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Abstract: A reformulation of the dynamical component analysis (DyCA) via an optimization-free
approach is presented. The original cost function approach is converted into a numerical linear
algebra problem, i.e., the computation of coupled singular-value decompositions. A simple algorithm
is presented together with numerical experiments to document the feasability of the approach.
This methodology is able to recover the mixing and state matrices of multivariate signals from
high-dimensional measured data fully.

Keywords: dynamical component analysis; system of ordinary differential equations; singular-
value decomposition

1. Introduction

An important task in signal processing is the decomposition of a multivariate signal for
the analysis of measured or simulated data leading to the possible detection of the relevant
subspace or the sources of the signal. Recently, a new method—dynamical component
analysis (DyCA)—based on modeling the signal via two coupled systems of ordinary
differential equations (ODE) was introduced. One system is governed by time-invariant
linear dynamics, whereas the second one is defined by an unknown non-linear vector field,
assumed to be smooth. Its derivation and its features have been presented in depth (see [1,
2]). The presented algorithm was nearly as simple as principal component analysis (PCA)
or certain independent component analysis (ICA) approaches. The results obtained via
DyCA, however, yield deeper insight into the underlying dynamics of the data. Moreover,
as demonstrated by several examples in [2], typically, neither ICA nor PCA approaches are
able to capture the linear/non-linear character of the underlying dynamics.

The present work, in particular, is partially based on two conference papers [3,4]. Moreover,
our objective is to reformulate the original cost function approach for DyCA— formerly leading
to a generalized eigenvalue, or more generally, to an invariant eigenspace problem—into
an inverse-problem-type formulation, which allows for the recovery of the state and mixing
matrices from high-dimensional matrix-valued time series.

This paper is organized as follows. First, the general problem is briefly reviewed;
the cost function is discussed in detail; and, in particular, the critical points are analyzed.
Second, we formulate an optimization-free algorithm, mainly based on solving coupled
singular-value decompositions. Finally, we present numerical experiments to support
our approach.

2. Problem Formulation

Consider a signal Q = [q(t1), . . . , q(tT)] ∈ RN×T and its derivative with respect to
time denoted by

.
Q ∈ RN×T .
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Let 1 ≤ m ≤ n ≤ N. Assume that Q and
.

Q are of the form

Q= WX,
.

Q= W
.

X,
(1)

where W ∈ RN×n is a constant matrix of rank n = rank(W) and X = [x(t1), . . . , x(tT)],
.

X =[ .
x(t1), . . . ,

.
x(tT)

]
∈ RN×T are samples of x : [t1, tT ] → Rn , fulfilling the ODE

[Im, 0]
.
x(t)= Ax(t),

[0, In−m]
.
x(t)= f (x(t)).

(2)

Here, A ∈ Rm×n is some constant matrix and f : Rn → Rn−m is an unknown smooth
function. Under these assumptions, we formulate the problem that will be addressed in
the sequel.

Problem 1 (DyCA).

• Given a signal Q ∈ RN×T , its derivative
.

Q ∈ RN×T with 1 ≤ m ≤ n ≤ N.

• Find estimates in a least squares sense for A ∈ Rm×n, W ∈ RN×n, and X,
.

X ∈ RN×T

according to the above assumptions.

Defining f (X) := [ f (x1), . . . , f (xT)] ∈ Rn×T , we obtain the following via Equations (1)
and (2):

Q= WX,
.

Q= W
[

AX
f (X)

]
.

(3)

We will propose a method by which to solve Problem 1, assuming exact data.

3. Cost Function

We approach the DyCA problem by minimizing a suitable cost function. Similar to [5],
we fit the part of the data corresponding to the linear part of the ODE by minimizing
the cost:

f : RN×n ×Rm×n → R,

(W, A) 7→∥ [Im, 0]
.

X − AX ∥2
F .

(4)

Here, X and
.

X depend implicitly on W.
To derive a more explicit expression for Equation (4), we rewrite Equation (3) by

considering thin singular-value decompositions (SVDs) of Q and
.

Q, respectively. In more
detail, let

θ0Σ0Ξ⊤
0 = Q

(3)
= WX (5)

be a thin SVD of Q, where θ0 ∈ StN,n, Σ0 ∈ Rn×n diagonal and Ξ0 ∈ StT,n. Analogously, let

θ2Σ2Ξ⊤
2 =

.
Q

(3)
= W

[
AX
f (X)

]
(6)

be a thin SVD of
.

