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Abstract: In this paper, the performance of three model-free control approaches on a multi-input,
multi-output (MIMO) nonlinear system with constant and time-varying references is compared. The
first control algorithm is model-free adaptive control (MFAC). The second is a modified version of
MFAC (MMFAC) designed to handle delays in the system by incorporating the output error difference
(over two sample time steps) in the control input. The third approach, model-free adaptive predictive
control (MFAPC) with a one-step-ahead forecast of the system input, is obtained by using predictions
of the outputs based on the data-based linear model. The experimental device used is an MIMO
three-tank system (3TS) assumed to be an interconnected system with multiple coupled single-input,
single-output (SISO) subsystems with unmeasurable couplings. The novelty of this contribution
is that each coupled SISO partition is assumed to be controlled independently using a decoupled
control algorithm, leading to fewer control parameters compared to a centralized MIMO controller.
Additionally, both parameter tuning for each controller and performance evaluation are conducted
using an evaluation criterion considering energy consumption and accumulated tracking error. The
results demonstrate that almost all the proposed model-free controllers effectively control an MIMO
system by controlling its SISO subsystems individually. Moreover, the predictive features in the
decoupled MFAPC contribute to more accurate tracking of time-varying references. The utilization of
tracking error differences helps in reducing energy consumption.

Keywords: model-free adaptive control; MIMO system; three-tank system

1. Introduction

Kalman’s state-space representation of systems has led to the introduction of modern
control theory. Thereafter, an accurate model of the physical system needed to be known
when applying a controller. This methodology is known as model-based control (MBC).
However, systems cannot always be modeled accurately; therefore, adaptive controllers [1]
are developed to handle the known structure of the system with unknown parameters.
Robust controllers [2] are designed to handle modeling errors or uncertainties.

Advances in technology in the past few decades have led to more complex technical
systems with highly nonlinear dynamics. On the other hand, a large amount of knowledge
about a system is embedded in the data in complex industrial process data which can be
used for modeling and control purposes ([3], Section 1.2). The model-free adaptive control
(MFAC) theory, introduced by Hou and Jin [3], addresses controlling a system based only on
input/output (I/O) measurements. The MFAC methodology is highly advantageous when
the existing system’s model is inaccurate, unknown, or even highly nonlinear and provides
a design approach to address such situations. To obtain an appropriate control algorithm,
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an equivalent data-based model has to be generated at each time instant according to
three different linearization techniques: Compact-Form Dynamic Linearization (CFDL),
Partial-Form Dynamic Linearization (PFDL), and Full-Form Dynamic Linearization (FFDL).
The first technique utilizes the current I/O data of the system, the second one incorporates
past inputs into the control algorithm, and the third one takes into account the influences
of both past inputs and past outputs on the one-step-ahead output. In [4], the connection
between these data models and the PID coefficients is explained. However, it is important
to mention that CFDL, PFDL, and FFDL techniques are only control-oriented and have no
physical meaning; the exact values of their parameters cannot be computed analytically ([5],
Remark 3.2).

Here, a three-tank laboratory-scale system is used as an experimental MIMO bench-
mark to validate the efficiency of the proposed controllers. In [6], it is indicated that MFAC
performs better in comparison with two other model-free approaches, namely Virtual
Reference Feedback Tuning (VRFT) and Iterative Feedback Tuning (IFT), when applied to
an SISO 3TS. The linearization techniques (CFDL and PFDL) can also be used to develop
an ideal controller. This method has been applied to a 3TS [7] and to a flexible crane [8].
The MFAC has also been exploited in practice for controlling many mechanical systems,
such as a wind turbine with steady or step-wise wind conditions [9], winding systems with
uncertainties and time-varying parameters [10], quad-rotor aircraft [11], and twin-rotor
aerodynamic systems [12]. Another example of a practical use of MFAC is [13], where
the tracking efficiency of a nonlinear two-degree-of-freedom manipulator is controlled
by MFAC.

In the concept of model-free adaptive predictive control (MFAPC), the idea of including
more trajectory information over a time window in the future is integrated into the control
process [3]. Output predictions are obtained using the data-based model. In [14], for
example, a CFDL model is considered as a replacement for a traffic flow model of an
urban road network. The use of the PFDL model for controlling a nonlinear system using
the MFAPC method is studied in [3]. In [15], the application of MFAPC on a nonlinear
MIMO system with constant and time-varying desired references is investigated. The
MFAPC approach can be readily combined with other control methodologies. For example,
a Lazy Learning (LL) algorithm is employed as a prediction tool in [16]. A disturbance
rejection technique is integrated into the MFAPC algorithm in references [17,18]. This
method has been practically applied to distributed nonlinear multi-agent systems [19],
stochastic-determined coupled wind power systems [20], and multi-region urban traffic
networks [21].

