
Citation: Huang, X.; Zhang, X.; Gao,

Y.; Zhan, C. Solving a Stochastic

Multi-Objective Sequence

Dependence Disassembly Sequence

Planning Problem with an Innovative

Bees Algorithm. Automation 2024, 5,

432–449. https://doi.org/10.3390/

automation5030025

Academic Editors: Zude Zhou,

Quan Liu, Wenjun Xu,

F. Javier Ramírez, Marcello Fera,

Mario Caterino, Duc Truong Pham

and Jeremy Rickli

Received: 9 July 2024

Revised: 2 August 2024

Accepted: 15 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Solving a Stochastic Multi-Objective Sequence Dependence
Disassembly Sequence Planning Problem with an Innovative
Bees Algorithm
Xinyue Huang, Xuesong Zhang, Yanlong Gao and Changshu Zhan *

Mechanical and Electrical Engineering College, Northeast Forestry University, Harbin 150040, China;
h1220xy@nefu.edu.cn (X.H.); xuesongzhang@nefu.edu.cn (X.Z.); gaoyanlong@nefu.edu.cn (Y.G.)
* Correspondence: zhchsh3@nefu.edu.cn

Abstract: As the number of end-of-life products multiplies, the issue of their efficient disassembly has
become a critical problem that urgently needs addressing. The field of disassembly sequence planning
has consequently attracted considerable attention. In the actual disassembly process, the complex
structures of end-of-life products can lead to significant delays due to the interference between
different tasks. Overlooking this can result in inefficiencies and a waste of resources. Therefore, it is
particularly important to study the sequence-dependent disassembly sequence planning problem.
Additionally, disassembly activities are inherently fraught with uncertainties, and neglecting these
can further impact the effectiveness of disassembly. This study is the first to analyze the sequence-
dependent disassembly sequence planning problem in an uncertain environment. It utilizes a
stochastic programming approach to address these uncertainties. Furthermore, a mixed-integer
optimization model is constructed to minimize the disassembly time and energy consumption
simultaneously. Recognizing the complexity of the problem, this study introduces an innovative
bees algorithm, which has proven its effectiveness by showing a superior performance compared
to other state-of-the-art algorithms in various test cases. This research offers innovative solutions
for the efficient disassembly of end-of-life products and holds significant implications for advancing
sustainable development and the recycling of resources.

Keywords: sequence-dependent disassembly sequence planning; uncertain; stochastic programming;
bees algorithm

1. Introduction

As our awareness of resource recycling and reuse grows, the effective disassembly of
end-of-life (EOL) products has become a point of focus in both industry and academia [1].
Disassembly sequence planning (DSP) is an optimization approach designed to determine
the most efficient sequence for a product’s disassembly, which can significantly enhance
the efficiency of the disassembly process, reduce the disassembly cycle time, and lower the
associated costs [2].

The DSP problem has garnered considerable interest in recent years. Ren et al. intro-
duced an AND/OR graph (AOG) to delineate disassembly sequences, offering a structured
approach to the problem [3]. Li et al. advanced the field by proposing a novel representation
method that captures both geometric and priority constraints during product disassembly.
Their process was compared against the AOG and Petri nets, effectively showcasing its
superiority [4]. Wang et al. presented the disassembly feasibility information graph, a
model that reformulates the DSP problem into a path optimization challenge, providing
a new perspective on the issue [5]. Yin et al. developed an enhanced disassembly hybrid
graph (DHG) model tailored to EOL mobile phone components, specifically addressing
the complexities of DSP [6]. Wu et al. streamlined the gravitational search algorithm,

Automation 2024, 5, 432–449. https://doi.org/10.3390/automation5030025 https://www.mdpi.com/journal/automation

https://doi.org/10.3390/automation5030025
https://doi.org/10.3390/automation5030025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/automation
https://www.mdpi.com
https://doi.org/10.3390/automation5030025
https://www.mdpi.com/journal/automation
https://www.mdpi.com/article/10.3390/automation5030025?type=check_update&version=1

Automation 2024, 5 433

integrating a fast feasible solution generator for initial population creation, a precedence-
preserving operator for subsequent generation development, and a multipoint optimization
operator to explore neighboring solutions. An escape operator was also implemented to
circumvent local optima traps, significantly bolstering the algorithm’s problem-solving
capabilities [7]. Zhang et al. refined the social engineering optimizer by incorporating an
exchange operator, thereby enhancing the algorithm’s solution efficiency [8].

Furthermore, Xing et al. used an enhanced ant colony algorithm to tackle the parallel
DSP challenge, effectively demonstrating its efficacy through a case study involving a
bevel gear reducer [9]. Xie et al. introduced an upgraded grey wolf optimizer (GWO), inte-
grating three innovative operators to ensure the feasibility of its solutions under intricate
constraints. They substantiated the effectiveness of these operators through two engineer-
ing case studies [10]. Liu et al. crafted a neighborhood search algorithm, incorporating
four distinct neighborhood structures to refine the generation of feasible solutions [11].
Yu et al. employed a refined discrete whale optimization algorithm for DSP problems,
augmenting it with a local search strategy to bolster the algorithm’s performance [12].
Sun et al. developed a metaheuristic algorithm grounded in multi-neighborhood search
strategies, tailored to address the parallel DSP problem and enhance solution quality [13].
Fu et al. proposed an improved GWO algorithm featuring a self-renewal mechanism and
an exchange of optimization operators, both aimed at enhancing the algorithm’s efficiency
and stability [14].

The complexity of certain products and the interconnection of components can lead to
sequence dependence during disassembly, where tasks without a predefined priority may
interfere with one another. This interference can impede the most convenient disassembly
of the prioritized task, potentially increasing disassembly time. Neglecting sequence
dependence could lead to the need for rework, escalating the time and cost and impacting
disassembly line efficiency. Consequently, the sequence-dependent DSP problem has
emerged as a burgeoning field of scholarly interest.

In terms of the sequence-dependent DSP problem, Ren et al. leveraged an AOG
to address the problem, aiming to maximize recovery profits by considering sequence
dependence. Kim et al. tackled a sequence-dependent DSP problem by employing an
extended flowchart to depict all potential disassembly sequences and crafting an integer
programming model to address the problem effectively [15]. Ma et al. enhanced an AOG
and proposed a two-stage algorithm to explore a sequence-dependent DSP problem, using
an automatic pencil and a telephone as illustrative case studies [16]. Guo et al. introduced a
multi-objective sequence-dependent DSP framework and employed a decentralized search
approach to resolve their proposed challenges [17]. Xia et al. developed a model for partial
DSP that accounts for sequence dependence in an uncertain environment, integrating
particle swarm optimization with genetic algorithms to solve the problem [18]. Hartono
et al. addressed a robot disassembly problem with sequence dependence by utilizing the
BA to identify the optimal solution [19]. We have summarized the related literature from
recent years, as shown in Table 1 [20–31].

Table 1. Related papers dedicated to DSP.

Recent Publications

Number of
Objectives Type of Decision Criteria Consideration of

Uncertainty

Consideration of
Sequential

Dependencies

Single Multiple Economic Environmental Yes No Yes No

Yang et al. (2024) [20]
√ √ √ √ √

Hu et al. (2024) [21]
√ √ √ √

Chen et al. (2024) [22]
√ √ √ √ √

Liu et al. (2023) [23]
√ √ √ √ √

Zhang et al. (2024) [24]
√ √ √ √ √

Automation 2024, 5 434

Table 1. Cont.

Recent Publications

Number of
Objectives Type of Decision Criteria Consideration of

Uncertainty

Consideration of
Sequential

Dependencies

Single Multiple Economic Environmental Yes No Yes No

Wang et al. (2023) [25]
√ √ √ √ √

Hartono et al. (2023) [26]
√ √ √ √ √

Liu et al. (2023) [27]
√ √ √ √

Gulivindala et al. (2023) [28]
√ √ √ √

Zhan et al. (2023) [29]
√ √ √ √

Liao et al. (2023) [30]
√ √ √ √

Qiu et al. (2022) [31]
√ √ √ √

This work
√ √ √ √ √

Based on the above analysis of the literature, we have obtained the following insights:
(1) The current literature has not yet delved deeply into the uncertainties inherent in the

sequence-dependent DSP problem. The subjects of disassembly, the products themselves,
are fraught with unpredictability. Products may arrive in various compromised conditions,
such as deformed, corroded, or contaminated, all of which can significantly influence
the disassembly process. Furthermore, a disassembly operation is inherently variable.
The duration required to complete a disassembly task is shaped by a variety of factors.
These encompass the capabilities of the disassembly tools in use, the proficiency of the
workers, and the conditions of their work environment, including their emotional state
and levels of fatigue. To bolster the efficiency of disassembly operations, it is essential to
conduct a thorough investigation into the sequence-dependent DSP problem within an
uncertain context.

