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Abstract: The rapidly increasing adoption of electric vehicles (EVs) globally underscores the urgent
need for effective management strategies for end-of-life (EOL) EV batteries. Efficient EOL man-
agement is crucial in reducing the ecological footprint of EVs and promoting a circular economy
where battery materials are sustainably reused, thereby extending the life cycle of the resources
and enhancing overall environmental sustainability. In response to this pressing issue, this review
presents a comprehensive analysis of the role of artificial intelligence (AI) in improving the disas-
sembly processes for EV batteries, which is integral to the practical echelon utilization and recycling
process. This paper reviews the application of AI techniques in various stages of retired battery
disassembly. A significant focus is placed on estimating batteries’ state of health (SOH), which is
crucial for determining the availability of retired EV batteries. AI-driven methods for planning
battery disassembly sequences are examined, revealing potential efficiency gains and cost reductions.
AI-driven disassembly operations are discussed, highlighting how AI can streamline processes, im-
prove safety, and reduce environmental hazards. The review concludes with insights into the future
integration of electric vehicle battery (EVB) recycling and disassembly, emphasizing the possibility
of battery swapping, design for disassembly, and the optimization of charging to prolong battery
life and enhance recycling efficiency. This comprehensive analysis underscores the transformative
potential of AI in revolutionizing the management of retired EVBs.

Keywords: artificial intelligence; electric vehicle battery disassembly; state-of-health estimation;
disassembly sequence planning; disassembly operation

1. Introduction

In recent years, the greenhouse effect has become increasingly severe, and the issue
of carbon emissions has become the focus of many countries and individuals. With the
popularity of low-carbon and environmental protection initiatives, electric vehicles (EVs)
have progressively become a trend to replace fuel vehicles due to their advantages of
lower energy consumption when driving the same mileage. According to IEA Global EV
Outlook [1], as shown in Figure 1, electric car sales have continued to rise over these years
in most parts of the world. However, this also brings new challenges, including recycling
lithium batteries. In the production process of EVs, the manufacturing consumption of
lithium batteries is enormous. If retired electric vehicle batteries (EVBs) are not recycled,
they will cause severe environmental pollution and even risk of fires and explosions.
Therefore, the safe and sustainable treatment of retired EVBs is urgent. Currently, the
disassembly of lithium batteries in the industry is often destructive and direct, as shown
in Figure 2a [2–4]. The main recycling methods are pyrometallurgical recycling [5] and
hydrometallurgical recycling [6]. Both recycling methods require a battery to be broken
down and sorted first, removing the casing and other non-metallic materials. These
two recycling methods can only recover part of the raw materials, and the recycling
efficiency is relatively low. Retired EVBs typically retain 80% of their original capacity.

Automation 2024, 5, 484–507. https://doi.org/10.3390/automation5040028 https://www.mdpi.com/journal/automation

https://doi.org/10.3390/automation5040028
https://doi.org/10.3390/automation5040028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/automation
https://www.mdpi.com
https://orcid.org/0009-0006-1014-4456
https://orcid.org/0000-0002-9569-3350
https://doi.org/10.3390/automation5040028
https://www.mdpi.com/journal/automation
https://www.mdpi.com/article/10.3390/automation5040028?type=check_update&version=1


Automation 2024, 5 485

Scrapping and directly recycling these retired EVBs would result in a significant waste of
resources. Dismantling retired EVBs and then recycling the disassembled parts separately
can significantly improve recycling efficiency.
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Figure 1. Global electric car stock trends, 2010–2023 (adapted from [1]). Notes: BEV = battery electric
vehicle; PHEV = plug-in hybrid vehicle.
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Figure 2. Life cycle of retired EVBs (adapted from [7]). (a) Direct recycling; (b) echelon utilization.

When an electric vehicle battery’s state of health (SOH) is lower than 80%, it must be
forcibly retired from EVs. However, such batteries still have specific use values. Currently,
there is an optimization solution, namely echelon utilization [8], as shown in Figure 2b.
This approach uses a battery’s remaining life before it is scrapped, and it can be used in
other areas, such as wind farms. Since wind energy has the characteristics of uncertainty
in power generation time and power, using these scrapped batteries in wind farms can
temporarily save electrical energy. When the health status of these batteries drops to about
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50%, it becomes necessary for them to be scrapped [7]. This review will introduce the
application of AI to the electric vehicle battery disassembly process.

The current recycling method mainly extracts raw materials, but this method has low
returns. In addition, the battery must be shredded first, both in pyrometallurgical recycling
and hydrometallurgical recycling. The improper handling of EV batteries may cause a fire
and a risk of explosion [9]. In contrast, an efficient method is to disassemble the battery and
then recycle it completely. According to the degree of automation, the battery disassembly
process can be divided into several categories, namely manual disassembly, semi-automatic
disassembly, and fully automated disassembly. Automated disassembly has gradually
become a significant trend since there are certain safety risks in the disassembly process.
However, the disassembly process is not necessarily the reverse process of the assembly
process. Given the different usage situations of EV batteries and different structures
from various brands, there may be significant differences between disassembly planning
and actual operations, so full automation still needs to be explored in the EV battery
disassembly field.

Artificial intelligence (AI) synthesizes computer science, logic, and many other dis-
ciplines. AI algorithms simulate human intelligence behaviors to perform tasks, such as
decision-making and learning [10,11]. AI has achieved remarkable results in applications,
such as image recognition, natural language processing, intelligent robots, etc. Given
that AI can help improve the accuracy of detection and automation of disassembly, it is
widely used in the disassembly process, such as EVB state-of-health (SOH) estimation and
disassembly operations.