An interconnected dynamical structure can be viewed as a complex system [22]. Due
to the fact that many subsystems are mutually interacting in such systems (Figure 1), a
single centralized controller—from a practical point of view—is not designed to act on
diverse dynamical subsystems; instead, decentralized control approaches handle each
subsystem individually [23]. If these subsystems are numerous and strongly coupled, the
concept of decentralized MFAC (DMFAC) can be advantageous since it is not necessary
to estimate each subsystem accurately to use an appropriate model-based controller. It is
important to note that the coupling between different partitions should be measurable in
addition to the I/O data [24]. Some applications of DMFAC are an H-type motion platform
that brings high-precision synchronous feed control to its two motors [25], a signalized
intersection network with measurable interactions [26], and other large-scale systems, such
as power networks, digital communication networks, economic systems, etc.

In this contribution, an MIMO three-tank system is considered as an interconnected
dynamic structure with multiple SISO subsystems. Different model-free controllers are
experimentally applied to each SISO partition in parallel: conventional MFAC-CFDL and
MFAC-PFDL, MMFAC-CFDL and MMFAC-PFDL, and MFAPC-CFDL. The controllers
need only the I/O data from each subsystem to track the desired water heights. In other
words, a model of the system is no longer necessary for generating the control signal. This
also includes the availability to work with unknown systems or systems with unknown
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parametric uncertainties; therefore, the proposed controllers constitute a robust approach
by design. The novelty of this work lies in handling the interactions between a 3TS’s
subsystems as external disturbances to each individual subsystem. Additionally, the
optimal controller parameters are selected based on a parallel comparison of accumulated
error versus accumulated input [27]. The same metric is also used to compare the tracking
performance of the controllers under two different tracking references: one with constant
abrupt changes and the other with slow time-varying changes.

Figure 1. Interconnected complex system decomposed into subsystems (redrawn from [26]).

The rest of the paper is structured as follows. In Section 2, the details of the data-based
model (CFDL and PFDL) are introduced, followed by a presentation of the mathematical
procedure to obtain the proposed model-free control algorithms. In Section 3, the physics
behind the MIMO 3TS as a PLC-based experimental device is provided. In Section 4,
a coupled multi-SISO representation of the 3TS controlled by the proposed model-free
controllers is presented. The experimental results are discussed in Section 5, followed by
summary and conclusion in Section 6.

2. Mathematical Background
2.1. Dynamic Linearization Technique
2.1.1. Compact-Form Dynamic Linearization (CFDL)

Consider an SISO discrete nonlinear system:

y(k + 1) = f
(
y(k), y(k − 1), . . . , y(k − ny), u(k), u(k − 1) . . . , u(k − nu)

)
, (1)

where u(k) ∈ R is the input, and y(k) ∈ R is the output at time instant k, and f (. . . ) :
Rnu+ny+2 7→ R is an unknown nonlinear function. The positive integers ny and nu are
unknown. The initial step in the MFAC algorithm is to generate a data-based model at each
working point. The following assumptions are invoked.

Assumption 1. The partial derivative of f (. . . ) with respect to the (ny + 2)th variable is continu-
ous for all k. This is a general condition which can be imposed on nonlinear systems.
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Assumption 2. System (1) is assumed to obey the generalized Lipschitz condition, |∆y(k + 1)| ≤
b|∆u(k)|, for each fixed k and |∆u(k)| ̸= 0, where ∆y(k + 1) = y(k + 1) − y(k), ∆u(k) =
u(k)− u(k − 1), and b is a positive constant. In other words, a limited change to the output results
from limited changes to the inputs.

The nonlinear system (1) satisfying the mentioned assumptions can be expressed as

y(k + 1) = y(k) + ϕ(k)∆u(k), (2)

where the time-varying ϕ(k) ∈ R results from (1) by taking a pseudo-partial derivative
(PPD) at time instant k. Equation (2) is the CFDL representation of system (1). This
equivalent model is built purely based on the I/O data of the system; in contrast to other
linearization techniques, for instance Taylor’s linearization, it does not require an exact
model of the system.