(2) Metaheuristic algorithms stand as the foundation for tackling DSP challenges.
However, the well-established “no free lunch” theorem of optimization underscores the
fact that no single algorithm is universally applicable. This reality necessitates an ongoing
pursuit of innovation and refinement in algorithmic development. In alignment with this
perspective, this study introduces an innovative bees algorithm (IBA) as a novel approach
to address the DSP problem.

To address the challenges discussed, the key contributions of this paper are outlined
below:

(1) This paper presents an analysis of the sequence-dependent DSP problem in an
uncertain setting for the first time. We apply a stochastic simulation method to manage
the uncertainties encountered during disassembly, more closely aligning our solutions to
practical scenarios.

(2) We formulate a mathematical model that addresses the core challenges of the
sequence-dependent DSP problem. This model aims to reduce both the time and energy
required for disassembly.

(3) Considering the problem’s complexity, we introduce an IBA in this study. Its
performance is validated by comparing it with other advanced algorithms.

The structure of this paper is as follows: Section 2 outlines the modeling approach we
have adopted and describes the development of a mathematical model for the sequence-
dependent DSP problem that is designed to operate in uncertain environments. Section 3
offers a comprehensive explanation of our adapted IBA. Section 4 presents an examination
of a real-world industrial scenario, along with a discussion and analysis of our findings.
Section 5 illustrates the effectiveness of our proposed algorithm through comparative
evaluation. Concluding the paper, Section 6 recaps the findings, recognizes the study’s
limitations, and proposes potential avenues for future inquiry.

Automation 2024, 5 435

2. Proposed Problem

In this section, the concept of the sequence-dependent DSP problem is introduced in
Section 2.1. To represent the complex relationships between the objects to be disassembled,
we present the DHG in Section 2.2. Finally, in Section 2.3, we introduce the multi-objective
sequence-dependent DSP model.

2.1. Sequence-Dependent DSP Problem

In real life, the relationship between disassembly tasks is complex. Generally, DSP
solely accounts for the priority constraints between tasks; however, given the intricate
structure of EOL products and the interconnectivity of their components, tasks lacking
a priority relationship may still interfere with each other. This interference can render
the high-priority tasks less conveniently disassembled, leading to increased operational
time. Such interference is referred to as ‘sequence dependence’ [32]. Usually, the spatial
location of parts, the variation of disassembly tools, and the worker’s constraints are the
main reasons for sequence dependence [33]. For instance, during the disassembly of a
computer monitor, if the audio control module placed next to the monitor’s mainboard has
already been disassembled, the time required to disassemble the mainboard is relatively
short. However, if the audio control module has not been removed, spatial obstacles
can lead to inconvenience for the worker during disassembly or may even necessitate a
change of disassembly tools. Therefore, if there is an interference relationship between
two disassembly tasks, we apply the DHG to build a sequence-dependent constraint
matrix and define the interference time as a random variable. This approach helps us to
ensure the efficiency of the disassembly process, reduce repetitive work, and optimize
resource allocation.

2.2. Disassembly Hybrid Graph

We selected the DHG as an effective method for modeling the relationships between
disassembly tasks. Figure 1 illustrates a DHG which includes sequence dependence. In this
graph, the numbers within the circles represent the disassembly tasks. The solid arrows
indicate the priority relationships between tasks, and the dotted arrows show the sequence
dependence between them. For instance, between Task 1 and Task 12, the presence of a
sequence dependence is denoted by dotted arrows. Owing to the symmetrical nature of
sequence dependence, if Task 1 impedes the convenient disassembly of Task 12, then Task
12 reciprocally similarly hinders Task 1.

Automation 2023, 4, FOR PEER REVIEW 5

2.1. Sequence-Dependent DSP Problem
In real life, the relationship between disassembly tasks is complex. Generally, DSP

solely accounts for the priority constraints between tasks; however, given the intricate
structure of EOL products and the interconnectivity of their components, tasks lacking a
priority relationship may still interfere with each other. This interference can render the
high-priority tasks less conveniently disassembled, leading to increased operational time.
Such interference is referred to as ‘sequence dependence’ [32]. Usually, the spatial location
of parts, the variation of disassembly tools, and the worker’s constraints are the main rea-
sons for sequence dependence [33]. For instance, during the disassembly of a computer
monitor, if the audio control module placed next to the monitor’s mainboard has already
been disassembled, the time required to disassemble the mainboard is relatively short.
However, if the audio control module has not been removed, spatial obstacles can lead to
inconvenience for the worker during disassembly or may even necessitate a change of
disassembly tools. Therefore, if there is an interference relationship between two disas-
sembly tasks, we apply the DHG to build a sequence-dependent constraint matrix and
define the interference time as a random variable. This approach helps us to ensure the
efficiency of the disassembly process, reduce repetitive work, and optimize resource allo-
cation.

2.2. Disassembly Hybrid Graph
We selected the DHG as an effective method for modeling the relationships between

disassembly tasks. Figure 1 illustrates a DHG which includes sequence dependence. In
this graph, the numbers within the circles represent the disassembly tasks. The solid ar-
rows indicate the priority relationships between tasks, and the dotted arrows show the
sequence dependence between them. For instance, between Task 1 and Task 12, the pres-
ence of a sequence dependence is denoted by dotted arrows. Owing to the symmetrical
nature of sequence dependence, if Task 1 impedes the convenient disassembly of Task 12,
then Task 12 reciprocally similarly hinders Task 1.

Figure 1. A DHG containing sequence dependence.

To undertake modeling calculations utilizing the DHG, it must be converted into its
matrix representation. The given DHG can be represented by two matrices: the disassem-
bly priority constraint matrix (𝑃) and the sequence-dependent constraint matrix (𝑄) .
Taking Figure 2 as an example, if task 2 has a priority constraint relationship with task 3,
this relationship is represented in the 𝑃 matrix. This relationship is represented in the
matrix as 𝑃ଷଶ = 1. As shown in Figure 3, if there is an interference relationship between
two tasks, such as task 1 and task 12, this relationship is represented in the 𝑄 matrix. This

Figure 1. A DHG containing sequence dependence.

To undertake modeling calculations utilizing the DHG, it must be converted into its
matrix representation. The given DHG can be represented by two matrices: the disassembly

Automation 2024, 5 436

priority constraint matrix (P) and the sequence-dependent constraint matrix (Q). Taking
Figure 2 as an example, if task 2 has a priority constraint relationship with task 3, this
relationship is represented in the P matrix. This relationship is represented in the matrix as
P2

3 = 1. As shown in Figure 3, if there is an interference relationship between two tasks,
such as task 1 and task 12, this relationship is represented in the Q matrix. This relationship
is represented in the matrix as Q1

12 = 1. Because of the symmetry of this relationship, this
relationship is denoted as Q12

1 = 1.

Automation 2023, 4, FOR PEER REVIEW 6

relationship is represented in the matrix as 𝑄ଵଶଵ = 1. Because of the symmetry of this rela-
tionship, this relationship is denoted as 𝑄ଵଵଶ = 1.

As seen in Figure 1, we can construct the disassembly priority constraint matrix 𝑃.

Figure 2. Disassembly priority matrix.

We can construct the sequence-dependent constraint matrix 𝑄, as shown in Figure 3.

Figure 3. Sequence-dependent matrix.

Utilizing the disassembly priority constraint matrix 𝑃, we ascertain the prerequisites
for each disassembly task: a part must not have a priority part that has not yet been disas-
sembled. Furthermore, the matrix 𝑄 is employed to address scenarios where there is in-
terference despite the absence of a priority relationship between tasks. In such cases, it is
necessary to consider the additional interference time that arises due to sequence depend-
ence.

2.3. Proposed Model
As previously stated, to ensure that the disassembly solutions we obtain are more

reflective of real-world conditions, it is essential to account for the inherent uncertainties

Figure 2. Disassembly priority matrix.

Automation 2023, 4, FOR PEER REVIEW 6

relationship is represented in the matrix as 𝑄ଵଶଵ = 1. Because of the symmetry of this rela-
tionship, this relationship is denoted as 𝑄ଵଵଶ = 1.

As seen in Figure 1, we can construct the disassembly priority constraint matrix 𝑃.

Figure 2. Disassembly priority matrix.

We can construct the sequence-dependent constraint matrix 𝑄, as shown in Figure 3.

Figure 3. Sequence-dependent matrix.

Utilizing the disassembly priority constraint matrix 𝑃, we ascertain the prerequisites
for each disassembly task: a part must not have a priority part that has not yet been disas-
sembled. Furthermore, the matrix 𝑄 is employed to address scenarios where there is in-
terference despite the absence of a priority relationship between tasks. In such cases, it is
necessary to consider the additional interference time that arises due to sequence depend-
ence.

2.3. Proposed Model
As previously stated, to ensure that the disassembly solutions we obtain are more

reflective of real-world conditions, it is essential to account for the inherent uncertainties

Figure 3. Sequence-dependent matrix.