Q, where θ2 ∈ StN,n, Σ0 ∈ Rn×n diagonal and Ξ2 ∈ StT,n. As usual, (cf.,
e.g., [4]), the Stiefel manifold is denoted by

Sta,b :=
{

X ∈ Ra×b | X⊤X = Ib

}
, (7)
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i.e., a differentiable submanifold of the vector space Ra×b with a ≥ b consisting of rectangu-
lar matrices with orthonormal columns. Exploiting θ⊤i θi = Ik for i ∈ {0, 2}, we obtain via
Equation (5): (

θ⊤0 W
)

X = Σ0Ξ⊤
0 , (8)

while Equation (6) yields (
θ⊤2 W

) .
X = Σ2Ξ⊤

2 . (9)

For i ∈ {0, 2}, we set
Gi = Gi(W)

= Gi(θi, W)
:= θ⊤i W ∈ Rn×n.

(10)

Via the assumptions imposed in the formulation of the DyCA problem, we have for
i ∈ {0, 2}

span(W) = span(θi), (11)

yielding Gi = θ⊤i W ∈ GL(n); i.e., Gi is invertible.
Hence, solving Equation (5), as well as Equation (6) for X and

.
X, respectively, and

putting the result into Equation (4) yields the smooth cost

f : RN×n ×Rm×n → R,

(W, A) 7→ f (W, A) :=∥ [Im, 0]G−1
2 Σ2Ξ⊤

2 − AG−1
0 Σ0Ξ⊤

0 ∥2
F,

(12)

where G0 = G0(W) and G2 = G2(W) are given via Equation (10).

Remark 1. Essentially, the cost function Equation (12) considered here is a reformulation of the
one considered earlier (see [2,5] and several follow up papers, in particular, e.g., [3,6]). There is,
however, an important difference; the reformulation here takes, in some sense, the inverse problem
character explicitly into consideration.

Remark 2. Strictly speaking, the cost f defined in Equation (12) is not defined on the whole space
RN×n ×Rm×n but only on the subset given by U ×Rm×n, where

U=
{

W ∈ RN×n | θ⊤0 W ∈ GL(n)andθ⊤2 W ∈ GL(n)
}

= ϕ−1
0 (R∖ {0}) ∩ ϕ−1

2 (R∖ {0}),
(13)

where ϕi : RN×n → R are the continuous functions defined for i ∈ {0, 2} by

ϕi(W) = det
(

θ⊤i W
)

. (14)

Note that U ⊆ RN×n is open by the second equality in Equation (13) and the continuity of ϕi.
Thus, the domain of f, namely, U ×Rn×m, is an open subset of RN×n ×Rn×m.

Notation 1. From now on, if not indicated otherwise, U ×Rm×n ⊆ RN×n ×Rm×n denotes the
domain of f as characterized in Remark 2.

In the sequel, through abuse of notation, we sometimes write f : RN×n ×Rm×n → R instead
of f : U ×Rm×n → R .

4. Analysis of the Cost
4.1. Derivatives

Obviously, f : U ×Rm×n → R is a smooth function. To obtain candidates for points
(W, A) ∈ U ×Rm×n, where f attains a minimum, we search for critical points of f.

As a preparation, to compute the derivative of f, we recall the following well-known
lemma.
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Lemma 1. The derivative of

inv : GL(n)→ GL(n),

A 7→ inv(A) = A−1,
(15)

evaluated at A ∈ GL(n) in direction B ∈ Rn×n, is given by

D (inv(A))B = −A−1BA−1. (16)

Lemma 2. Let f : U ×Rm×n → R be defined via Equation (12) and set

Ξ = Ξ⊤
2 Ξ0 ∈ Rn×n. (17)

Moreover, let (W, A) ∈ U × Rm×n and (w, a) ∈ RN×n × Rm×n. Then, the derivative of
f (·, A) : RN×n → R at W ∈ U in the direction w ∈ RN×n is given by

D1 f (W, A)w= −2tr
(

G−1
2 θ⊤2 wG−1

2 Σ2
2G−T

2

[
Im 0
0 0

])

+2tr
(

G−1
2 θ⊤2 wG−1

2 Σ2ΞΣ0G−⊤
0 A⊤[Im, 0]

)

+2tr
(

G−1
2 Σ2ΞΣ0G−⊤

0 w⊤θ0G−⊤
0 A⊤[Im, 0]