2.1.2. Partial-Form Dynamic Linearization (PFDL)

The input changes from the previous time instants as well as the current one, as in

∆UL(k) = [∆u(k), . . . , ∆u(k − L + 1)]T , (3)

are incorporated in PFDL, which leads to an equivalent dynamic linearization model with
multiple parameters. The tracking performance may suffer when using the CFDL model
for complex or highly nonlinear systems, as this approach may not adequately capture
the system’s behavior. This limitation arises from the fact that the PPD ϕ(k) is a scalar
representing all the nonlinearities and time-varying parameters of the system at each time
instant. The application of the PFDL approach can enhance the controller’s performance
when dealing with complex systems. The assumptions for the PFDL model are as follows.

Assumption 3. The partial derivative of f (. . . ) with respect to u(k), . . . , u(k − L + 1)—the vari-
ables from (ny + 2)th to (ny + L + 1)th—is continuous for all values of k and positive constant L.

Assumption 4. System (1) satisfies the generalized Lipschitz condition, |∆y(k + 1)| ≤ b|∆UL(k)|,
for each fixed k and |∆UL(k)| ̸= 0, where ∆y(k + 1) = y(k + 1)− y(k), ∆UL(k) = [∆u(k), . . . ,
∆u(k − L + 1)], and b is a positive constant. For system (1), a time-varying vector, Φ(k) ∈ RL,
exists, called the pseudo-gradient (PG), allowing for the calculation of the PFDL data model,

y(k + 1) = y(k) + Φ(k)∆UL(k), (4)

with Φ(k) = [ϕ1(k), ϕ2(k), . . . , ϕL(k)]. By choosing L = 1, the CFDL data model is obtained from
the PFDL model (4). Further details on the theorems and their corresponding proofs for obtaining
CFDL and PFDL data models based on the introduced assumptions are provided in [3].

2.2. Model-Free Adaptive Control (MFAC)
2.2.1. MFAC-CFDL

In this section, the control algorithm of MFAC is developed by employing the CFDL
data model (2) as a replacement for the nonlinear system (1) at each working point. A
weighted one-step-ahead error cost function,

J(u(k)) = |y∗(k + 1)− y(k + 1)|2 + λ|u(k)− u(k − 1)|2, (5)

is used to derive the control input as

u(k) = u(k − 1) +
ρϕ(k)(y∗(k + 1)− y(k))

λ + |ϕ(k)|2 . (6)
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In (5), y∗(k + 1) is the desired output of the system, and λ is a constant weighting factor.
Equation (6) is derived by substituting (2) into (5) and differentiating the cost function
with respect to u(k). In (6), ρ serves as a design parameter. The modified projection
algorithm is used to estimate ϕ(k) because it cannot be defined analytically. Therefore, the
objective function

J(ϕ(k)) = |y(k)− y(k − 1)− ϕ(k)∆u(k − 1)|2 + µ|ϕ(k)− ϕ̂(k − 1)|2 (7)

can be used, where µ is a weighting factor. By differentiating (7) with respect to ϕ(k), the
estimated ϕ(k) is obtained as

ϕ̂(k) = ϕ̂(k − 1) +
η(∆y(k)− ϕ̂(k − 1)∆u(k − 1))∆u(k − 1)

µ + |∆u(k − 1)|2 , (8)

where η is a design constant. To summarize, the stages of the MFAC-CFDL are as follows:

• PPD estimation

ϕ̂(k) = ϕ̂(k − 1) +
η(∆y(k)− ϕ̂(k − 1)∆u(k − 1))∆u(k − 1)

µ + |∆u(k − 1)|2 .

• Reset algorithm
If (i) |ϕ̂(k)| ≤ ϵ, or (ii) |∆u(k − 1)| ≤ ϵ, or (iii) sgn(ϕ̂(k)) ̸= sgn(ϕ̂(1)), then
ϕ̂(k) = ϕ̂(1).

• Control input

u(k) = u(k − 1) +
ρϕ̂T(k)(y∗(k + 1)− y(k))

λ + |ϕ̂(k)|2
, (9)

where ϵ is a small positive constant and ϕ̂(1) is the initial value of ϕ̂(k).