As seen in Figure 1, we can construct the disassembly priority constraint matrix P.
We can construct the sequence-dependent constraint matrix Q, as shown in Figure 3.
Utilizing the disassembly priority constraint matrix P, we ascertain the prerequisites

for each disassembly task: a part must not have a priority part that has not yet been
disassembled. Furthermore, the matrix Q is employed to address scenarios where there is
interference despite the absence of a priority relationship between tasks. In such cases, it is
necessary to consider the additional interference time that arises due to sequence dependence.

Automation 2024, 5 437

2.3. Proposed Model

As previously stated, to ensure that the disassembly solutions we obtain are more
reflective of real-world conditions, it is essential to account for the inherent uncertainties
involved. To achieve this, we have adopted an expectation model, an important application
of probability theory, and a significant branch of stochastic programming. This approach
is notably efficient and straightforward compared to other methodologies, offering a
streamlined framework to predict and evaluate expected disassembly outcomes amidst
uncertainty.

Furthermore, we aim to simultaneously optimize two critical objectives: disassembly
time and energy consumption. Each of these objectives holds specific significance:

• Disassembly time: The swift disassembly of products helps to lessen the adverse
environmental effects of waste, reducing the risks of hazardous substance spills and
disruptions to ecosystems. It also enables the quicker recycling of valuable materials
and components.

• Disassembly energy consumption: Minimizing energy use is a vital step towards a
circular economy. This strategy not only reduces environmental harm but also allows
businesses to cut operational costs, thus enhancing economic efficiency.

In terms of the notations used in our model, their meaning is as follows.

Indices:

m, l Index of disassembly tasks, m, l ∈ {1, 2, ..., M}
Parameters:
M Total number of tasks in the EOL product
tm Stochastic disassembly time for task m
tt Stochastic time to change the tool of disassembly
td Stochastic time to change the direction of disassembly
em Unit time of energy consumption of task m
et Stochastic time to change the tool of disassembly
ed Stochastic time to change the direction of disassembly
gm Difficulty of disassembly task m
sdml Stochastic increase in time when task m is interfered with by task l
pml 1, if task m must be executed before task l, otherwise 0
Decision variables:
aml 1, if task m is executed before task l, otherwise 0
xml 1, if task m is interfered with by task l, otherwise 0
ym 1, if the task m requires a different tool to the previous task in the sequence, otherwise 0
zm 1, if the task m is in a different direction to the previous task in the sequence, otherwise 0

Then, our model is composed as follows:

f1 = minE

(
M

∑
m=1

(tm + ttym + tdzm) +
M

∑
m=1

L

∑
l=1

sdml xml

)
(1)

f2 = minE

(
M

∑
m=1

(1 + gm)emtm +
M

∑
m=1

(etym + edzm)

)
(2)

such that
L

∑
l=1

xml ≤ 1, ∀m ∈ {1, 2, . . . , M} (3)

xml + xml ≤ 1, ∀m ∈ {1, 2, . . . , M}, ∀l ∈ {1, 2, . . . , M} (4)

aml ≥ pml , m = 1, 2, . . . , M, l = 1, 2, . . . , M (5)

xml , ym, zm = {0, 1}, m = 1, 2, . . . , M, l = 1, 2, . . . , M (6)

Automation 2024, 5 438

Equation (1) denotes the minimized disassembly time. In this paper, the total disassem-
bly time is expressed as the sum of the product disassembly time, the direction change time,
the tool change time, and the interference time due to sequence dependence. Equation (2)
denotes the minimized disassembly energy consumption. The disassembly’s energy con-
sumption consists of three parts: the energy consumption generated by the disassembly
task, the energy consumption generated by switching the direction of disassembly, and the
energy consumption generated by changing the disassembly tool. Constraint (3) ensures
that each disassembly task is executed only once. Constraint (4) ensures that the sequence
dependence between tasks does not form a loop, so if task m is executed after task l, task l
cannot be executed after task m. Constraint (5) states that for task m and l, if task m must
be executed before task l, then aml must also be 1, ensuring that task m is in fact executed
before task l. Constraint (6) defines the binary variables in the model. These constraints are
essential to ensure that the disassembly process unfolds in a logical sequence.

3. Proposed Solution Method

To address the problem efficiently, we have adopted the IBA as our solution tool. The
traditional BA simulates the intelligent foraging behavior of bees in nature. This approach
is intuitive and adept at swiftly converging upon the global optimum, as reported in the
literature [34,35]. The conventional BA is categorized into three main parts: the nectar
source, scout bees, and foraging bees. Scout bees are categorized according to their fitness
and are divided into optimal scout bees and better scout bees and the rest of the scout
bees. Optimal scout bees and better scout bees send a larger number of follower bees to
go out to forage for nectar together, while the rest of the scout bees search for new nectar
sources through random global searches to ensure the diversity of nectar sources. Foraging
bees do not actively go out to search for nectar sources, but wait for the scout bees to come
back from foraging, and, after obtaining information about the nectar sources from the
scout bees, they follow the scout bees to search for new nectar sources in the vicinity of
the nectar sources. The best nectar source in this search is retained through a global search
and neighborhood search and proceeds to the next iteration. The conventional BA is prone
to fall into local optimal solutions in some cases, leading to local optimality in the search
process. Therefore, we adopt a roulette strategy to dynamically adjust the neighborhood
structure by adaptively updating the probability of scout bees being selected and operator
weights to avoid falling into a local optimum during the search process.

In this section, we outline the core steps of the IBA. We start by detailing the popu-
lation initialization strategy of the IBA, ensuring a diverse and robust initial population
that provides a strong foundation for the algorithm’s search process (Section 3.1). We
then discuss the role assignment method used for the bees, a critical component of the
algorithm (Section 3.2). Subsequently, we present novel search operators that are designed
to refine existing solutions and enhance the optimization process, which is explained in
Sections 3.3–3.5. Additionally, we introduce a constraint correction strategy to ensure all
solutions generated adhere to the established constraints (Section 3.6). We also proceed to
discuss the population update mechanism and the termination conditions of the algorithm,
which are crucial for ensuring both efficiency and accuracy (Section 3.7). After a thorough
analysis of the components of the IBA, we provide pseudo-code and flowchart of the
algorithm to provide a clear view of the internal logic of the IBA.

3.1. Population Initialisation

In metaheuristic algorithms, population initialization is a key step to ensuring the
effectiveness of the algorithm [36]. Before delving into the generation of feasible initial
solutions, we initially present the encoding method employed in this paper. We use real
number encoding to represent the disassembly sequence; assuming that an EOL product
consists of M disassembly tasks, the disassembly initial sequence can be represented as
S = (am), i = 1, 2, · · · M.

Automation 2024, 5 439

Then, to ensure that the execution order of the disassembly tasks complies with the
predefined constraints, thereby generating a feasible initial solution, we utilize the priority
matrix P in the generation of the disassembly sequence. We commence by identifying tasks
within the matrix that are not restricted by priority constraints. Subsequently, we randomly
select one of these tasks and incorporate it into our initial solution, and then we update
the priority matrix P to reflect this selection. This iterative process of identifying, selecting,
and updating is continuously repeated until we successfully construct a feasible initial
solution that aligns with the predefined constraints, thereby setting a solid foundation for
the optimization process that follows.

3.2. Classification of Scout Bees’ Role

In the formulation of the IBA, the assignment of scout bee roles is a pivotal step, similar
to its counterpart in the BA. We initiate the process by creating a population of gsize scout
bees. This population is then subjected to an evaluation through fast non-dominated
sorting, complemented by the calculation of crowding distance [37].

Fast non-dominated sorting is a technique employed in multi-objective optimization
problems which is designed to categorize individuals in a population into hierarchical
levels based on non-domination relationships. In such problems, a solution is considered
non-dominated by another if it is not inferior across all objectives and is superior in at least
one objective. This sorting method allows us to segregate the feasible solutions into distinct
Pareto frontiers.

The crowding distance is applied within each Pareto frontier, calculating the proximity
of each solution to its nearest neighbors. This metric reflects the concentration of individuals
within a rank layer post non-dominated ranking, offering insight into the diversity of the
possible solutions.

By combining fast non-dominated sorting with the calculation of crowding distance,
we can effectively rank all generated initial solutions. This ranking allows us to efficiently
identify the optimal and sub-optimal scout bees based on their order. Meanwhile, the
remaining scout bees are categorized as random scout bees. It should be noted that,
following the ranking process, we designate the top NS scout bees from the sorted list as
the optimal scout bees. We then identify the next ES scout bees as the better scout bees.
The remaining random scout bees are defined as RS.

It should be noted that since the fast non-dominated sorting and crowding distance
calculation are based on the objective function values (f1, f2) of each solution, our model
includes random variables. To obtain objective function values for each disassembly
sequence scheme, we use the Monte Carlo simulation method. Our specific approach is
that, for each scheme, we perform 500 Monte Carlo simulations. In each simulation process,
the random variables are sampled randomly according to their probability distribution
functions, thus converting them into precise values. Ultimately, we average the objective
function values obtained from the 500 simulations for each scheme to determine its final
set of objective function values.