Given the significance of retired EVB disassembly and AI potential in this field, sum-
marizing the latest technical advances is highly valuable. This review focuses on the
application of AI in the EVB disassembly process, including SOH estimation, disassembly
sequence planning, and disassembly operations. To improve the comprehensiveness of
this review, the use of AI in other product disassembly processes is also examined, as well
as the potential application opportunities of those techniques to EVB disassembly. This
survey examines recent research papers on topics related to artificial intelligence, end-of-life
EV batteries, state-of-health estimation, disassembly sequence planning, and disassembly
operations. Many reviews on similar topics were found during the search, as shown in
Table 1. Still, they focused more on the chemical recycling process of lithium batteries or just
part processes in battery disassembly. This survey aims to provide a more comprehensive
summary of AI applications in the EVB disassembly process. The contributions of this
paper are as follows:

1. This paper summarizes the current status of electric vehicle batteries’ recycling and
current issues in the recycling process.

2. The applications of AI in the recycling of retired electric vehicle batteries, including
SOH estimation, disassembly sequence planning, and disassembly operations, are
reviewed.

3. Possible future development directions for EVB recycling are discussed.

This article introduces the application of AI to EVB disassembly and the challenges that
exist in the EVB disassembly sequence and its steps. The structure of the paper is as follows:
Section 2 presents an overview of EVB disassembly problems, including EVB structures and
the challenges faced. Section 3 summarizes the AI-based SOH estimation models to assess
the remaining useful life of the battery so as to determine whether the battery needs to be
fully disassembled. Section 4 discusses disassembly sequence planning to establish the
order of the disassembly operations. Section 5 presents AI-driven disassembly operations
for EV batteries. Section 6 presents discussions and prospects for EVB disassembly. Section 7
summarizes the key conclusions. A list of abbreviations precedes the references section.
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Table 1. Related reviews about EV battery disassembly and recycling processes.

Year Research focus Authors

2019
Lithium-ion battery recycling, including pyrometallurgical recovery, physical
materials’ separation, hydrometallurgical metals’ reclamation, direct recycling, and
biological metals’ reclamation.

Harper et al. [12]

2022 Regulations and new battery directive demand, including current material collection,
sorting, transportation, handling, and recycling practices. Neumann et al. [13]

2022
Artificial intelligence and machine learning applications in EV battery disassembly,
including preprocessing, disassembly planning and operation, intelligent interaction
and collaboration, and smart design for disassembly.

Meng et al. [14]

2023
LIB recycling methods, including pretreatment, pyrometallurgical recycling,
hydrometallurgical recycling, the direct recycling of spent cathode materials, the direct
recycling of graphite anode materials, and advanced in situ characterization methods.

Ji et al. [15]

2023
The comprehensive recycling of lithium-ion batteries, including pretreatment,
deactivation, dismantling, crushing, and the separation and treatment of electrolytes
and solid components.

Yu et al. [16]

2024 Challenges and opportunities for second-life batteries, including battery degradation
models, technical assessment procedures, and economic assessment. Gu et al. [17]

2024 Human–robot collaboration-based EV battery disassembly, including product
modeling, disassembly planning, and disassembly operations. Li et al. [18]

2024
Interpretation from different directions about electric vehicle battery systems’
disassembly, including process steps, the level of automation, the use of digital
technologies, the level of implementation, and efficiency consideration.

Hertel et al. [19]

2024
A more systematic summary of artificial intelligence applications in electric vehicle
battery disassembly, including battery state-of-health detection, disassembly sequence
planning, and disassembly operation.

This review

2. Overview of Electric Vehicle Battery Disassembly Problems and Methodology
2.1. Electric Vehicle Battery Structures

Depending on the dielectric materials used, batteries can be classified into lead-acid,
nickel-based, sodium-based, and lithium-based batteries. Lead-acid batteries have stable
voltage and a low price but low energy density [20]. They are widely used in uninterruptible
power supply systems and backup power supplies. Nickel-based batteries include nickel-
cadmium batteries and nickel–metal hydride batteries [21]. Nickel–cadmium batteries are
commonly used in power tools, such as drills and saws, because of their high discharge
rate and long service life. Nickel–metal hydride batteries are also used in some power
tools, especially those with high environmental protection requirements. Sodium-ion
batteries generally have better thermal stability and safety, reducing the risk of overheating
and thermal runaway, but compared to lithium-ion batteries, sodium-ion batteries have a
slightly lower energy density [22]. Lithium-ion batteries (LIBs) have the advantages of a
high energy density, a high power density, a long life, and no memory effect, so they are
widely used in electric vehicles [23]. LIBs are typically formed by an anode, a cathode, an
electrolyte, and a separator. The anode and cathode are made of lithium-metal oxide and
graphite. LIB packs usually contain a battery module and a battery management system
(BMS) [24].

In addition, each module contains multiple tightly packed battery cells to increase
energy density and efficiency. Numerous battery modules form a battery pack, which is
installed in the chassis of an electric vehicle and used to power a car [25]. The large number
of batteries further increases the difficulty of disassembly.

The multiplicity of car manufacturers results in a wide variety of batteries. For example,
Tesla has adopted cylindrical-type batteries [26], while Volkswagen uses prismatic battery
solutions [27]. Traditional EVBs can be divided into cylindrical, prismatic, and pouch
solutions according to the cell’s shape [12]. Some new battery structures have emerged
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in recent years. BYD introduces a new type of blade battery [28]. The diversity of battery
structures poses significant challenges to automated disassembly.

2.2. Challenges in the EVB Disassembly Process

During the EV battery recycling process, the following problems are encountered:

1. Low recycling efficiency: In industry, dismantling EVBs is mainly based on destructive
dismantling. This method breaks the battery down into smaller parts for further
processing through mechanical damage or other means. While this method allows
for the rapid separation of battery components, it often damages many valuable
components within the battery such that these components cannot be recycled.

2. Various types and structures: Different manufacturers use different types of batteries.
For example, Tesla uses cylindrical batteries [16], while BYD uses blade batteries [29].
Battery capacity and appearance vary somewhat, even between models from the
same vendor. Such a large variety of types and configurations makes automated
disassembly difficult.

3. Safety risks: End-of-life car batteries contain heavy metals and toxic and hazardous
organics, which may release harmful gases during treatment, posing a safety risk to
operators.

