Zhang, M. Minimally Invasive vs. Open Surgery for Hallux Valgus: A Meta-Analysis. *Front. Surg.* **2022**, *9*, 843410. [CrossRef]
- 4. Patnaik, S.; Jones, N.J.; Dojode, C.; Narang, A.; Lal, M.; Iliopoulos, E.; Chougule, S. Minimally invasive hallux valgus correction: Is it better than open surgery? *Foot* **2022**, *50*, 101871. [CrossRef] [PubMed]
- Alimy, A.R.; Polzer, H.; Ocokoljic, A.; Ray, R.; Lewis, T.L.; Rolvien, T.; Waizy, H. Does Minimally Invasive Surgery Provide Better Clinical or Radiographic Outcomes Than Open Surgery in the Treatment of Hallux Valgus Deformity? A Systematic Review and Meta-analysis. *Clin. Orthop. Relat. Res.* 2023, 481, 1143–1155. [CrossRef] [PubMed]
- 6. Li, G.; Zhang, H.; Wang, X.; Yang, Y.; Xu, H.; Hong, J.; Kong, S.W.; Chan, K.B.; Chong, K.W.; Yan, A.; et al. Clinical guideline on the third generation minimally invasive surgery for hallux valgus. *J. Orthop. Transl.* **2024**, *45*, 48–55. [CrossRef]
- Aiyer, A.; Massel, D.H.; Siddiqui, N.; Acevedo, J.I. Biomechanical Comparison of 2 Common Techniques of Minimally Invasive Hallux Valgus Correction. *Foot Ankle Int.* 2021, 42, 373–380. [CrossRef] [PubMed]
- 8. Molloy, A.; Heyes, G. Cost-Effectiveness of Surgical Techniques in Hallux Valgus. Foot Ankle Clin. 2020, 25, 19–29. [CrossRef]
- 9. Biz, C.; Fosser, M.; Dalmau-Pastor, M.; Corradin, M.; Roda, M.G.; Aldegheri, R.; Ruggieri, P. Functional and radiographic outcomes of hallux valgus correction by mini-invasive surgery with Reverdin-Isham and Akin percutaneous osteotomies: A longitudinal prospective study with a 48-month follow-up. *J. Orthop. Surg. Res.* **2016**, *11*, 157. [CrossRef] [PubMed]
- Del Vecchio, J.J.; Ghioldi, M.E. Evolution of Minimally Invasive Surgery in Hallux Valgus. *Foot Ankle Clin.* 2020, 25, 79–95. [CrossRef] [PubMed]
- 11. Radwan, Y.A.; Mansour, A.M. Percutaneous distal metatarsal osteotomy versus distal chevron osteotomy for correction of mild-to-moderate hallux valgus deformity. *Arch. Orthop. Trauma. Surg.* **2012**, *132*, 1539–1546. [CrossRef]
- 12. Maffulli, N.; Longo, U.G.; Oliva, F.; Denaro, V.; Coppola, C. Bosch osteotomy and scarf osteotomy for hallux valgus correction. *Orthop. Clin. N. Am.* **2009**, 40, 515–524. [CrossRef] [PubMed]
- 13. Lam, K.L.K.; Kong, S.W.; Chow, Y.H. Percutaneous Chevron Osteotomy in Treating Hallux Valgus: Hong Kong Experience and Mid-Term Results. *J. Orthop.* **2014**, *19*, 25–30. [CrossRef]
- 14. Trnka, H.J. Percutaneous, MIS and open hallux valgus surgery. EFORT Open Rev. 2021, 6, 432–438. [CrossRef]
- 15. Spacek, A.E.; Yang, C.; Abicht, B.P. Periarticular soft tissue effect following fourth generation MIS Hallux Valgus correction: Formation of a pyramid-shaped first metatarsal osseous healing zone. *Foot Ankle Surg. Tech. Rep. Cases* **2024**, *4*, 100408. [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ* 2021, 372, n71. [CrossRef] [PubMed]
- 17. Altman, D.G. Ebscohost Practical Statistics for Medical Research, 1st ed.; CRC Press LLC: Milton, MA, USA, 1990.