3.3. Search Phase of the Optimal Scout Bees

After the scout bees are assigned roles, the IBA proceeds to the phase of the optimal
scout bees’ search, where the foraging bees follow the optimal scout bees to search for
nectar around them, which can be seen as a neighborhood search around the optimal scout
bees. The number of foraging bees they carry is equivalent to the number of neighborhood
searches conducted. In this paper, the number of foraging bees carried by the optimal
scout bees is set to OF. In this phase, we introduce two main search operators, as shown
in Figures 4 and 5. In the figure, blue denotes the points selected by the operator, yellow
represents the unselected points, and the blue arrows signify the movement direction of
the selected points. We choose between these two operators through a roulette strategy
and apply it to the neighborhood search of the optimal and better bees to find a better
feasible solution.

Automation 2024, 5 440

Automation 2023, 4, FOR PEER REVIEW 10

bees. The number of foraging bees they carry is equivalent to the number of neighborhood
searches conducted. In this paper, the number of foraging bees carried by the optimal
scout bees is set to 𝑂𝐹. In this phase, we introduce two main search operators, as shown
in Figures 4 and 5. In the figure, blue denotes the points selected by the operator, yellow
represents the unselected points, and the blue arrows signify the movement direction of
the selected points. We choose between these two operators through a roulette strategy
and apply it to the neighborhood search of the optimal and better bees to find a better
feasible solution.

(1) Order crossover (OX)
We randomly select another optimal scout bee in addition to the current optimal one.

A few consecutive points are selected from optimal scout bee 1, these selected points are
placed in the same position in the new bee, and, finally, the remaining points in optimal
scout bee 2 are inserted sequentially into the new bee.

Figure 4. OX operator.

(2) Position-based crossover (PBX)
We randomly select another optimal scout bee in addition to the current optimal one.

A few points are randomly selected from optimal scout bee 1, these selected points are
placed in the same position in the new bee, and, finally, the remaining points in optimal
scout bee 2 are inserted into the new bee in order. Unlike the OX operator, the position of
the selected points in this method can be unfixed, as shown in Figure 5 below.

Figure 5. PBX operator.

We construct the roulette wheel calculation rule as follows:
Step 1: The initial weights of both operators are set to 1 and their scores are set to

0 for the first iteration, and thus the probabilities of the operators being selected are
as follows:

𝑃ௌ(௜) = 𝑊ௌ(௜)∑ 𝑊ௌ(௜)௝ , 𝑗 ∈ (1,2, ⋯ J) (7)

where 𝑊ௌ(௜) denotes the operator weights, 𝑃ௌ(௜) denotes the probability that the

Figure 4. OX operator.

Automation 2023, 4, FOR PEER REVIEW 10

bees. The number of foraging bees they carry is equivalent to the number of neighborhood
searches conducted. In this paper, the number of foraging bees carried by the optimal
scout bees is set to 𝑂𝐹. In this phase, we introduce two main search operators, as shown
in Figures 4 and 5. In the figure, blue denotes the points selected by the operator, yellow
represents the unselected points, and the blue arrows signify the movement direction of
the selected points. We choose between these two operators through a roulette strategy
and apply it to the neighborhood search of the optimal and better bees to find a better
feasible solution.

(1) Order crossover (OX)
We randomly select another optimal scout bee in addition to the current optimal one.

A few consecutive points are selected from optimal scout bee 1, these selected points are
placed in the same position in the new bee, and, finally, the remaining points in optimal
scout bee 2 are inserted sequentially into the new bee.

Figure 4. OX operator.

(2) Position-based crossover (PBX)
We randomly select another optimal scout bee in addition to the current optimal one.

A few points are randomly selected from optimal scout bee 1, these selected points are
placed in the same position in the new bee, and, finally, the remaining points in optimal
scout bee 2 are inserted into the new bee in order. Unlike the OX operator, the position of
the selected points in this method can be unfixed, as shown in Figure 5 below.

Figure 5. PBX operator.

We construct the roulette wheel calculation rule as follows:
Step 1: The initial weights of both operators are set to 1 and their scores are set to

0 for the first iteration, and thus the probabilities of the operators being selected are
as follows:

𝑃ௌ(௜) = 𝑊ௌ(௜)∑ 𝑊ௌ(௜)௝ , 𝑗 ∈ (1,2, ⋯ J) (7)

where 𝑊ௌ(௜) denotes the operator weights, 𝑃ௌ(௜) denotes the probability that the

Figure 5. PBX operator.

(1) Order crossover (OX)
We randomly select another optimal scout bee in addition to the current optimal one.

A few consecutive points are selected from optimal scout bee 1, these selected points are
placed in the same position in the new bee, and, finally, the remaining points in optimal
scout bee 2 are inserted sequentially into the new bee.

(2) Position-based crossover (PBX)
We randomly select another optimal scout bee in addition to the current optimal one.

A few points are randomly selected from optimal scout bee 1, these selected points are
placed in the same position in the new bee, and, finally, the remaining points in optimal
scout bee 2 are inserted into the new bee in order. Unlike the OX operator, the position of
the selected points in this method can be unfixed, as shown in Figure 5 below.

We construct the roulette wheel calculation rule as follows:
Step 1: The initial weights of both operators are set to 1 and their scores are set to 0 for

the first iteration, and thus the probabilities of the operators being selected are as follows:

PS(i) =
WS(i)

∑j WS(i)
, j ∈ (1, 2, · · · J) (7)

where WS(i) denotes the operator weights, PS(i) denotes the probability that the operator is
selected, and J denotes the maximum number of iterations.

Step 2: In the iterative process of the algorithm, different scores are given to the
operator according to the quality of the updated solution after each iteration, and scores
are set in decreasing order. The scoring rule is as follows:

S =

{
S1 if the new solution is replaced by best − known solution

S2 other

}
(8)

Step 3: The weights of the operators are set to be updated every m generations
according to the operator scores, and the formula for this is as follows.

WS(i)
j+1 =

{
WS(i)

j, µ0 = 0
(1 − ρ)WS(i)

j + ρ S
µ0

, µ0 > 0
(9)

Automation 2024, 5 441

where WS(i)
j is the operator weight of jth, µ0 is the number of times the operator has been

selected, S is the cumulative score of the operator in this iteration, and ρ is the weight
adjustment factor. Through this formula, the operator weights are linked to their historical
performance to achieve the aim of adaptive operator selection.

3.4. Search Phase of the Better Scout Bees

Subsequently, the IBA proceeds with the exploration phase of the better scout bees. Its
fundamental principle mirrors that of the optimal scout bees’ search phase. We designate
the number of foraging bees that follow the better scout bees as NF. In this phase, we
design two search operators, as shown in Figures 6 and 7. The blue colour in the figure
represents the points selected by the operator, the green colour denotes the unselected
points, and the arrows signify the direction of movement for the points.

Automation 2023, 4, FOR PEER REVIEW 11

operator is selected, and J denotes the maximum number of iterations.
Step 2: In the iterative process of the algorithm, different scores are given to the

operator according to the quality of the updated solution after each iteration, and
scores are set in decreasing order. The scoring rule is as follows:

𝑆 = ൜𝑆1 if the new solution is replaced by best െ known solution𝑆ଶ other ൠ (8)

Step 3: The weights of the operators are set to be updated every 𝑚 generations
according to the operator scores, and the formula for this is as follows.

𝑊ௌ(௜)௝ାଵ = ቐ𝑊ௌ(௜)௝, 𝜇଴ = 0(1 െ 𝜌)𝑊ௌ(௜)௝ + 𝜌 𝑆𝜇଴ , 𝜇଴ ൐ 0 (9)

where 𝑊ௌ(௜)௝ is the operator weight of jth, 𝜇଴ is the number of times the operator
has been selected, 𝑆 is the cumulative score of the operator in this iteration, and 𝜌 is
the weight adjustment factor. Through this formula, the operator weights are linked
to their historical performance to achieve the aim of adaptive operator selection.

3.4. Search Phase of the Better Scout Bees
Subsequently, the IBA proceeds with the exploration phase of the better scout bees.

Its fundamental principle mirrors that of the optimal scout bees’ search phase. We desig-
nate the number of foraging bees that follow the better scout bees as 𝑁𝐹. In this phase, we
design two search operators, as shown in Figures 6 and 7. The blue colour in the figure
represents the points selected by the operator, the green colour denotes the unselected
points, and the arrows signify the direction of movement for the points.

(1) Randomly select 𝑛 points in the optimal scout bee and a different 𝑛 points in the
foraging bee. Insert these points into the new bee in the same order, and insert the remain-
ing points of the foraging bee into the new bee in the same order, as shown in Figure 6.

Figure 6. S1 operator.

(2) Randomly select two points in the better scout bee and cross them with the next one,
or with the previous one if the selected point is the last one, as shown in Figure 7 below.

Figure 6. S1 operator.

Automation 2023, 4, FOR PEER REVIEW 12

Figure 7. S2 operator.