2.2.2. MFAC-PFDL

The input changes in previous time instants defined within a fixed-length time win-
dow (3) are able to influence the output of a complex nonlinear system at k + 1. To derive
the control algorithm, the cost function (5) is considered. By substituting y(k + 1) into (4)
and differentiating with respect to u(k), the control input, u(k), is calculated as

u(k) = u(k − 1) +
ρ1ϕ1(k)(y∗(k + 1)− y(k))

λ + |ϕ1(k)|2
− ϕ1(k)∑L

i=2 ρiϕi(k)(∆u(k − i + 1))
λ + |ϕ1(k)|2

, (10)

where ρi, i = 1, 2, . . . , L are to be chosen appropriately. By analogy to Section 2.2.1, the cost
function

J(Φ(k)) = |y(k)− y(k − 1)− Φ(k)∆UL(k − 1)|2 + µ|Φ(k)− Φ̂(k − 1)|2 (11)

is required for estimating Φ(k), which is

Φ̂(k) = Φ̂(k − 1) +
η(∆y(k)− Φ̂(k − 1)∆UL(k − 1))∆UT

L(k − 1)
µ + |∆UL(k − 1)|2 . (12)

The steps of the MFAC-PFDL algorithm are summarized as follows:

• PG estimation

Φ̂(k) = Φ̂(k − 1) +
η(∆y(k)− Φ̂(k − 1)∆UL(k − 1))∆UT

L(k − 1)
µ + |∆UL(k − 1)|2 .

• Reset algorithm
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If (i) |Φ̂(k)| ≤ ϵ, or (ii) |∆UL(k − 1)| ≤ ϵ, or (iii) sgn(ϕ̂1(k)) ̸= sgn(ϕ̂1(1)),
then Φ̂(k) = Φ̂(1) .

• Control input

u(k) = u(k − 1) +
ρ1ϕ̂1(k)(y∗(k + 1)− y(k))

λ + |ϕ̂1(k)|2

− ϕ̂1(k)∑L
i=2 ρiϕ̂i(k)(∆u(k − i + 1))

λ + |ϕ̂1(k)|2
.

(13)

2.3. Modified Model-Free Adaptive Control (MMFAC)
2.3.1. MMFAC-CFDL

According to [28], the difference in the tracking error can be added to the objective
function (5) to handle system time delay:

J(u(k)) =
[

e(k + 1)
∆e(k + 1)

]T

S
[

e(k + 1)
∆e(k + 1)

]
+ λ|u(k)− u(k − 1)|2. (14)

In (14), ∆e(k + 1) = e(k + 1)− e(k) is the one-step change in the tracking error. The

element s in weighting matrix S =

[
1 0
0 s

]
is a constant design parameter. Considering

that the error between two time intervals can be very small, distant time instants can be
incorporated, for instance, by taking

e(k + 1)− e(k − N) = (y∗(k + 1)− y(k + 1))− (y∗(k − Nm)− y(k − Nm)), (15)

where Nm is a positive integer. The MMFAC algorithm is summarzied as follows:

• PPD estimation

ϕ̂(k) = ϕ̂(k − 1) +
η(∆y(k)− ϕ̂(k − 1)∆u(k − 1))∆u(k − 1)

µ + |∆u(k − 1)|2 . (16)

• Reset algorithm
If (i) |ϕ̂(k)| ≤ ϵ, or (ii) |∆u(k − 1)| ≤ ϵ, or (iii) sgn(ϕ̂(k)) ̸= sgn(ϕ̂(1)), then
ϕ̂(k) = ϕ̂(1).

• Control input

u(k) = u(k − 1) +
ρϕ̂(k)(y∗(k + 1)− y(k))

λ + (1 + s)|ϕ̂(k)|2

+
s[y∗(k + 1)− y∗(k − Nm)− (y(k)− y(k − Nm))]

λ + (1 + s)|ϕ̂(k)|2
.

(17)

2.3.2. MMFAC-PFDL

Similar to MFAC-PFDL, a moving time window including the input difference of the
current and the previous time intervals in (3) is considered. Therefore, the stages of this
control algorithm are briefly summarized as follows:

• PPD estimation

Φ̂(k) = Φ̂(k − 1) +
η(∆y(k)− Φ̂(k − 1)∆UL(k − 1))∆UT

L(k − 1)
µ + |∆UL(k − 1)|2 . (18)

• Reset algorithm
If (i) |Φ̂(k)| ≤ ϵ, or (ii) |∆UL(k − 1)| ≤ ϵ, or (iii) sgn(ϕ̂(k)) ̸= sgn(ϕ̂(1)),
Then Φ̂(k) = Φ̂(1).
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• Control input

u(k) = u(k − 1) +
ρϕ̂1(k)(y∗(k + 1)− y(k))

λ + (1 + s)|ϕ̂1(k)|2

+
s[y∗(k + 1)− y∗(k − Nm)− (y(k)− y(k − Nm))]

λ + (1 + s)|ϕ̂(k)|2

− ϕ̂1(k)∑L
i=2 ρiϕ̂i(k)(∆u(k − i + 1))
λ + (1 + s)|ϕ̂1(k)|2

.