- 18. Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Book Series; Wiley: Hoboken, NJ, USA, 2008.
- 19. Betty Kirkwood, J.S. Essential Medical Statistics, 2nd ed.; Blackwell Science: Oxford, UK, 2003.
- 20. Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* **1997**, 315, 629–634. [CrossRef] [PubMed]
- 21. Kim, J.; Oh, M.; Kyeong, T.H.; Choi, M.N.; Lee, S.Y. Radiographic Comparison of Open and Minimally Invasive Distal Chevron Metatarsal Osteotomy in Patients With Hallux Valgus. *J. Foot Ankle Surg.* **2024**, *63*, 386–391. [CrossRef] [PubMed]
- 22. Kakwani, M.; Pujol-Nicolas, A.; Griffiths, A.; Hutt, N.; Townshend, D.; Murty, A.; Kakwani, R. COSMIC feasibility study comparing open scarf osteotomy and minimally invasive chevron osteotomy for hallux valgus correction. In *Orthopaedic Proceedings*; Bone & Joint: Sydney, Australia, 2023.
- Toepfer, A.; Häni, S.; Potocnik, P. Economic differences in traditional-open versus minimally-invasive hallux valgus surgery. *Fuß Sprunggelenk* 2023, 22, 288–289. [CrossRef]
- 24. Hwang, Y.G.; Park, K.H.; Han, S.H. Medial Reduction in Sesamoid Position after Hallux Valgus Correction Surgery Showed Better Outcome in S.E.R.I. Osteotomy than DCMO. *J. Clin. Med.* **2023**, *12*, 4402. [CrossRef]
- 25. Tang, R.; Jie, Y.; Liang, X.J.; Li, Y.; Wang, J.H.; Jin, M.L.; Du, Y.; Lu, T.; Hao, Y.X. Modified minimally invasive chevron osteotomy versus traditional incision chevron osteotomy. *arXiv* 2023. [CrossRef]

- 26. Tay, A.Y.W.; Goh, G.S.; Koo, K.; Yeo, N.E.M. Third-Generation Minimally Invasive Chevron-Akin Osteotomy for Hallux Valgus Produces Similar Clinical and Radiological Outcomes as Scarf-Akin Osteotomy at 2 Years: A Matched Cohort Study. *Foot Ankle Int.* **2022**, *43*, 321–330. [CrossRef]
- 27. Li, B.; He, W.B.; Xia, J.; Zhou, H.C.; Zhao, Y.G.; Yang, Y.F.; Yu, G.R. Comparison of minimally invasive and traditional Chevron osteotomy in treating patients with mild to moderate hallux valgus. *Zhongguo Gu Shang* **2022**, *35*, 818–824. [CrossRef] [PubMed]
- 28. Dragosloveanu, S.; Popov, V.M.; Cotor, D.C.; Dragosloveanu, C.; Stoica, C.I. Percutaneous Chevron Osteotomy: A Prospective Randomized Controlled Trial. *Medicina* **2022**, *58*, 359. [CrossRef] [PubMed]
- 29. Xu, Y.; Guo, C.J.; Li, X.C.; Xu, X.Y. Radiographic and clinical outcomes of minimally invasive surgery versus open osteotomies for the correction of hallux valgus. *Int. Orthop.* **2022**, *46*, 1767–1774. [CrossRef] [PubMed]
- Vieira Cardoso, D.; Veljkovic, A.; Wing, K.; Penner, M.; Gagne, O.; Younger, A. Cohort Comparison of Radiographic Correction and Complications Between Minimal Invasive and Open Lapidus Procedures for Hallux Valgus. *Foot Ankle Int.* 2022, 43, 1277–1284. [CrossRef] [PubMed]
- 31. Siddiqui, N.A.; Mayer, B.E.; Fink, J.N. Short-Term, Retrospective Radiographic Evaluation Comparing Pre- and Postoperative Measurements in the Chevron and Minimally Invasive Distal Metatarsal Osteotomy for Hallux Valgus Correction. *J. Foot Ankle Surg.* **2021**, *60*, 1144–1148. [CrossRef] [PubMed]