We construct the roulette wheel calculation rule as follows:
Step 1: Calculate the probability of the optimal scout bee being selected, as

demonstrated in Equation (10). 𝑃൫ே(௜)൯ = 𝑆𝐹൫ே௦௜௭௘(௜)൯∑ 𝑆𝐹൫ே(௜)൯ ே௦௜௭௘௜ୀଵ , 𝑖 = 1, 2, 3, 𝑁𝑠𝑖𝑧𝑒 (10)

where 𝑃൫ே(௜)൯ is the probability of the optimal scout bee being selected as the ith bee. 𝑆𝐹൫ே(௜)൯ is the fitness value of the ith beet, and 𝑁𝑠𝑖𝑧𝑒 is the total number of bees.
Step 2: Calculate the cumulative probability of each optimal scout bee, as

demonstrated in Equation (11).

𝑞(𝑖) = ෍ 𝑃൫ே(௝)൯௜
௝ୀଵ , 𝑖 = 1, 2, 3, 𝑁 (11)

where 𝑞(𝑖) is the cumulative probability of the ith optimal scout bee.
Step 3: Select the optimal scout bee.
We set the number of foraging bees following the better scout bee to 𝑁𝐹. Then, each

better scout bee will generate 𝑁𝐹 new solutions according to the above operator. We
compare these 𝑁𝐹 new solutions, select the best solution after calcultating the crowding
distance calculation, and save it.

3.5. Constraint Correction Methods
In the domain of metaheuristic algorithms, newly formulated solutions can occasion-

ally fail to conform to predefined constraints. This challenge is also encountered within
the proposed IBA. For the newly generated disassembly sequence, we start checking for
this from the first task. If it satisfies the constraints of executing the disassembly prece-
dence relation and the sequential dependency relation, we continue to check the subse-
quent tasks. If one of them is not executable, a randomly generated executable task is used
instead, and then the executability of the next task is checked until the last task satisfies
the disassembly requirements.

3.6. Termination of the Algorithm
When all scout bees have completed their search, the newly generated solution is

merged with the original scout bee population. Then, fast non-dominated sorting and
crowding distance calculations are performed to update the scout bee population and as-
sign new scout bee roles. In addition, the set of non-dominated solutions is stored in an
external archive which is updated after each iteration. After reaching the maximum num-
ber of iterations 𝑀𝑎𝑥𝑖𝑡 or a set stopping time, the non-dominated solution is exported
and placed in the external archive.

Figure 7. S2 operator.

(1) Randomly select n points in the optimal scout bee and a different n points in
the foraging bee. Insert these points into the new bee in the same order, and insert the
remaining points of the foraging bee into the new bee in the same order, as shown in
Figure 6.

(2) Randomly select two points in the better scout bee and cross them with the next
one, or with the previous one if the selected point is the last one, as shown in Figure 7 below.

We construct the roulette wheel calculation rule as follows:
Step 1: Calculate the probability of the optimal scout bee being selected, as demon-

strated in Equation (10).

P(N(i)) =
SF(Nsize(i))

∑Nsize
i=1 SF(N(i))

, i = 1, 2, 3, Nsize (10)

where P(N(i)) is the probability of the optimal scout bee being selected as the ith bee. SF(N(i))
is the fitness value of the ith beet, and Nsize is the total number of bees.

Automation 2024, 5 442

Step 2: Calculate the cumulative probability of each optimal scout bee, as demonstrated
in Equation (11).

q(i) =
i

∑
j=1

P(N(j)), i = 1, 2, 3, N (11)

where q(i) is the cumulative probability of the ith optimal scout bee.
Step 3: Select the optimal scout bee.
We set the number of foraging bees following the better scout bee to NF. Then, each

better scout bee will generate NF new solutions according to the above operator. We
compare these NF new solutions, select the best solution after calcultating the crowding
distance calculation, and save it.

3.5. Constraint Correction Methods

In the domain of metaheuristic algorithms, newly formulated solutions can occasion-
ally fail to conform to predefined constraints. This challenge is also encountered within the
proposed IBA. For the newly generated disassembly sequence, we start checking for this
from the first task. If it satisfies the constraints of executing the disassembly precedence
relation and the sequential dependency relation, we continue to check the subsequent
tasks. If one of them is not executable, a randomly generated executable task is used
instead, and then the executability of the next task is checked until the last task satisfies the
disassembly requirements.

3.6. Termination of the Algorithm

When all scout bees have completed their search, the newly generated solution is
merged with the original scout bee population. Then, fast non-dominated sorting and
crowding distance calculations are performed to update the scout bee population and
assign new scout bee roles. In addition, the set of non-dominated solutions is stored in
an external archive which is updated after each iteration. After reaching the maximum
number of iterations Maxit or a set stopping time, the non-dominated solution is exported
and placed in the external archive.

3.7. Algorithmic Framework

In this section, we provide the flowchart (Figure 8) and pseudo-code (Algorithm 1)
of the proposed IBA, which clearly show the detailed process of the algorithm population
from its initialization to the end of its iterations.

Automation 2023, 4, FOR PEER REVIEW 13

3.7. Algorithmic Framework
In this section, we provide the flowchart (Figure 8) and pseudo-code (Algorithm 1)

of the proposed IBA, which clearly show the detailed process of the algorithm population
from its initialization to the end of its iterations.

Figure 8. IBA flowchart.

Algorithm 1: IBA Main Loop
Input: Algorithm parameters, problem parameters
Output: Pareto non-dominated solution set
For i = 1:𝑔௦௜௭௘
Produce scout bee individuals, as shown in Section 3.1
End For
Form optimal scout bees, better scout bees, and random scout bees, as shown in Section
3.2
it = 0
While it < 𝑀𝑎𝑥𝑖𝑡
For i = 1:𝑁𝑆 # Search phase of optimal scout bees #
For j = 1:𝑂𝐹
Select operator, as shown in Section 3.3
Search for nectar near present scout bee, as shown in Section 3.3
Update operator weights
End For
Save non-dominated nectar
Reset operator weights
End For
For i = 1:𝐸𝑆 # Search phase of better scout bees #
For j = 1:𝑁𝐹
Select operator, as shown in Section 3.3
Search for nectar near present scout bee, as shown in Section 3.4
Update operator weights
End For
Save non-dominated nectar
Reset operator weights

Figure 8. IBA flowchart.

Automation 2024, 5 443

Algorithm 1: IBA Main Loop

Input: Algorithm parameters, problem parameters
Output: Pareto non-dominated solution set
For i = 1:gsize
Produce scout bee individuals, as shown in Section 3.1
End For
Form optimal scout bees, better scout bees, and random scout bees, as shown in Section 3.2
it = 0
While it < Maxit
For i = 1:NS #Search phase of optimal scout bees #
For j = 1:OF
Select operator, as shown in Section 3.3
Search for nectar near present scout bee, as shown in Section 3.3
Update operator weights
End For
Save non-dominated nectar
Reset operator weights
End For
For i = 1:ES # Search phase of better scout bees #
For j = 1:NF
Select operator, as shown in Section 3.3
Search for nectar near present scout bee, as shown in Section 3.4
Update operator weights
End For
Save non-dominated nectar
Reset operator weights
End For
For i = 1:RS # Search phase of random scout bees #
Randomly generate new scout bees, as shown in Section 3.1
End For
Update scout bees population
Save non-dominated solutions to an external archive
it = it + 1
End While
Obtain the non-dominated solution set of all solutions saved in the external archive
Output the final non-dominated solution set

4. Case Study

In this section, to validate the effectiveness of the algorithm proposed in this paper,
we used the real industrial case presented by Shan [38]. Table 2 enumerates the relevant
data pertaining to the disassembly process of a lithium battery. In the table, the geometric
centre of the lithium battery is selected as the coordinate origin, the three-dimensional
coordinate method is used to label the disassembly direction, and U denotes the random
disassembly time in the interval. All the data and code used for the metaheuristic algorithm
were executed on the MATLAB software R2013a, and the algorithm was run on an Intel(R)
Core(TM) i5-9300H CPU at 2.40 GHz, with 8 GB of RAM.

Based on the product’s disassembly relationship and spatial location constraints, the
DHG of the lithium battery can be obtained, as shown in Figure 9. The solid arrows in the
figure indicate disassembly priority relationships between tasks, and the dotted arrows
indicate sequence dependence between tasks.

Automation 2024, 5 444

Table 2. Lithium battery’s specific disassembly information.