)

−2tr
(

G−1
0 θ⊤0 wG−1

0 Σ2
0G−⊤

0 A⊤A
)

,

(18)

and the derivative of f with respect to the second argument, i.e., of the derivative of the function
f (W, ·) : Rm×n → R at A ∈ Rm×n in the direction a ∈ Rm×n, reads

D2 f (W, A)a= −2tr
(

G−1
2 Σ2ΞΣ0G−⊤

0 a⊤[Im, 0]
)
+ 2tr

(
G−1

0 Σ2
0G⊤

0 a⊤A
)

. (19)

Proof. Expanding

f (W, A)= tr
(

G−1
2 Σ2

2G−⊤
2

[
Im 0
0 0

])
− 2tr

(
G−1

2 Σ2Ξ⊤
2 Ξ0Σ0G−⊤

0 A⊤[Im, 0]
)

+tr
(

G−1
0 Σ2

0G⊤
0 A⊤A

) (20)

and using Lemma 1, we obtain Equations (18) and (19) via a tedious but straightforward
calculation. □

Using Lemma 2, we search for critical points of f. Obviously, (W, A) ∈ U ×Rm×n is a
critical point of f iff the following two conditions, i.e.,

D1 f (W, A)w= 0,

D2 f (W, A)a= 0,
(21)

hold for all w ∈ RN×n and a ∈ Rm×n.
Via Equation (18), we obtain D1 f (W, A)w = 0 for all w ∈ RN×n iff
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0= −G−1
2 Σ−1

2 G−⊤
2

[
Im 0
0 0

]
G−1

2 θ⊤2

+G−1
2 Σ2ΞΣ0G−⊤

0 A⊤[Im, 0]G−1
2 θ⊤2

+G−1
0 Σ0Ξ⊤Σ2G−⊤

2

[
Im
0

]
AG−1

0 θ⊤0

−G−1
0 Σ2

0G−⊤
0 A⊤AG−1

0 θ⊤0

(22)

is satisfied. Clearly, Equation (22) is equivalent to

G−1
2

(
Σ2ΞΣ0G−⊤

0 A⊤[Im, 0]− Σ2
2G−⊤

2

[
Im 0
0 0

])
G−1

2 θ⊤2

= G−1
0

(
Σ2

0G−⊤
0 A⊤A − Σ0Ξ⊤Σ2G−⊤

2

[
Im
0

]
A
)

G−1
0 θ⊤0 .

(23)

Similarly, we obtain via Equation (19) that D2 f (W, A)a = 0 is fulfilled for all a ∈ Rm×n iff

AG−1
0 Σ2

0G−⊤
0 = [Im, 0]G−1

2 Σ2ΞΣ0G−⊤
0 (24)

holds. Because G0, Σ0 ∈ GL(n) are invertible, Equation (24) is equivalent to

A = [Im, 0]G−1
2 Σ2ΞΣ−1

0 G0. (25)

Moreover, Equation (25) implies

A⊤[Im, 0]= G⊤
0 Σ−1

0 Ξ⊤Σ2G−⊤
2

[
Im 0
0 0

]
,

[
Im
0

]
A=

[
Im 0
0 0

]
G−1

2 Σ2ΞΣ−1
0 G0,

A⊤A= G⊤
0 Σ−1

0 Ξ⊤Σ2G−⊤
2

[
Im 0
0 0

]
G−1

2 Σ2ΞΣ−1
0 G0.

(26)

Plugging Equation (26) into Equation (23) yields

G−1
2

(
Σ2ΞΣ0G−⊤

0

(
G⊤

0 Σ−1
0 Ξ⊤Σ2G−⊤

2

[
Im 0
0 0

])
− Σ2

2G−⊤
2

[
Im 0
0 0

])
G−1

2 θ⊤2

= G−1
0

(
Σ2

0G−⊤
0

(
G⊤

0 Σ−1
0 Ξ⊤Σ2G−⊤

2

[
Im 0
0 0

]
G−1

2 Σ2ΞΣ−1
0 G0

)

−Σ0Ξ⊤Σ2G−⊤
2

([
Im 0
0 0

]
G−1

2 Σ2ΞΣ−1
0 G0

))
G−1

0 θ⊤0

= 0,

(27)

being equivalent to

G−1
2

(
Σ2ΞΞ⊤Σ2G−⊤

2

[
Im 0
0 0

]
− Σ2

2G−⊤
2

[
Im 0
0 0

])
G−1

2 θ⊤2

= G−1
2 Σ2

(
ΞΞ⊤ − In

)
Σ2G−⊤

2

[
Im 0
0 0

]
G−1

2 θ⊤2

= 0.