4. High disassembly complexity: The disassembly process has much higher complexity
than the assembly process. Many retired EV batteries have rusted screws or even
deformed battery structures within them, requiring recognition algorithms to verify
the situations; thus, they cannot be disassembled using just the reverse process of
the EVB assembly process. Sometimes, the disassembly space is restricted, making it
inconvenient for the human and/or robot arm to operate.

5. Unpublished data: Most manufacturers do not disclose their vehicles’ operating
data, which can result in, for example, too little training data for the state-of-health
estimation process.

2.3. Methodology

This review adopted the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) [30]. The databases used were Scopus, Web of Science, and Google
Scholar. Table 2 shows the keywords used in the search process. As shown in Figure 3,
after duplicate papers in different databases were deleted, papers that could not be down-
loaded or were not relevant to the research topic were excluded. Only papers related to
AI applications in EV battery disassembly were retained. These papers mainly include
papers on AI in EV battery state-of-health estimation, disassembly sequence planning, and
disassembly operations.

Table 2. Search databases and keywords.

Database Keywords

Scopus TITLE-ABS-KEY (electric AND vehicle* OR ev*) AND ALL (batter*) AND ALL (disassembl* OR
dismant*) AND ALL (artificial AND intelligence OR ai)

Web of
Science (((AB=(electric vehicle* or ev)) AND AB=(batter*)) AND AB=(artificial intelligence or ai))

Google Scholar “electric vehicle* OR EV*” AND “batter*” AND “disassembly OR dismantle*” AND “artificial
intelligence OR AI”
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3. AI-Based Electric Vehicle Battery State-of-Health Estimation

The state of health (SOH) is a crucial indicator of the health of lithium-ion batteries. It
reflects the performance and longevity of the battery during its service life, as well as the
relative health of the current state compared to the battery’s initial state. SOH is usually
expressed as a percentage; 100% means the battery is in optimal condition, and 0% means
the battery has failed or is close to failure. The direct calculation method of SOH is as
shown in Equation (1) [31], where Qmax/mAh = the maximum charge available of the
battery, and Cr = the rated capacity.

SOH/% = 100
Qmax

Cr
(1)

EVB SOH evaluates its present performance compared with the fresh state. When the
SOH value is lower than 80%, it is regarded as being at its end of life (EOL) and must be
obligatorily retired from the electric vehicle. It can be disassembled to the cell level, and
then each cell is tested for SOH; cells with similar usage conditions are reassembled into
batteries for echelon utilization or other small electric motorcycles; if the SOH value is lower
than 50%, they need to be disassembled entirely [16]. Unfortunately, the SOH value of the
battery on an electric vehicle cannot be measured directly. SOH estimation is closely related
to the battery usage history. Standard prediction methods are based on capacity, resistance,
voltage, current, and temperature [32]. The traditional measurement method removes
the battery and measures the internal resistance. Although some non-destructive testing
methods have been proposed, such as ultrasonic testing and X-ray scanning, the accuracy
of these methods is generally low [33]. Since AI has advantages in data processing, it is
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widely used in battery SOH estimation. In recent years, there have been some reviews on
EVB SOH estimation, but they have focused more on the underlying estimation methods
and algorithms. Yang et al. [34] discussed various SOH estimation methods based on
capacity, impedance, and aging mechanism parameters, analyzed current SOH diagnosis
and prediction challenges, and discussed future development trends. Manoharan et al. [35]
reviewed the application of artificial neural networks, gradient boosting, and support vector
machines for electric vehicle battery state of charge (SOC) and SOH estimation. Li et al. [36]
reviewed the development of a remaining service life (RUL) prediction for lithium-ion
batteries based on machine learning. They discussed the application of different algorithms,
including recurrent neural networks (RNNs) and support vector machines (SVMs). This
section compares characterization parameters and algorithms in SOH estimation, analyzing
their characteristics, advantages, and disadvantages.

3.1. AI Methods in SOH Estimation

AI-based methods, such as transfer learning, reinforcement learning, neural networks,
etc., are widely used in EVB SOH estimation. AI-based battery SOH estimation usually in-
volves offline training and online estimation. During training, informative health indicators
are extracted from aging data. The AI-based model then learns and updates its weights and
biases to fit this training data. After the model is well trained, it is applied to the battery
management system (BMS) to estimate the real SOH based on raw data [37]. Ruan et al. [38]
proposed a lithium-ion battery health-state estimation method based on a convolutional
neural network and transfer learning, using data from the constant-current and constant-
voltage charging conversion stage to achieve high-precision and robust SOH prediction.
Li et al. [39] proposed a health-conscious battery state estimation method based on deep
transfer learning, which collects and processes battery operating data through a cloud plat-
form, significantly improving the accuracy and stability of different electric vehicle battery
models. Li et al. [40] proposed an end-to-end framework based on a hybrid neural network
and Bayesian optimization for SOH estimation and the RUL prediction of lithium-ion
batteries for electric vehicles, verifying its high accuracy and robustness. Couture et al. [32]
proposed a transfer learning hybrid model that combines images and health indicators,
experimentally verified its efficiency and accuracy in battery SOH estimation and RUL
prediction, and demonstrated the potential of image data in regression tasks. AI-based
methods used in the SOH process include random forest (RF), long short-term memory
(LSTM), transfer learning (TL), support vector machine (SVM), and convolutional neural
networks (CNNs). Table 3 describes the methods and their advantages and disadvantages.

Table 3. Summary of AI-driven methods for EVB SOH.

AI Method Description Advantages Disadvantages Ref.

RF

A powerful and flexible
ensemble learning method
that improves model
accuracy and robustness by
combining multiple
decision trees.

• High prediction accuracy
and generalization ability.

• Reducing the risk of model
overfitting.

• Can evaluate the
importance of individual
features.

• High robustness.

• High computational
complexity.