Order Name Tool Direction Disassembly
Time

1 Fastening screws around the cover wrench +Z U (175, 182)

2 Fastening screws in the center of
the cover wrench +Z U (54, 56)

3 Repair switch wrench +Z U (43, 44)
4 Maintenance switch fastening screws Screwdriver +Z U (28, 32)
5 Connecting plate fastening screws Screwdriver +Z U (42, 47)
6 Box cover wrench +Z U (20, 25)
7 Copper Cable Ties wrench +Z U (58, 61)
8 Pipe Ties Plier +Y U (42, 47)
9 Wire Harness Tie Plier +Y U (40, 43)
10 Copper Tape Plier +Y U (16, 19)
11 Wiring Harness Plier +Y U (8, 10)
12 Wire Harness Plugs Plier +Y U (32, 35)
13 Copper Protection Shell Plier +Y U (18, 22)
14 Copper fastening screws Plier +Y U (21, 25)
15 Copper busbar Hand -Y U (10, 13)
16 Battery Management System Hand -Y U (22, 24)

17 Battery Management System
fastening screws Plier -Y U (21, 24)

18 Charging equipment cover Plier -Z U (14, 16)
19 Charging equipment bottom Plier -Z U (4, 6)

20 Screws for the bottom of the
charging unit wrench +Z U (16, 50)

21 Charging equipment base plate wrench -Y U (34, 37)

22 Charging equipment base plate
fastening screws wrench -Y U (23, 25)

23 Shims Plier -Y U (15, 19)
24 Gasket fastening screws Plier -Y U (45, 50)

25 Current Sensing Wire fastening
screws Screwdriver -X U (27, 30)

26 Relay Plugs Screwdriver -X U (15, 20)
27 Current Sensor Screwdriver -X U (30, 35)
28 Relay Screwdriver +X U (40, 45)
29 Fuses Screwdriver +X U (25, 30)
30 Current Sensor Fastening Screws Hand +X U (8, 12)
31 Relay Fastening Screws Hand +Y U (17, 20)
32 Fuse fastening screws Hand +Y U (8, 15)
33 Adapter plate Screwdriver +Z U (8, 10)
34 Splice plate fastening screws wrench +Z U (18, 25)
35 Module fastening screws Plier +Z U (17, 19)
36 Module Fastener Plier +Z U (3, 7)
37 Module 1 Plier -Z U (2, 5)
38 Module 2 wrench -Z U (14, 17)
39 Coolant Tube Snap wrench -Y U (15, 20)
40 Coolant Plastic Tube wrench -Y U (4, 6)
41 Condensate tube fastening screws wrench -Y U (12, 25)
42 Condensate tube Screwdriver -Y U (14, 17)
43 Thermal Conductive Silicone Screwdriver -Y U (20, 25)
44 Bottom Screwdriver -Y U (4, 8)

Automation 2024, 5 445

Automation 2023, 4, FOR PEER REVIEW 15

21 Charging equipment base
plate

wrench -Y U (34, 37)

22 Charging equipment base
plate fastening screws

wrench -Y U (23, 25)

23 Shims Plier -Y U (15, 19)
24 Gasket fastening screws Plier -Y U (45, 50)

25
Current Sensing Wire
fastening screws Screwdriver -X U (27, 30)

26 Relay Plugs Screwdriver -X U (15, 20)
27 Current Sensor Screwdriver -X U (30, 35)
28 Relay Screwdriver +X U (40, 45)
29 Fuses Screwdriver +X U (25, 30)

30
Current Sensor Fastening
Screws Hand +X U (8, 12)

31 Relay Fastening Screws Hand +Y U (17, 20)
32 Fuse fastening screws Hand +Y U (8, 15)
33 Adapter plate Screwdriver +Z U (8, 10)
34 Splice plate fastening screws wrench +Z U (18, 25)
35 Module fastening screws Plier +Z U (17, 19)
36 Module Fastener Plier +Z U (3, 7)
37 Module 1 Plier -Z U (2, 5)
38 Module 2 wrench -Z U (14, 17)
39 Coolant Tube Snap wrench -Y U (15, 20)
40 Coolant Plastic Tube wrench -Y U (4, 6)

41 Condensate tube fastening
screws wrench -Y U (12, 25)

42 Condensate tube Screwdriver -Y U (14, 17)
43 Thermal Conductive Silicone Screwdriver -Y U (20, 25)
44 Bottom Screwdriver -Y U (4, 8)

Based on the product’s disassembly relationship and spatial location constraints, the
DHG of the lithium battery can be obtained, as shown in Figure 9. The solid arrows in the
figure indicate disassembly priority relationships between tasks, and the dotted arrows
indicate sequence dependence between tasks.

Figure 9. DHG of lithium battery disassembly, containing 44 tasks.

Based on the pre-experiment, and considering the balance of solving time and qual-
ity, the parameters for the IBA are defined in Table 3.

Figure 9. DHG of lithium battery disassembly, containing 44 tasks.

Based on the pre-experiment, and considering the balance of solving time and quality,
the parameters for the IBA are defined in Table 3.

Table 3. IBA parameter setting.

Parameters Value

Maxit 200
gsize 50
NS 8
ES 5
OF 6
NF 5

Upon completion of a single iteration, the IBA successfully produced eight sets of
non-dominated solutions, which are detailed in Table 4.

Table 4. Non-dominated solution sets.

Order Non-Dominated Solutions f1 f2

1 [5,35,36,38,2,37,39,43,1,40,21,41,42,4,3,6,10,44,8,18,9,7,12,13,14,
11,15,17,24,23,16,34,33,25,31,32,29,30,26,28,27,20,19,22] 1575.78 1893.11

2 [5,35,2,36,38,37,39,43,1,40,21,41,42,4,44,3,6,8,10,18,9,7,12,13,14,
11,15,17,24,23,16,34,33,25,31,32,29,30,26,28,27,20,19,22] 1548.95 1934.45

3 [5,35,2,36,38,37,21,43,1,4,3,6,18,9,10,8,39,7,12,13,11,14,40,15,34,
17,41,16,24,23,25,30,33,32,31,42,29,44,26,28,27,20,19,22] 1639.06 1684.36

4 [5,35,2,36,38,37,39,43,1,40,21,41,42,4,3,6,10,44,8,18,9,7,12,13,14,
11,15,17,16,24,23,34,33,25,31,32,29,30,26,28,27,20,19,22] 1530.31 1947.11

5 [5,35,2,4,3,36,38,1,6,10,21,7,37,43,39,40,13,41,8,18,9,14,12,11,15,
34,33,17,24,23,16,42,25,31,44,32,29,30,26,28,27,20,19,22] 1621.75 1778.63

6 [5,35,2,36,38,37,39,43,1,40,21,41,42,4,3,6,8,44,10,18,9,7,12,13,14,
11,15,17,24,23,16,34,33,25,31,32,29,30,26,28,27,20,19,22] 1573.78 1906.38

7 [5,35,2,36,38,37,39,43,1,40,21,41,42,4,3,6,10,44,8,18,9,7,12,13,14,
11,15,17,24,23,34,16,33,25,31,32,29,30,26,28,27,20,19,22] 1548.99 1923.55

8 [5,35,2,36,38,37,39,1,43,40,21,41,42,4,3,6,10,44,8,18,9,7,12,13,14,
11,15,17,24,23,34,16,33,25,31,32,29,30,26,28,27,20,19,22] 1512.80 1991.95

9 [5,35,2,36,38,1,37,43,4,21,39,40,3,6,10,18,7,41,8,42,9,12,11,13,14,
15,44,17,24,23,16,34,33,25,31,32,29,30,27,26,28,20,19,22] 1528.48 1970.61

10 [5,35,2,36,38,4,37,43,1,3,21,6,10,13,18,8,7,14,9,39,40,12,15,41,11,
42,24,17,16,23,25,34,33,31,30,32,29,27,26,28,44,20,19,22] 1720.40 1574.99

Automation 2024, 5 446

An analysis of Table 4 reveals a trade-off between the objectives of minimizing dis-
assembly time and energy consumption. For decision-makers prioritizing the reduction
in disassembly time, Solution 8 emerges as the optimal choice. However, this solution is
associated with the highest level of energy consumption. Conversely, for those primarily
concerned with minimizing energy usage, Solution 10 is the most effective, albeit at the
expense of a longer disassembly time. Consequently, decision-makers must weigh the
relative importance of these two factors to select a disassembly solution that aligns with
their specific requirements.

5. Comparison with Other Algorithms

Our proposed IBA is easy to implement, can be applied to multi-mode searches, and
is not prone to falling into local optimal solutions. However, other heuristic algorithms
have a high solution efficiency in solving multi-objective optimization problems, such as
NSGA-II, which can gradually improve its results and increase its convergence rate through
multiple iterations. Therefore, we evaluated the performance of the IBA by benchmarking
it against established algorithms recognized for their efficacy in the literature. These
include the non-dominated sorting genetic algorithm II (NSGA-II) [39], the improved
immune algorithm (IA) [40], and the innovative multi-objective enhanced water wave
optimization (EWWO) algorithm [41]. To ensure a thorough performance assessment,
we employed three multi-objective evaluation metrics: the number of Pareto solutions
(NPSs), inverted generational distance (IGD), and hypervolume (HV). The NPSs metric
quantifies the diversity of the Pareto solutions, with a higher value indicating a more
effective metaheuristic in generating a comprehensive set of solutions. The IGD metric
measures the proximity of the non-dominated solution set to the true Pareto frontier,
with a lower value suggesting better convergence and distribution [42]. The HV metric,
introduced by Zitzler et al., assesses the volume covered by the non-dominated solutions,
providing insight into the solution set’s quality and diversity [43]. These metrics enable a
comprehensive comparison of the IBA’s performance with other advanced algorithms

To ensure a fair comparison, all algorithms were given a uniform running time of
120 s and a population size of 50, other parameters were configured using the relevant
literature. Consistent coding methodologies were employed to mitigate the effects of
heuristic randomness. Each algorithm was executed 15 times, and their average results are
presented in Table 5. The data indicate that the IBA achieves optimal values across the NPSs,
HV, and IGD metrics, signifying its ability to identify a broader range of Pareto solutions
that are well-distributed across the objective space. Collectively, these results underscore
the IBA’s robust performance in multi-objective optimization, delivering solution sets
characterized by their quality, diversity, compactness, and stability.