- 32. Guo, C.J.; Li, C.G.; Li, X.C.; Xu, Y.; Cai, M.; Xu, X.Y. Hallux Valgus Correction Comparing Percutaneous Oblique Osteotomy and Open Chevron Osteotomy at a 2-year Follow-up. *Orthop. Surg.* **2021**, *13*, 1546–1555. [CrossRef]
- 33. Torrent, J.; Baduell, A.; Vega, J.; Malagelada, F.; Luna, R.; Rabat, E. Open vs Minimally Invasive Scarf Osteotomy for Hallux Valgus Correction: A Randomized Controlled Trial. *Foot Ankle Int.* **2021**, *42*, 982–993. [CrossRef] [PubMed]
- 34. Palmanovich, E.; Ohana, N.; David, S.; Small, I.; Hetsroni, I.; Amar, E.; Sharfman, Z.T.; Segal, D.; Atzmon, R. Distal Chevron Osteotomy vs The Simple, Effective, Rapid, Inexpensive Technique (SERI) for Mild to Moderate Isolated Hallux Valgus: A Randomized Controlled Study. *Indian. J. Orthop.* 2021, 55, 110–118. [CrossRef]
- Kaufmann, G.; Mortlbauer, L.; Hofer-Picout, P.; Dammerer, D.; Ban, M.; Liebensteiner, M. Five-Year Follow-up of Minimally Invasive Distal Metatarsal Chevron Osteotomy in Comparison with the Open Technique: A Randomized Controlled Trial. *J. Bone Jt. Surg. Am.* 2020, 102, 873–879. [CrossRef]
- Schilde, S.; Delank, K.S.; Arbab, D.; Gutteck, N. Minimally Invasive vs Open Akin Osteotomy. *Foot Ankle Int.* 2021, 42, 278–286. [CrossRef]
- 37. Lim, W.S.R.; Rikhraj, I.S.; Koo, K.O.T. Simultaneous bilateral hallux valgus surgery: Percutaneous or conventional? Early results of a matched study from a tertiary institution. *Foot Ankle Surg.* **2021**, *27*, 377–380. [CrossRef] [PubMed]
- Schulze, C.; Bohme, N.; Hacke, C.; Gutcke, A.; Bergschmidt, P. Kramer and Chevron Osteotomy for Hallux Valgus Deformity—Retrospective Comparison of Functional and Radiological Results. Z. Orthop. Unf. 2019, 157, 29–34. [CrossRef] [PubMed]
- 39. Choi, J.Y.; Ahn, H.C.; Kim, S.H.; Lee, S.Y.; Suh, J.S. Minimally invasive surgery for young female patients with mild-to-moderate juvenile hallux valgus deformity. *Foot Ankle Surg.* **2019**, *25*, 316–322. [CrossRef]
- 40. Frigg, A.; Zaugg, S.; Maquieira, G.; Pellegrino, A. Stiffness and Range of Motion After Minimally Invasive Chevron-Akin and Open Scarf-Akin Procedures. *Foot Ankle Int.* **2019**, *40*, 515–525. [CrossRef] [PubMed]
- 41. Boksh, K.; Qasim, S.; Khan, K.; Tomlinson, C.; Mangwani, J. A Comparative Study of Mini-Scarf Versus Standard Scarf Osteotomy for Hallux Valgus Correction. *J. Foot Ankle Surg.* **2018**, *57*, 948–951. [CrossRef] [PubMed]
- 42. Lai, M.C.; Rikhraj, I.S.; Woo, Y.L.; Yeo, W.; Ng, Y.C.S.; Koo, K. Clinical and Radiological Outcomes Comparing Percutaneous Chevron-Akin Osteotomies vs Open Scarf-Akin Osteotomies for Hallux Valgus. *Foot Ankle Int.* **2018**, *39*, 311–317. [CrossRef]
- 43. Lee, M.; Walsh, J.; Smith, M.M.; Ling, J.; Wines, A.; Lam, P. Hallux Valgus Correction Comparing Percutaneous Chevron/Akin (PECA) and Open Scarf/Akin Osteotomies. *Foot Ankle Int.* **2017**, *38*, 838–846. [CrossRef] [PubMed]