• Poor model interpretability.
• Not suitable for real-time

predictions.

[41–44]

LSTM

A recurrent neural network
capable of learning and
remembering long-term
dependencies; often used to
process sequence data such
as time series analysis and
natural language processing.

• Suitable for processing time
series data.

• Solving the vanishing
gradient problem

• Long training time.
• Requires many data.
• High complexity.

[45–49]
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Table 3. Cont.

AI Method Description Advantages Disadvantages Ref.

TL

Using knowledge learned
from one task (the source
task) to aid the learning
process in another related
but different task (the
target task).

• Low data requirements.
• Speeding up the training

process.

• Requires dependencies
between source and
target tasks.

• Hard to turn pre-trained
models.

[39,50–57]

SVM

A powerful and flexible
supervised learning
algorithm that handles linear
and nonlinear classification
tasks by maximizing
inter-class margins and using
kernel functions.

• Suitable for data with
higher dimensions.

• Strong robustness.
• Able to handle non-linear

classification problems

• High computational
complexity.

• Sensitive to parameter
selection.

• Sensitive to missing data.

[58–61]

CNN

A powerful deep learning
model that automatically
extracts features through
convolutional and pooling
layers and that is widely
used in tasks such as image
classification, target
detection, and image
segmentation.

• Can automatically extract
features.

• Parameters can be shared.
• Preserving the spatial

relationship of local
features.

• High computing resource
requirements.

• Requiring many data.
• Sensitive to input size.

[62–67]

3.2. Characterization Parameters in SOH Estimation

In EVB SOH estimation, commonly selected characteristic parameters include capacity,
temperature, impedance, etc. Battery capacity is a crucial parameter describing the battery’s
SOH. In a laboratory, capacity loss can be measured directly by charging or discharging a
battery at a nominal current until the cut-off voltage is reached. However, performing this
process in practice is challenging due to device and battery operating range limitations. He
et al. [68] proposed a revised Lorentzian function-based voltage–capacity (RL-VC) model.
New features of interest (FOIs) are extracted from constant-current charging data by fitting
the RL-VC model. They determined that the FOI highly correlated with battery capacity
through correlation analysis and calibrated the linear model for SOH estimation. Galeotti
et al. [69] discussed lithium polymer batteries’ performance and SOH estimation through
electrochemical impedance spectroscopy (EIS) techniques. Experimental results show that
the ohmic resistance of the battery increases with aging, and SOH can be evaluated through
the relationship between ohmic resistance and available capacity. When a lithium-ion
battery operates, it generates or absorbs heat, leading to fluctuations in temperature. Chen
et al. [70] proposed a SOH estimation method based on temperature prediction and a gated
recurrent unit (GRU) neural network. They extracted multi-dimensional health features
from differential temperature profiles to reflect multiple aspects of battery degradation.
Table 4 shows the advantages and disadvantages of these characteristics. These AI-based
estimation methods can achieve high accuracy. However, it should be noted that these
prediction methods can sometimes only serve as auxiliary decision-making and cannot
replace the actual detection process. When there are many battery cells, and the usage of
different battery cells is different, heterogeneity is likely to occur. In this case, AI-based
detection methods may not be effective.
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Table 4. Summary of characteristic parameters for SOH estimation.

Parameter Description Advantages Disadvantages Ref.

Capacity

• The amount of
electricity a battery can
store when fully
charged.

• Usually expressed in
ampere-hours (Ah).

• Directly reflects battery
SOH.

• The estimation is the most
accurate.

• Requires a complete
charge-discharge cycle,
time-consuming, not
suitable for real-time
monitoring

[68,71–79]

Impedance

• The battery’s resistance
to alternating current,
including ohmic
resistance, polarization
resistance, etc.

• Highly sensitive to changes
in the internal state of the
battery.

• Can detect minor aging
characteristics.

• Complex measurement and
data processing.

• Requires specialized
equipment and extensive
electrochemical knowledge.

[69,80–87]

Temperature

• Temperature changes
caused by thermal
effects during battery
charging and
discharging

• Can be monitored in
real-time.

• Highly influenced by
environmental factors.

• Indirectly reflect the SOH
of the battery.

[70,88,89]

4. Disassembly Sequence Planning (DSP) for EV Batteries

Disassembly process modeling and AI algorithms are two primary considerations
in AI-driven disassembly sequence planning (DSP). The traditional approach involves
disassembly engineers manually formulating a disassembly sequence based on years of
experience and technical manuals. This method relies on personal experience and is
relatively flexible, but it is prone to subjective bias, and it is less efficient when faced with
complex disassembly tasks.

4.1. Disassembly Process Modeling

Disassembly representation and modeling are critical for efficient disassembly se-
quences and operations. Several factors influence the feasibility of a disassembly sequence,
including the relationship between components, the constraints involved in disassembling
the components, the geometry of the product, hazardous characteristics of disassembly,
the tools required for the operation, and the components needed to disassemble the target
component. The feasibility of the disassembly sequence depends mainly on the product’s
structure. How the product structure is represented directly affects the efficiency of the dis-
assembly sequence search [90]. The main modeling methods are AND/OR graph modeling,
Petri Net (PNt) modeling, and matrix-based modeling [18].

4.2. AI Algorithms in DSP

AI methods are widely studied in DSP. Xiao et al. [91] proposed a human–machine col-
laborative disassembly optimization method based on multi-agent reinforcement learning,
which improved disassembly efficiency and safety by optimizing the disassembly sequence
and task allocation. Hartono et al. [92] proposed a method to optimize robot disassembly
plans using a bee algorithm to maximize profits, save energy, reduce the environmental
impact, and achieve the automation and efficiency of the disassembly sequence in the
remanufacturing process. Gao et al. [93] proposed a multi-agent strategy optimization
method based on partially observable deep reinforcement learning to improve the efficiency
and safety of human–machine collaboration in order to dismantle scrapped electric vehicle
batteries. Allagui et al. [94] proposed a reinforcement learning-based disassembly sequence
planning optimization method to improve disassembly efficiency and reduce costs by
reducing tool and direction changes. Chu et al. [95] proposed a human–machine collab-
orative disassembly optimization method based on hybrid particle swarm optimization
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and Q-learning algorithms to improve the efficiency and safety of EOL EVB disassembly.
The authors also developed some algorithms for disassembly planning on other products.
These algorithms can also be considered for battery disassembly. A summary of these
methods is given in Table 5.