Table 5. Performance of the algorithms.

Algorithm NPS HV IGD

IBA 12.62 0.74 0.12
NSGA-II 10.54 0.65 0.14
IA 9.87 0.73 0.12
EWWO 8.78 0.66 0.13

The boxplot in Figure 10 illustrates the above results.

Automation 2024, 5 447

Automation 2023, 4, FOR PEER REVIEW 17

These include the non-dominated sorting genetic algorithm II (NSGA-II) [39], the im-
proved immune algorithm (IA) [40], and the innovative multi-objective enhanced water
wave optimization (EWWO) algorithm [41]. To ensure a thorough performance assess-
ment, we employed three multi-objective evaluation metrics: the number of Pareto solu-
tions (NPSs), inverted generational distance (IGD), and hypervolume (HV). The NPSs
metric quantifies the diversity of the Pareto solutions, with a higher value indicating a
more effective metaheuristic in generating a comprehensive set of solutions. The IGD met-
ric measures the proximity of the non-dominated solution set to the true Pareto frontier,
with a lower value suggesting better convergence and distribution [42]. The HV metric,
introduced by Zitzler et al., assesses the volume covered by the non-dominated solutions,
providing insight into the solution set’s quality and diversity [43]. These metrics enable a
comprehensive comparison of the IBA’s performance with other advanced algorithms

To ensure a fair comparison, all algorithms were given a uniform running time of 120
s and a population size of 50, other parameters were configured using the relevant litera-
ture. Consistent coding methodologies were employed to mitigate the effects of heuristic
randomness. Each algorithm was executed 15 times, and their average results are pre-
sented in Table 5. The data indicate that the IBA achieves optimal values across the NPSs,
HV, and IGD metrics, signifying its ability to identify a broader range of Pareto solutions
that are well-distributed across the objective space. Collectively, these results underscore
the IBA’s robust performance in multi-objective optimization, delivering solution sets
characterized by their quality, diversity, compactness, and stability.

Table 5. Performance of the algorithms.

Algorithm NPS HV IGD
IBA 12.62 0.74 0.12
NSGA-II 10.54 0.65 0.14
IA 9.87 0.73 0.12
EWWO 8.78 0.66 0.13

The boxplot in Figure 10 illustrates the above results.

Figure 10. Statistical results of algorithm comparison in terms of NPSs, HV, and IGD. Figure 10. Statistical results of algorithm comparison in terms of NPSs, HV, and IGD.

6. Conclusions and Future Work

In this study, we explore the sequence-dependent DSP problem within uncertain
environments. Recognizing the influence of uncertainty on disassembly efficiency, we
strategically employ an expectation model to effectively manage these uncertainties. Fur-
thermore, we develop a multi-objective assessment model that incorporates factors like
disassembly time and energy consumption for a holistic evaluation of the proposed prob-
lem. To address the problem efficiently, we introduce the IBA, which features an effective
population initialization strategy and innovative search operators. A case study further
confirms the trade-offs among its objectives and offers decision-makers solutions arrived at
from various perspectives. Furthermore, the IBA is compared with other state-of-the-art
algorithms, further proving its effectiveness and superiority, as it has certain advantages in
the NPSs, IGD, and HV metrics.

The results show that this method can find non-dominated disassembly sets with a
good convergence and diversification performance. Given the current social situation of
energy reduction, effective disassembly management can reduce the impact of waste on
the environment and promote the recycling of resources. By optimizing the dismantling
process, managers can be prompted to carry out long-term strategic planning, consider
the environmental impact of the whole life cycle of products, and promote the transi-
tion of enterprises to a circular economy [44]. This study advances the resolution of the
sequence-dependent DSP problem under uncertainty, but we recognize its limitations.
Other uncertainties in the actual disassembly process, such as equipment breakdowns and
operator skill variations, require more in-depth investigation in future studies. Moreover,
although the IBA has been customized to solve specific issues within this study’s scope,
the algorithm’s applicability to a wider array of optimization challenges requires ongoing
exploration and empirical validation.

Author Contributions: Data curation, X.Z.; Formal analysis, C.Z.; Investigation, X.Z.; Methodology,
X.H.; Validation, C.Z. and Y.G.; Writing—original draft, X.H.; Writing—review and editing, X.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Automation 2024, 5 448

References
1. Zhang, X.; Zhou, H.; Fu, C.; Mi, M.; Zhan, C.; Pham, D.T.; Fathollahi-Fard, A.M. Application and planning of an energy-oriented

stochastic disassembly line balancing problem. Environ. Sci. Pollut. Res. 2023, 1–15. [CrossRef]
2. Tang, Y.; Zhou, M.; Zussman, E.; Caudill, R. Disassembly modeling, planning and application: A review. In Proceedings of the

2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000; IEEE: Piscataway, NJ, USA, 2002; Volume 3, pp. 2197–2202.

3. Ren, Y.; Meng, L.; Zhang, C.; Zhao, F.; Saif, U.; Huang, A.; Mendis, G.P.; Sutherland, J.W. An efficient metaheuristic for
sequence-dependent disassembly planning. J. Clean. Prod. 2020, 245, 118644. [CrossRef]

4. Li, J.R.; Khoo, L.P.; Tor, S.B. A novel representation scheme for disassembly sequence planning. Int. J. Adv. Manuf. Technol. 2002,
20, 621–630. [CrossRef]

5. Wang, H.; Xiang, D.; Duan, G. A genetic algorithm for product disassembly sequence planning. Neurocomputing 2008, 71,
2720–2726.

6. Yin, F.; Wang, K.; Wang, X.; Li, L.; Liu, G.; Maani, T.; Sutherland, J.W. An improved disassembly hybrid graph model for selective
disassembly sequence planning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2024, 238, 1519–1530. [CrossRef]

7. Wu, P.; Wang, H.; Li, B.; Fu, W.; Ren, J.; He, Q. Disassembly sequence planning and application using simplified discrete
gravitational search algorithm for equipment maintenance in hydropower station. Expert Syst. Appl. 2022, 208, 118046. [CrossRef]

8. Zhang, C.; Fathollahi-Fard, A.M.; Li, J.; Tian, G.; Zhang, T. Disassembly sequence planning for intelligent manufacturing using
social engineering optimizer. Symmetry 2021, 13, 663. [CrossRef]

9. Xing, Y.; Wu, D.; Qu, L. Parallel disassembly sequence planning using improved ant colony algorithm. Int. J. Adv. Manuf. Technol.
2021, 113, 2327–2342. [CrossRef]

10. Xie, J.; Li, X.; Gao, L. Disassembly sequence planning based on a modified grey wolf optimizer. Int. J. Adv. Manuf. Technol. 2021,
116, 3731–3750. [CrossRef]

11. Liu, H.; Zhang, L. Optimizing a disassembly sequence planning with success rates of disassembly operations via a variable
neighborhood search algorithm. IEEE Access 2021, 9, 157540–157549. [CrossRef]

12. Yu, D.; Zhang, X.; Tian, G.; Jiang, Z.; Liu, Z.; Qiang, T.; Zhan, C. Disassembly Sequence Planning for Green Remanufacturing
Using an Improved Whale Optimisation Algorithm. Processes 2022, 10, 1998. [CrossRef]

13. Sun, X.; Guo, S.; Guo, J.; Du, B.; Tang, H. An improved multi-objective evolutionary algorithm for multiple-target asynchronous
parallel selective disassembly sequence planning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1553–1569. [CrossRef]

14. Fu, W.; Liu, X.; Chu, F.; Li, B.; Gu, J. A disassembly sequence planning method with improved discrete grey wolf optimizer for
equipment maintenance in hydropower station. J. Supercomput. 2023, 79, 4351–4382. [CrossRef]

15. Kim, H.W.; Lee, D.H. An optimal algorithm for selective disassembly sequencing with sequence-dependent set-ups in parallel
disassembly environment. Int. J. Prod. Res. 2017, 55, 7317–7333. [CrossRef]

16. Ma, Y.S.; Jun, H.B.; Kim, H.W.; Lee, D.H. Disassembly process planning algorithms for end-of-life product recovery and
environmentally conscious disposal. Int. J. Prod. Res. 2011, 49, 7007–7027. [CrossRef]

17. Guo, X.; Zhou, M.; Liu, S.; Qi, L. Lexicographic multiobjective scatter search for the optimization of sequence-dependent selective
disassembly subject to multiresource constraints. IEEE Trans. Cybern. 2019, 50, 3307–3317. [CrossRef] [PubMed]