(28)

Multiplying Equation (28) from the left by G2Σ−1
2 , as well as from the right by θ2G2, and

using the orthonormality property θ⊤2 θ2 = In yields
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(
ΞΞ⊤ − In

)
Σ2G−⊤

2

[
Im 0
0 0

]
= 0. (29)

Conversely, assume that Equation (29) is satisfied; then, Equation (28) holds. Thus, Equation (28)
is equivalent to Equation (29).

The above discussion is summarized in the next Theorem.

Theorem 1. Let (W, A) ∈ U ×Rm×n. Then, (W, A) is a critical point of f : U ×Rm×n → R ,
defined in Equation (12), iff the following two equalities, i.e.,

(
ΞΞ⊤ − In

)
Σ2G−⊤

2

[
Im 0
0 0

]
= 0 (30)

and
A = [Im, 0]G−1

2 Σ2ΞΣ−1
0 G0, (31)

hold. Here, for convenience, we used G0 := θ⊤0 W.

4.2. Critical Points

In this section, the critical points of the DyCA cost are determined by using the
characterization of Theorem 1, i.e., we solve the equation

(
ΞΞ⊤ − In

)
Σ2G−⊤

2

[
Im 0
0 0

]
= 0 (32)

for G2 ∈ GL(n). To this end, we define

U :=
(

ΞΞ⊤ − In

)
Σ2. (33)

Then, Equation (32) is equivalent to

UG−⊤
2

[
Im 0
0 0

]
= 0. (34)

Set F = UG−⊤
2 and partition F =

[
F11 F12
F21 F22

]
, where F11 ∈ Rm×m, F12 ∈ Rm×(n−m),

F21 ∈ R(m−n)×m, and F22 ∈ R(n−m)×(n−m). Then, Equation (34) yields
[

F11 F12
F21 F22

][
Im 0
0 0

]
=

[
F11 0
F21 0

]

= 0,
(35)

i.e., Equation (34) holds iff UG−⊤
2 =

[
0 F12
0 F22

]
is fulfilled. Next, partition

U=

[
U11 U12
U21 U22

]
,

G−⊤
2 =

[
G̃11 G̃12
G̃21 G̃22

]
,

(36)
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where
U11, G̃11∈ Rm×m,

U21, G̃21∈ R(n−m)×m,

U12, G̃12∈ Rm×(n−m),

U22, G̃22∈ R(n−m)×(n−m),

(37)

and consider
F = UG−⊤

2

=

[
U11 U12
U21 U22

][
G̃11 G̃12
G̃21 G̃22

]

=

[
F11 F12
F21 F22

]
.

(38)

Clearly, through Equation (38), F11 = 0 and F21 = 0 are fulfilled iff

[
U11 U12
U21 U22

][
G̃11
G̃21

]
= 0 (39)

is satisfied; i.e.,

span

{[
G̃11
G̃21

]}
⊆ ker(U). (40)

Because of G2 ∈ GL(n) being equivalent to G−⊤
2 ∈ GL(n), we obtain

rank(

[
G̃11
G̃21

]
) = m. (41)

Thus, Equation (32) admits a solution if dim(ker(U)) ≥ m.

4.3. Construction of a Critical Point

Assuming dim(ker(U)) ≥ m, we construct a solution of Equation (32). Let

U = RDQ⊤

= [R1, R2]

[
D̃ 0
0 0

][
Q⊤

1
Q⊤

2

]
(42)

be an SVD of U, where R1, Q1 ∈ Stn,n−m, R2, Q2 ∈ Stn,m, fulfilling R⊤
1 R2 = 0 and Q⊤

1 Q2 = 0.

Moreover, D̃ ∈ R(n−m)×(n−m) and
[

D̃ 0
0 0

]
∈ Rn×n are diagonal. Next, define

[
G̃11
G̃21

]
= Q2.

Then,

U

[
G̃11
G̃21

]
= UQ2

= 0
(43)

is satisfied because of Equation (42). Now, set

G−⊤
2 = [Q2, Q1] ∈ O(n) ⊆ GL(n), (44)

being equivalent to
G2 = [Q2, Q1] ∈ O(n). (45)

Then, G2 is a solution of Equation (32) via Equation (43) combined with Equation (39).