Table 5. Summary of EVB disassembly sequence planning models.

Methods Description Applications Ref.

Machine learning Dynamic
Bayesian network

• Calculate and compare different
numbers of observation sequences
through reasoning and observation
sequences to verify the possibility of
finding the optimal disassembly
sequence.

EV battery Xiao et al. [96]

Q-network
• Learn optimal decisions by interacting

with the environment to maximize
cumulative rewards.

No mention Allagui et al. [94]

Q-learning

• Learn optimal policies by updating
state–action value functions.

• The reward function is based on the
disassembly time and target
component status.

Smartphone Chen et al. [97]

Multi-agent
reinforcement
learning

• Improve disassembly efficiency and
safety by dynamically adjusting
disassembly task assignments and paths.

• Multiple agents can work together in a
shared environment.

EV battery Xiao et al. [91]

Metaheuristics
optimization
algorithm

Bees algorithm
• A swarm intelligence optimization

algorithm based on bees’ foraging
behavior.

Gear pump Hartono et al. [92]

Artificial Bee
Colony
Algorithm

• A mathematical model of the random
disassembly line balancing problem
based on expected returns is proposed.

Cell phone Guo et al. [98]

Genetic algorithm

• The optimal solution to the problem is
found by simulating the genetic and
selection mechanisms in biological
evolution.

CRT TV Wang et al. [99]

Particle swarm
optimization

• Combining the particle swarm
optimization algorithm enhances global
search and local search capabilities.

EV battery Chu et al. [95]

Compared with traditional electric vehicle battery disassembly sequence planning,
AI-based methods can learn and continuously optimize the strategy and improve the
efficiency and accuracy of subsequent disassembly tasks. Traditional methods often rely
on manual experience, while AI-based systems can automatically generate optimal disas-
sembly strategies through large amounts of data and learning algorithms, reducing the
dependence on expert knowledge. However, the performance of AI-based systems relies
on large amounts of high-quality data. If the data are insufficient or noisy, the accuracy
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of the model may be affected, leading to unsatisfactory disassembly results. In an actual
production environment, obtaining enough relevant data can be challenging, especially
when dealing with new or rapidly changing battery designs. Complex AI models, espe-
cially deep learning models, usually require high-performance computing resources to
train and run, which may lead to high implementation costs and time overhead.

5. AI-Driven Disassembly Operation for EV Batteries

This section discusses some AI-driven disassembly operations for electric vehicle
battery disassembly.

5.1. Object and Defect Identification

The disassembly process is more complex than the assembly process, and it requires
the real-time judgment of the status of the disassembly process and the product being
disassembled. Target recognition plays a vital role in the disassembly process. Zhang
et al. [100] used the YOLOv4 algorithm to detect screws during the disassembly process.
YOLOv4 is an efficient single-stage target detection algorithm that combines advanced
network architecture and data enhancement technology to achieve high-precision target
detection while maintaining real-time detection speed [101]. Foo et al. [102] proposed a
practical learning framework and showed how the system can learn relevant disassembly
information for LCDs. After training, the system’s success rate in identifying LCD parts
increased significantly from 11% to 87%. Zheng et al. [103] used PointNet DNN to identify
12 parts of car engine turbochargers. This method generates point cloud data from a
CAD model and simulates sensor data with different accuracy levels through a depth
camera simulator for training. Foo et al. [104] proposed a method that combines image
preprocessing, deep learning models, and ontological reasoning to improve the accuracy
and efficiency of screw detection in automated e-waste disassembly. Li et al. [105] proposed
an accurate screw detection method based on Faster R-CNN and an innovative rotating
edge similarity (RES) algorithm, aiming to automatically disassemble screws in electronic
scrap, especially screws on mobile phone motherboards.

AI can also be used to identify defects in components. The traditional defect recog-
nition method is for operators to identify product defects through visual inspection. This
method relies on the experience and skills of personnel. Although it is highly flexible,
it is easily affected by subjective factors, such as fatigue, resulting in false detection or
missed detection. AI, especially deep learning models, can automatically extract complex
features from large amounts of images or data and identify subtle and complex defects.
Compared with traditional methods that rely on manually set rules and features, AI can
capture the details of defects more accurately. Deep learning models outperform traditional
computer vision algorithms in terms of accuracy and processing time, which has led to
their widespread use in defect detection [106]. Tabernik et al. [107] proposed a two-stage
deep learning architecture, including a segmentation network and a decision network. This
design allows the model to be trained using fewer training samples, which is suitable for
situations where defect samples are limited in practical applications. Medak et al. [108]
solved the defect detection problem in ultrasound images by introducing the EfficientDet
deep learning architecture, demonstrating its great potential and superiority in practical
applications. Zhang et al. [109] proposed a semi-supervised learning method based on
generative adversarial networks (GANs), which effectively improves the performance of
automatically detecting and segmenting image surface defects while reducing the reliance
on large amounts of annotated data.

However, AI models, especially deep learning models, require many annotated data
for training. For defect recognition, this means collecting and annotating many images
or data sets containing different types of defects. This data acquisition and annotation
process is time-consuming and expensive, especially when defect samples are scarce or
difficult to collect. At the same time, AI models are susceptible to data quality. If there
is noise, mislabeling, or a data imbalance in the training data (too few samples of certain
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defect categories), it may affect the performance of the model and lead to inaccurate
recognition results.