- 44. Brogan, K.; Lindisfarne, E.; Akehurst, H.; Farook, U.; Shrier, W.; Palmer, S. Minimally Invasive and Open Distal Chevron Osteotomy for Mild to Moderate Hallux Valgus. *Foot Ankle Int.* **2016**, *37*, 1197–1204. [CrossRef] [PubMed]
- 45. A Othman, I.H. Treatment of Mild to Moderate Hallux Valgus, Percutaneous Osteotomy versus Distal Chevron Osteotomy. *Open J. Orthop.* **2016**, *6*, 150–157. [CrossRef]
- Poggio, D.; Rios Ruh, J.M. Response to letter to the editor on "Comparison of postoperative costs of two surgical techniques for hallux valgus (Kramer vs. scarf)". *Foot Ankle Surg.* 2015, 21, 223. [CrossRef] [PubMed]
- 47. Giannini, S.; Cavallo, M.; Faldini, C.; Luciani, D.; Vannini, F. The SERI distal metatarsal osteotomy and Scarf osteotomy provide similar correction of hallux valgus. *Clin. Orthop. Relat. Res.* **2013**, *471*, 2305–2311. [CrossRef] [PubMed]
- 48. Roth, A.; Kohlmaier, W.; Tschauner, C. Surgery of hallux valgus. Distal metatarsal osteotomy—Subcutaneous ('Bösch') versus open ('Kramer') procedures. *Foot Ankle Surg.* **1996**, *2*, 109–117. [CrossRef]
- 49. Balesar, V.V.; Bruin, L.L.; van Liebergen, M.; Deenik, A.R.; Keizer, S.B. MICA Procedure vs Open Chevron Osteotomy for Hallux Valgus Correction: A Prospective Cohort Study. *Foot Ankle Orthop.* **2024**, *9*, 24730114231224725. [CrossRef] [PubMed]

- NICE. Minimally Invasive Percutaneous Surgical Techniques with Internal Fixation for Correcting Hallux Valgus. Available online: https://www.nice.org.uk/guidance/ipg789/chapter/1-Recommendations (accessed on 8 November 2024).
- 51. Baumann, A.N.; Walley, K.C.; Anastasio, A.T.; Gong, D.C.; Talusan, P.G. Learning curve associated with minimally invasive surgery for hallux valgus: A systematic review. *Foot Ankle Surg.* **2023**, *29*, 560–565. [CrossRef]
- 52. Singh, M.S.; Khurana, A.; Kapoor, D.; Katekar, S.; Kumar, A.; Vishwakarma, G. Minimally invasive vs open distal metatarsal osteotomy for hallux valgus—A systematic review and meta-analysis. *J. Clin. Orthop. Trauma.* **2020**, *11*, 348–356. [CrossRef]
- 53. Van Lieshout, E.M.; De Boer, A.S.; Meuffels, D.E.; Den Hoed, P.T.; Van der Vlies, C.H.; Tuinebreijer, W.E.; Verhofstad, M.H. American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score: A study protocol for the translation and validation of the Dutch language version. *BMJ Open* 2017, 7, e012884. [CrossRef] [PubMed]
- 54. Macaulay, A.; Nandyala, S.V.; Miller, C.P.; Ghorbanhoseini, M.; Walley, K.C.; Kwon, J.Y. Potential for Bias and the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scoring System. *Foot Ankle Spec.* **2018**, *11*, 416–419. [CrossRef]
- Lewis, T.L.; Mansur, H.; Ferreira, G.F.; Filho, M.V.P.; Battaglion, L.R.; Zambelli, R.; Ray, R.; Nunes, G.A. Comparative biomechanical study of different screw fixation methods for minimally invasive hallux valgus surgery: A finite element analysis. *Foot Ankle Surg.* 2024; in press. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.