18. Xia, X.; Liu, W.; Zhang, Z.; Wang, L. Partial disassembly line balancing problem analysis based on sequence-dependent stochastic
mixed-flow. J. Comput. Inf. Sci. Eng. 2020, 20, 061005. [CrossRef]

19. Hartono, N.; Ramírez, F.J.; Pham, D.T. Optimisation of Product Recovery Options in End-of-Life Product Disassembly by Robots.
Automation 2023, 4, 359–377. [CrossRef]

20. Yang, S.; Zhuo, X.; Ning, W.; Xia, X.; Huang, Y. Integrated Risk-Aware Smart Dis-assembly Planning for Scrap Electric Vehicle
Batteries. Energies 2024, 17, 2946. [CrossRef]

21. Hu, Y.; Liu, C.; Zhang, M.; Lu, Y.; Jia, Y.; Xu, Y. An ontology and rule-based method for human–robot collaborative disassembly
planning in smart remanufacturing. Robot. Comput.-Integr. Manuf. 2024, 89, 102766. [CrossRef]

22. Chen, Z.; Cheng, H.; Liu, Y.; Aljuaid, M. An improved artificial bee colony algorithm for the multi-objective cooperative
disassembly sequence optimization problem considering carbon emissions and profit. Eng. Optim. 2024, 1–22. [CrossRef]

23. Liu, J.; Xu, Z.; Xiong, H.; Lin, Q.; Xu, W.; Zhou, Z. Digital twin-driven robotic dis-assembly sequence dynamic planning under
uncertain missing condition. IEEE Trans. Ind. Inform. 2023, 19, 11846–11855. [CrossRef]

24. Zhang, X.; Fu, A.; Zhan, C.; Pham, D.T.; Zhao, Q.; Qiang, T.; Aljuaid, M.; Fu, C. Selective disassembly sequence planning under
uncertainty using trapezoidal fuzzy numbers: A novel hybrid metaheuristic algorithm. Eng. Appl. Artif. Intell. 2024, 128, 107459.
[CrossRef]

25. Wang, K.; Guo, J.; Du, B.; Li, Y.; Tang, H.; Li, X.; Gao, L. A novel MILP model and an improved genetic algorithm for disassembly
line balancing and sequence planning with partial destructive mode. Comput. Ind. Eng. 2023, 186, 109704. [CrossRef]

26. Hartono, N.; Ramírez, F.J.; Pham, D.T. A multiobjective decision-making approach for modelling and planning economically and
environmentally sustainable robotic disassembly for remanufacturing. Comput. Ind. Eng. 2023, 184, 109535. [CrossRef]

27. Liu, J.; Zhan, C.; Liu, Z.; Zheng, S.; Wang, H.; Meng, Z.; Xu, R. Equipment disassembly and maintenance in an uncertain
environment based on a peafowl optimization algorithm. Processes 2023, 11, 2462. [CrossRef]

28. Gulivindala, A.K.; Bahubalendruni, M.R.; P, M.B.; Eswaran, M. Mechanical dis-assembly sequence planning for end-of-life
products to maximize recyclability. Sādhanā 2023, 48, 109. [CrossRef]

https://doi.org/10.1007/s11356-023-27288-4
https://doi.org/10.1016/j.jclepro.2019.118644
https://doi.org/10.1007/s001700200199
https://doi.org/10.1177/09544054231201873
https://doi.org/10.1016/j.eswa.2022.118046
https://doi.org/10.3390/sym13040663
https://doi.org/10.1007/s00170-021-06753-9
https://doi.org/10.1007/s00170-021-07696-x
https://doi.org/10.1109/ACCESS.2021.3101221
https://doi.org/10.3390/pr10101998
https://doi.org/10.1177/09544054221136512
https://doi.org/10.1007/s11227-022-04822-8
https://doi.org/10.1080/00207543.2017.1342879
https://doi.org/10.1080/00207543.2010.495089
https://doi.org/10.1109/TCYB.2019.2901834
https://www.ncbi.nlm.nih.gov/pubmed/30932856
https://doi.org/10.1115/1.4046993
https://doi.org/10.3390/automation4040021
https://doi.org/10.3390/en17122946
https://doi.org/10.1016/j.rcim.2024.102766
https://doi.org/10.1080/0305215X.2024.2329988
https://doi.org/10.1109/TII.2023.3253187
https://doi.org/10.1016/j.engappai.2023.107459
https://doi.org/10.1016/j.cie.2023.109704
https://doi.org/10.1016/j.cie.2023.109535
https://doi.org/10.3390/pr11082462
https://doi.org/10.1007/s12046-023-02160-w

Automation 2024, 5 449

29. Zhan, C.; Zhang, X.; Tian, G.; Pham, D.T.; Ivanov, M.; Aleksandrov, A.; Fu, C.; Zhang, J.; Wu, Z. Environment-oriented disassembly
planning for end-of-life vehicle batteries based on an improved northern goshawk optimisation algorithm. Environ. Sci. Pollut.
Res. 2023, 30, 47956–47971. [CrossRef] [PubMed]

30. Liao, H.Y.; Chen, Y.; Hu, B.; Behdad, S. Optimization-based disassembly sequence planning under uncertainty for human–robot
collaboration. J. Mech. Des. 2023, 145, 022001. [CrossRef]

31. Qiu, L.; Dong, L.; Wang, Z.; Zhang, S.; Xu, P. Asynchronous parallel disassembly sequence planning method of complex products
using discrete multi-objective optimization. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 236, 1466–1482. [CrossRef]

32. Liu, J. Research on the Equilibrium Problem of Sequentially Dependent Disassembly Line; University of Electronic Science and Technology:
Chengdu, China, 2018.

33. Yin, T.; Zhang, Z.; Jiang, J. A Pareto-discrete hummingbird algorithm for partial sequence-dependent disassembly line balancing
problem considering tool requirements. J. Manuf. Syst. 2021, 60, 406–428. [CrossRef]

34. Pham, D.T.; Ghanbarzadeh, A.; Koç, E.; Otri, S.; Rahim, S.; Zaidi, M. The bees algorithm—A novel tool for complex optimisation
problems. In Intelligent Production Machines and Systems; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2006; pp. 454–459.

35. Hartono, N.; Ramírez, F.J.; Pham, D.T. Optimisation of robotic disassembly plans using the Bees Algorithm. Robot. Comput.-Integr.
Manuf. 2022, 78, 102411. [CrossRef]

36. Mojtahedi, M.; Fathollahi-Fard, A.M.; Tavakkoli-Moghaddam, R.; Newton, S. Sustainable vehicle routing problem for coordinated
solid waste management. J. Ind. Inf. Integr. 2021, 23, 100220. [CrossRef]

37. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

38. Shan, F.; Wu, Z.; Li, J. Research on the balance problem of lithium battery disassembly line based on improved particle swarm
algorithm. Intern. Combust. Engines Accessories 2022, 23, 4–6.

39. Xu, Z.; Han, Y. Two sided disassembly line balancing problem with rest time of works: A constraint programming model and an
improved NSGA II algorithm. Expert Syst. Appl. 2024, 239, 122323. [CrossRef]

40. Ji, J.; Wang, Y. Selective disassembly sequence optimization based on the improved immune algorithm. Robot. Intell. Autom. 2023,
43, 96–108. [CrossRef]

41. Fan, Y.; Zhan, C.; Aljuaid, M. Multi-Objective Disassembly Sequence Planning in Uncertain Industrial Settings: An Enhanced
Water Wave Optimization Algorithm. Processes 2023, 11, 3057. [CrossRef]

42. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

43. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

44. Fu, Y.; Zhang, Z.; Liang, P.; Tian, G.; Zhang, C. Integrated remanufacturing scheduling of disassembly, reprocessing and
reassembly considering energy efficiency and stochasticity through group teaching optimization and simulation approaches. Eng.
Optim. 2024, 1–22. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11356-023-25599-0
https://www.ncbi.nlm.nih.gov/pubmed/36746861
https://doi.org/10.1115/1.4055901
https://doi.org/10.1177/09544054221077769
https://doi.org/10.1016/j.jmsy.2021.07.005
https://doi.org/10.1016/j.rcim.2022.102411
https://doi.org/10.1016/j.jii.2021.100220
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.eswa.2023.122323
https://doi.org/10.1108/RIA-06-2022-0156
https://doi.org/10.3390/pr11113057
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/4235.797969
https://doi.org/10.1080/0305215X.2023.2296538

	Introduction
	Proposed Problem
	Sequence-Dependent DSP Problem
	Disassembly Hybrid Graph
	Proposed Model

	Proposed Solution Method
	Population Initialisation
	Classification of Scout Bees’ Role
	Search Phase of the Optimal Scout Bees
	Search Phase of the Better Scout Bees
	Constraint Correction Methods
	Termination of the Algorithm
	Algorithmic Framework

	Case Study
	Comparison with Other Algorithms
	Conclusions and Future Work
	References