5.2. Intelligent Tool Selection and Disassembly Line Balancing

During the disassembly process, appropriate tools should be selected based on the
type of connections. The connection methods of electric vehicle batteries include threaded
connections, glue connections, welding connections, etc. Different connection methods
correspond to different disassembly methods. AI can improve the efficiency of tool selection.
Wang et al. [110] proposed a tool selection model based on a genetic algorithm (GA) to
evaluate the suitability and matching value of disassembly tools in order to select the best
disassembly tools. Liang et al. [111] constructed a mixed-integer, non-linear programming
(MINLP) model of the multi-objective partial disassembly and line balancing problem
(PDLBP) to achieve the minimization of the four optimization objectives of the number of
workstations, workstation load, tool switching times, and energy consumption.

Disassembly line balancing (DLB) refers to the reasonable allocation and arrangement
of disassembly tasks during the product disassembly process to improve disassembly
efficiency, maximize economic benefits, reduce energy consumption, and balance the
load of each station [112]. Traditional methods usually rely on engineers’ experience
and knowledge to manually configure and adjust the production line. Engineers assign
tasks to different workstations based on the complexity of the task, process time, and
resource availability. Engineers often use heuristic methods, such as the “longest processing
time first” or the “shortest processing time first”, to assign tasks through simplified rules
in order to try to balance the working time of each workstation. AI can automatically
analyze the tasks and resources of a production line, intelligently assign tasks to different
workstations, and reduce the reliance on human intervention. This improves design
efficiency, especially when faced with complex production lines. AI can quickly generate
optimization solutions. At the same time, it can monitor the operating status of a production
line in real time, dynamically adjust task allocation based on real-time data, and optimize
the balance of a production line. This enables the production line to respond quickly
to environmental changes, demand fluctuations, or failures. Ren et al. [113] proposed a
mathematical model to solve the bi-objective disassembly line scheduling problem (Bi-
DLSP) in order to optimize the total disassembly time and smoothing exponent. Wang
et al. [114] applied the genetic simulated annealing algorithm to the disassembly line
balancing problem. Yin et al. [115] used the Pareto-discrete hummingbird algorithm
to address the disassembly line balancing problem. Experimental results showed that
this method is more efficient in solving problems than the Discrete Artificial Bee Colony
Algorithm (DABC), Hybrid Genetic Algorithm (HGA), Ant Colony Optimization Algorithm
(ACO), and Hybrid Artificial Bee Colony Algorithm (HABC).

5.3. Intelligent Separation Optimization

During the battery disassembly process, the casing and module must be separated.
Standard methods include mechanical cutting, laser cutting, hydraulic shearing, and man-
ual disassembly. AI technology has great potential in modeling and optimizing laser beam
processing quality characteristics, including geometric characteristics, metallurgical char-
acteristics, surface quality, and the material removal rate [116]. Ding et al. [117] proposed
an ensemble model based on a generalized regression neural network (GRNN) and Non-
dominated Sorting Genetic Algorithm II (NSGA-II), which could be used to predict and
optimize the quality characteristics of the fiber laser cutting of stainless steel. Pimenov
et al. [118] reviewed modern approaches to cutting tool condition monitoring, particu-
larly the application of sensors and AI technologies, demonstrating the potential of these
technologies to improve machining accuracy, productivity, and tool life. Serin et al. [119]
proposed collecting vibration, acoustic emission, current, and cutting force data through
sensors and using deep learning methods for predictive and preventive maintenance.
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6. Discussion and Future Prospects

This section discusses some possible directions for EVB disassembly.

6.1. Electric Vehicle Battery Swapping

Electric vehicle battery swapping stations are a new trend in electric vehicle charging.
As shown in Figure 4 [120], when an electric vehicle is close to out of charge, the driver
drives the car to a battery swapping station and directly replaces it with a fully charged
battery, which is charged at the battery swapping station [121]. One of the drawbacks
of electric cars compared to fuel cars is their weak range and long charging times. Even
with fast charging, it takes about 30 min to reach 80% of full charge [122]. In contrast, the
battery-swapping process takes about 3 min to reach a 100% state of charge (SOC) [123]. In
addition to reducing the waiting time for electric vehicle users to charge, battery swapping
stations can also independently plan the charging time, for example, charging the batteries
at low peaks of electricity consumption, which helps reduce the economic cost of charging
and maintain the stability of the power grid. Established in 2014, Nio has become a global
intelligent EV company, with at least 30 battery swapping stations (BSSs) in Europe and
2200 stations globally.
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While battery swapping stations have certain advantages, there are still some current
challenges faced:

• Only batteries of the same type and size can be replaced. However, the batteries of
different car manufacturers worldwide, and even models of the same manufacturer,
are not the same. This makes it impossible for battery swapping stations that serve
cars from other manufacturers to be interoperable.

• Battery manufacturing costs account for a large part of the cost of electric vehicle
production. Establishing a battery swapping station means manufacturing many
additional batteries, which will incur relatively high expenses.

• To popularize battery-swapping, battery-swapping stations need to be widely estab-
lished, which requires more investment than battery fast-charging stations. It also
requires manufacturers to be able to integrate the supply chain. Due to great diffi-
culties in this area, Tesla shifted its research and development direction from battery
swapping to fast charging [124].

• The number of battery swaps also has peaks and troughs over time. For example,
people generally drive during holidays, and the frequency of battery swaps for electric
vehicles is currently higher. This causes problems with the layout of a battery swapping
station and the reserve of replaceable batteries. The economic benefits will be low if
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there are too many idle batteries. If there are too few replaceable batteries, the user
must wait to charge their replacement battery.

• Consumers’ psychological factors must also be considered. Battery replacement means
that a car component is constantly being replaced, and some consumers may doubt
this operating mode.