Remark 3.

1. Equation (32) has a solution iff dim ker(U) ≥ m.
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2. Assume dim(ker(U)) = m and let G2 = [Q2, Q1] ∈ O(n) be the solution constructed

above. Then, every other solution of Equation (32) is of the form Ĝ2 = G2

[
A1 0
0 A2

]
,

where A1 ∈ GL(m) and A2 ∈ GL(n − m).

4.4. Recovering Mixing Matrix W and State Matrix A

Next, we show how W ∈ U can be recovered, assuming a G2 ∈ GL(n), satisfying
Equation (32), is given. Recall that W ∈ U fulfills

G2 = θ⊤2 W, (46)

where θ2 ∈ StN,n. Thus, given G2 ∈ O(n), the matrix

W = θ2G2 (47)

is a solution of Equation (46) because of

θ⊤2 W = θ⊤2 θ2G2
= InG2
= G2.

(48)

Remark 4. W is not unique since G2 is not unique; moreover, let Y ∈ RN×n with θ⊤2 Y = 0. Then,
Ŵ = θ2G2 + Y ∈ RN×n also satisfies θ⊤2 Ŵ = G2.

Once W is determined, we also obtain A via Equation (31), namely,

A = [Im, 0]G−1
2 Σ2ΞΣ−1

0 G0, (49)

where G0 = θ⊤0 W according to Equation (10).

5. Algorithm

The analysis of the cost function above leads to the following Algorithm 1 for solving
Problem 1.

Algorithm 1 DyCA

Input: Q,
.

Q ∈ RN×T , 1 ≤ m ≤ n ≤ N

1. Compute thin SVDs Q = θ0Σ0Ξ⊤
0 and

.
Q = θ2Σ2Ξ⊤

2 .
2. Set Ξ = Ξ⊤

2 Ξ0.

3. Compute U = Σ2

(
ΞΞ⊤ − In

)
.

4. Compute an SVD U = [R1, R2]

[
D̃ 0
0 0

][
Q⊤

1
Q⊤

2

]
.

5. Set G2 = [Q2, Q1].
6. Define W = θ2G2.

7. Define A = [Im, 0]G⊤
2 Σ2ΞΣ−1

0

(
θ⊤0 W

)

Output: (W, A) ∈ StN,n ×Rm×n.

6. Applications

We now apply the proposed method to the Rössler attractor and the Lorenz system.

6.1. Rössler Attractor

We consider the Rössler attractor introduced in [7]. Consider the ODE
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.
x1(t)= −x2(t)− x3(t),
.
x2(t)= x1(t) + ax2(t),
.
x3(t)= b + x3(t)(x1(t)− c),

(50)

where a = 0.15, b = 0.20, and c = 10.0. Accordingly, with

A =

[
0 −1 −1
1 a 0

]
∈ R2×3 (51)

and
f : R3 → R,

x :=




x1
x2
x3


 7→ f (x) := b + x3(x1 − c),

(52)

we rewrite Equation (50) as

.
x(t)=




.
x1(t).
x2(t).
x2(t)




=

[
Ax(t)
f (x)

]
,

(53)

or, equivalently,
[I2, 0]

.
x(t)= Ax(t),
.
x(t)= f (x(t)).

(54)

Thus, Equation (50) is of the form of Equation (2), where n = 3 and m = 2. Hence, we
may apply Algorithm 1 to solve Problem 1 if the low-dimensional dynamics of the signal
satisfies the ODE Equation (50).

To illustrate the application of Algorithm 1, we perform a numerical experiment using
MATLAB 2024a™.

Using the notation from Problem 1, a three-dimensional signal X = [x(t1), . . . , x(tT)] ∈
R3×T is generated by integrating Equation (50) using the MATLAB function ode45. By eval-
uating the right-hand side of Equation (50) at the time steps ti, the derivative
.

X =
[ .
x(t1), . . . ,

.
x(tT)

]
∈ R3×T is computed. The mixing matrix W ∈ RN×3, where N = 30,

is generated by uniformly distributed random numbers in the interval (−0.5, 0.5). We then
define Q = WX and

.
Q = W

.
X and apply Algorithm 1 to the signal Q ∈ R30×T and its

derivative
.