The rational layout and management of battery replacement stations are crucial to
optimizing service coverage, and there is currently a series of research on the distribution
optimization of battery replacement stations. AI-based methods can analyze real-time data,
such as vehicle location, driving behavior, battery status, and battery swapping station
capacity to optimize battery allocation. By predicting vehicle needs, AI-based methods
can prepare a suitable inventory, reduce the waiting time, and improve battery swapping
efficiency. AI-based methods can monitor the operation of all battery swapping stations
in real time and dynamically adjust battery allocation and scheduling strategies. For
example, when demand in an area surges, AI-based methods can automatically dispatch
more batteries and resources to that area to cope with the peak demand. Yang et al. [125]
proposed a data-driven BSS location optimization model using a one-month GPS trajectory
dataset containing 514 EVs. Wang et al. [126] developed deep learning methods to predict
EV battery swapping demand in order to optimize BSS arrangement. Yang et al. [127]
developed an optimal battery allocation model for BSSs of EVs. This technology can
be given priority in some large-scale vehicles, such as taxis. This technology will be
more promising if various electric vehicle manufacturers can unify battery charging and
discharging power and size for different models.

6.2. Intelligent Design for Disassembly (DFD)

Design for disassembly (DFD) simplifies the disassembly process [128]. DFD is a green
manufacturing concept in which products are designed for ease of disassembly to recover
valuable reusable materials and components and simplify maintenance through cost-
effective separation. Therefore, by allowing the reuse, remanufacturing, and recycling of
products, waste is reduced at the product’s EOL. Traditional DFD usually adopts modular
design, using standardized components and interfaces, so that different modules can
be quickly identified and separated when the product is disassembled. Such a design
simplifies the disassembly process and reduces the risk of damage to components. Based on
traditional DFD technology, AI-based methods can help automatically generate optimized
disassembly design solutions. At the same time, AI-based methods can take into account
multiple design goals, such as minimizing the disassembly time, maximizing the material
recovery rate, minimizing the cost, and providing optimal design suggestions to help
designers find the best balance under multiple constraints. AI-based methods can also
simulate the disassembly process through virtual simulation, predict problems that may
be encountered in actual disassembly, and make improvements in the design stage. This
predictive ability helps reduce design defects and improve product disassembly.

As shown in Figure 5, multiple intelligent DFD methods could be adopted. RFID
and QR codes could be adopted during the manufacturing process to record information
about EVBs, while processors and sensors could be placed inside the EVBs to monitor SOH
conditions and estimate their RUL.

DFD is applied to make the components in a battery, such as the positive electrode,
negative electrode, and electrolyte, more accessible for separation and recycling. Currently,
recycling efforts are focused on cathode materials because these are the most economically
valuable among retired LIBs [129]. Due to the graphite anode, an additional separation
step is required. Anode-free batteries are a new trend that simplifies the disassembly
process. Meanwhile, the anode-free battery, which removes excess lithium and combines a
fully lithiated cathode with an uncoated current collector, can achieve the highest possible
energy density [130]. Furthermore, this configuration saves costs, energy, and technical
requirements associated with anode production, including slurry preparation, coating,
and drying processes in the drying chamber [131]. The connection between each part can
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also be optimized to achieve non-destructive disassembly. Connected components and
modules can be manufactured using shape-memory polymers, which offer the advantages
of industrial feasibility, morphological diversity, and synthetic flexibility [132].
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6.3. Digital Twin and Human–Robot Collaboration Applications

The remote operation of the disassembly process can significantly improve its safety.
Since toxic gases may be released during the battery disassembly process, improper opera-
tion may cause the risk of combustion and explosion. Digital twin (DT) and human–robot
collaboration (HRC) are useful tools for realizing remote disassembly.

As shown in Figure 6, DT is achieved through a physical system with a virtual represen-
tation [133,134], and the digital model mirrors the physical system. Mirroring capabilities
can be achieved through a data exchange, which requires installing sensors on the physical
system to collect and transmit data over the network to the virtual model. At the same time,
physical entities can also be operated using virtual models. Augmented reality (AR) is an
excellent medium for achieving this function. AR is a technology that overlays computer-
generated information or images onto the real world [135]. AR technology can combine
virtual information with the natural environment using cameras, sensors, computers, and
display devices. The use of DT and AR can realize remote control and reduce the difficulty
of control, significantly reducing the safety risks of the working environment. It should be
noted that the virtual model in the DT and AR needs to simulate the operating robot arm
and the workpiece to be processed and the environment. Otherwise, the control that can
be achieved on the virtual side may be restricted due to the operating environment on the
physical side. In the past, the virtual end of digital twins generally used manual modeling;
however, with the development of AI technology and the emergence of 3D point cloud
technology, virtual models can be quickly modeled by scanning entities [136]. DT relies on
a large number of sensors and data collection devices, which may involve the processing of
sensitive information.

Due to the great difficulty of disassembling electric vehicle batteries and the small op-
erating space in part of the disassembly process, which makes it difficult for the robotic arm
to operate, it is difficult to automate the disassembly process [17] entirely. Human–robot
collaboration (HRC) provides new ideas for disassembly by combining human intelligence
and decision-making with the strength and precision of robots. For example, complex
disassembly tasks are better suited to manual operations, while robots better handle haz-
ardous and repetitive tasks. In traditional HRC, robots usually perform repetitive and
precision-demanding tasks, while human workers are responsible for more complex tasks
that require flexibility. The tasks in HRC disassembly are usually predefined, with little
room for dynamic adjustment. AI-based methods can dynamically adjust task allocation
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based on real-time task complexity, worker status, robot capabilities, and other factors to en-
sure optimal collaboration between humans and robots. This dynamic allocation removes
the limitations of fixed task allocation in traditional HRC. At the same time, AI-based
methods give robots the ability to understand and respond to human natural language
commands and gestures, making the interaction between humans and machines more
intuitive and natural. Yuan et al. [137] proposed a new heuristic algorithm based on a multi-
criteria assessment of human–robot collaboration. The proposed disassembly elasticity
assessment method uses the fuzzy Bayesian-ANP-extension cloud model to convert human
judgment into numerical values in order to help managers make better decisions. Guo
et al. [138] proposed HRC partial destructive disassembly sequence planning (DSP) driven
by multiple failures. The disassembly sequence is optimized through an improved genetic
algorithm to improve the efficiency and automation of end-of-life product disassembly. Gao
et al. [93] proposed HRC disassembly strategy optimization based on deep reinforcement
learning. This approach enables each agent to choose a strategy that maximizes the overall
gain, ensuring that humans and robots adopt optimal disassembly strategies. The chal-
lenge is that human workers may lack trust in AI-driven robots, especially when the AI’s
decision-making process is not transparent. Establishing and maintaining trust between
humans and machines is an important challenge that needs to be achieved through reliable
behavior and transparent decision-making processes.
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As shown in Figure 7, disassembly tasks’ classification is performed to determine the
disassembly sequence for batteries and the characteristics of parts in batteries. The second
step is to allocate disassembly resources to determine the tasks allocation in HRC. After that,
the entire process will be integrated into a solution, and the solution will be evaluated.
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human judgment into numerical values in order to help managers make better decisions. 