Q ∈ R30×T , where n = 3 and m = 2.
Our results are illustrated in Figures 1–3 below. Alongside the original trajectory, x(ti),

we also plot the reconstructed trajectory obtained via the DyCA, as well as a reconstruction
of the signal by means of a thin SVD of Q.

6.2. Lorenz System

We also apply DyCA to the Lorenz system

.
x1(t)= a(x2(t)− x1(t)),
.
x2(t)= x1(t)(b − x3(t)− x2(t)),
.
x3(t)= x1(t)x2(t)− cx3(t),

(55)

where a = 10, b = 28, and c = 8/3. Accordingly, by defining A =
[
−a a 0

]
and
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f : R3 → R2,



x1
x2
x3


 7→ f (x1, x2, x3) :=

[
x1(b − x3 − x2)

x1x2 − cx3

]
,

(56)

we rewrite Equation (55) as follows:

[I1, 0]
.
x(t)= Ax(t)

[0, I2]
.
x(t)= f (x(t)).

(57)

Thus, (55) is written in the form of Equation (2), where n = 3 and m = 1. Hence, we may
apply Algorithm 1 to solve Problem 1, where the low-dimensional dynamics of the signal
satisfies the ODE Equation (55).

We also indicate this via another numerical experiment. Analogously to the Rössler
system discussed above, we create a mixing matrix W ∈ RN×n, where N = 30, and
we generate the signal Q and its time derivative by integrating Equation (55) using the
MATLAB function ode45. Similar to Figures 1–3, we present the results obtained for the
Lorenz system in Figures 4–6 below.
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Figure 1. DyCA applied to a trajectory of the Rössler system: original signal.

Figure 2. DyCA applied to a trajectory of the Rössler system: projection via DyCA.
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Figure 3. DyCA applied to a trajectory of the Rössler system: SVD-based projection.

6.2. Lorenz System

We also apply DyCA to the Lorenz system

ẋ1(t) = a(x2(t)− x1(t)),

ẋ2(t) = x1(t)(b − x3(t)− x2(t)),

ẋ3(t) = x1(t)x2(t)− cx3(t),

(55)

where a = 10, b = 28, and c = 8/3. Accordingly, by defining A =
[
−a a 0

]
and

f : R3 → R2,



x1
x2
x3


 7→ f (x1, x2, x3) :=

[
x1(b − x3 − x2)

x1x2 − cx3

]
,

(56)

we rewrite Equation (55) as follows:

[I1, 0]ẋ(t) = Ax(t)

[0, I2]ẋ(t) = f (x(t)).
(57)

Thus, (55) is written in the form of Equation (2), where n = 3 and m = 1. Hence, we may
apply Algorithm 1 to solve Problem 1, where the low-dimensional dynamics of the signal
satisfies the ODE Equation (55).

We also indicate this via another numerical experiment. Analogously to the Rössler
system discussed above, we create a mixing matrix W ∈ RN×n, where N = 30, and
we generate the signal Q and its time derivative by integrating Equation (55) using the
MATLAB function ode45. Similar to Figures 1–3, we present the results obtained for the
Lorenz system in Figures 4–6 below.
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Figure 4. DyCA applied to a trajectory of the Lorenz system: original signal.

Figure 5. DyCA applied to a trajectory of the Lorenz system: projection via DyCA.
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Figure 6. DyCA applied to a trajectory of the Lorenz system: SVD-based projection.

7. Outlook and Discussion

In this paper, we have discussed a reformulation of the so-called DyCA problem,
putting the original cost function approach into perspective with respect to an inverse
problem formulation. It is certainly out of scope for this paper to discuss more advanced
techniques from the vast area of numerics for inverse problems. In particular, to acknowl-
edge the fact that one is ultimately interested in the inverse of the mixing matrix in the case
of noise, a possibly ill-posed problem. For results in this direction, we refer the reader to
forthcoming papers including real-world data, e.g., analyzing EEG data. We, however, have
shown so far that for the two examples (Lorenz and Rössler) where data were generated
artificially, our results are promising; in particular, for data corrupted only by a reasonable
amount of noise, the algorithm works well.

Clearly, any questions related to scalability, usability, or complexity in the above
context can be easily addressed via the vast body of existing literature on singular-value
decomposition-based algorithms from the last 30 years, either from the numerical linear
algebra community or from the pertinent signal processing literature.
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