Guo et al. [138] proposed HRC partial destructive disassembly sequence planning (DSP) 

driven by multiple failures. The disassembly sequence is optimized through an improved 

genetic algorithm to improve the efficiency and automation of end-of-life product disas-

sembly. Gao et al. [93] proposed HRC disassembly strategy optimization based on deep 

reinforcement learning. This approach enables each agent to choose a strategy that max-

imizes the overall gain, ensuring that humans and robots adopt optimal disassembly strat-

egies. The challenge is that human workers may lack trust in AI-driven robots, especially 

when the AI’s decision-making process is not transparent. Establishing and maintaining 

trust between humans and machines is an important challenge that needs to be achieved 

through reliable behavior and transparent decision-making processes. 

As shown in Figure 7, disassembly tasks’ classification is performed to determine the 

disassembly sequence for batteries and the characteristics of parts in batteries. The second 

step is to allocate disassembly resources to determine the tasks allocation in HRC. After 

that, the entire process will be integrated into a solution, and the solution will be evalu-

ated. 
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et al. [140] proposed a collision-free HRC system based on context awareness. The system 

can plan the robot’s path to avoid collisions with human operators while reaching its tar-

get location promptly and recognize human operator gestures with low computational 
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et al. [139] proposed a strategic disassembly information model. This method used the
improved discrete bee algorithm to solve the HRC disassembly line balancing problem.
Liu et al. [140] proposed a collision-free HRC system based on context awareness. The
system can plan the robot’s path to avoid collisions with human operators while reaching
its target location promptly and recognize human operator gestures with low compu-
tational overhead, further improving assembly efficiency. Wang et al. [141] proposed a
deep learning-enhanced DT framework in HRC manufacturing. The proposed frame-
work significantly improves the security and reliability of the HRC system through deep
learning technology.

6.4. Charging Optimization

Changes in the voltage, current, temperature, etc. during charging will also affect
battery life. Improving charging parameters to extend battery life saves energy and protects
the environment. At the same time, compared with fuel vehicles, electric vehicles have
significant disadvantages, namely a slow charging time and low endurance. Electric cars
will be further promoted if the charging rate can be improved.

Battery aging can be divided into cyclic aging and calendar aging. Cyclic aging occurs
during charging and discharging, while calendar aging occurs when a battery rests [142].
The temperature during charging, including the ambient temperature and the heat gener-
ated during battery charging, impacts the battery life. Park et al. [142] proposed a model
and showed that indoor charging stations can reduce battery aging management costs by
up to 13.31% compared with outdoor charging stations. Chung et al. [143] investigated
battery maintenance during extended periods of inactivity. They designed an optimal
charge profile that maintains battery status under ideal conditions to minimize degradation
during idle periods while still meeting charging energy requirements.

There is currently much research on fast charging. Wang et al. [144] proposed a
multi-stage charging strategy based on a fractional-order model using the Moth–Flame
Optimization (MFO) algorithm. The test showed that each fitness function part’s current
stage number, cut-off voltage, and weight significantly affect charging performance. The
fitness function should be weighted differently based on specific requirements. Jiang
et al. [145] proposed a fast-charging design based on Bayesian optimization. They explored
three acquisition functions (i.e., expected improvement, improvement probability, and
lower confidence bound) to minimize the charging time for single-step and multi-step
constant-current charging profiles. However, fast charging often accelerates battery aging.
AI-based methods can provide an innovative approach to optimizing the balance between
fast charging and reducing battery aging. The voltage and current of the traditional
charging method are constant. An AI-based system can monitor the battery’s charging
status (such as voltage, temperature, charging current, etc.) in real time and dynamically
adjust the charging rate based on these data to optimize charging efficiency and prevent
the battery from overheating. At the same time, charging data can also be used for battery
state-of-health estimation. However, the challenge is that existing charging hardware and
infrastructure may not be fully compatible with the needs of AI-based systems. In order to
achieve AI-driven fast charging, existing hardware may need to be upgraded or modified,
which may involve high cost.

7. Conclusions

With the popularity of electric vehicles, disposal of retired electric vehicles is being
considered. The traditional metal extraction method of crushing retired electric vehicle
batteries destroys their structure and can only facilitate recycling of raw materials, which
is inefficient. One optimization method is to conduct SOH estimation on electric vehicle
batteries. Batteries with SOH values lower than 80% but higher than 50% can be used for
echelon utilization. They are systematically disassembled if the SOH value is lower than
50%. AI has excellent potential in EV battery disassembly. To evaluate AI applications
in the EVB disassembly process, this survey has provided a more systematic summary
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of AI applications in EV battery disassembly, including SOH estimation, disassembly
sequence planning, and disassembly operations. The article has also discussed promising
development directions in battery recycling, including battery swapping, intelligent design
for disassembly, DT and HRC, and charging optimization. Further research in these areas is
needed. Overall, this review has provided a systematic summary of AI in EVB disassembly
and pointed out possible directions for future research.
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