(19)

2.4. Model-Free Adaptive Predictive Control (MFAPC)

In this section, output prediction is integrated into MFAC. The I/O data are used for
establishing a one-step-ahead input by considering future outputs of the system (1). Due to
the fact that f (. . . ) is unknown, the CFDL model can be used to predict future outputs as

y(k + 1) = y(k) + ϕ(k)∆u(k),

y(k + 2) = y(k + 1) + ϕ(k + 1)∆u(k + 1)

= y(k) + ϕ(k)∆u(k) + ϕ(k + 1)∆u(k + 1),
...

y(k + N) = y(k + N − 1) + ϕ(k + N − 1)∆u(k + N − 1)

= y(k + N − 2) + ϕ(k + N − 2)∆u(k + N − 2)

+ ϕ(k + N − 1)∆u(k + N − 1)
...

= y(k) + ϕ(k)∆u(k) + . . . ϕ(k + N − 1)∆u(k + N − 1).

(20)

The parameters Nu and N are the input and output horizons, respectively. If ∆u(k +
j − 1) = 0, j > Nu, let

YN(k + 1) = [y(k + 1), . . . , y(k + N)]T ,

∆UNu(k) = [∆u(k), . . . , ∆u(k + Nu − 1)]T ,

E(k) = [1, 1, 1, . . . , 1]T ,

where ∆UN(k) and YN(k + 1) are the control input increment vector and N-step-ahead
prediction vector, respectively. Consequently, (20) can be written as

YN(k + 1) = E(k)y(k) + A1(k)∆UN(k), (21)

with

A1(k) =



ϕ(k) 0 0 0
ϕ(k) ϕ(k + 1) 0 0

...
...

. . .
...

ϕ(k) ϕ(k + 1) . . . ϕ(k + Nu − 1)
...

... . . .
...

ϕ(k) ϕ(k + 1) . . . ϕ(k + Nu − 1)


N×Nu

. (22)

The cost function,

J = [Y∗
N(k + 1)− YN(k + 1)]T [Y∗

N(k + 1)− YN(k + 1)]

+ λ∆UT
Nu
(k)∆UNu(k),

(23)
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is defined for deriving the control algorithm, where

Y∗
N(k + 1) = [y∗(k + 1), . . . , y∗(k + N)]T , (24)

is the N-step-ahead desired output vector. By considering

∆UNu(k) = [AT
1 (k)A1(k) + λI]−1 AT

1 (k)[Y
∗
N(k + 1)− E(k)y(k)], (25)

the control u(k) is calculated as

u(k) = u(k − 1) + gT∆UNu(k), (26)

with g = [1, 0, . . . , 0]T .
However, ϕ(k), ϕ(k + 1), . . . , and ϕ(k + Nu − 1) are unknown. The estimation of ϕ(k)

is defined as

ϕ̂(k) = ϕ̂(k − 1) +
η∆u(k − 1)

µ + |∆u(k − 1)|2
[
∆y(k)− ϕ̂(k − 1)∆uT(k − 1)

]
. (27)

ϕ(k + 1), . . . , and ϕ(k + Nu − 1) are predicted based on the recently estimated values
as

ϕ̂(k + 1) = θ1(k)ϕ̂(k) + θ2(k)ϕ̂(k − 1) + · · ·+ θnp(k)ϕ̂(k − np + 1). (28)

In (28), θi, i = 1, . . . , k − np − 1 are coefficients, with np as a fixed constant. Therefore,
the prediction algorithm of ϕ̂(k + j) with j = 1, . . . , Nu − 1 is obtained as

ϕ̂(k + j) = θ1(k)ϕ̂(k + j − 1) + θ2(k)ϕ̂(k + j − 2) + · · ·+ θnp(k)ϕ̂(k + j − np). (29)

At each time interval, Θ(k) =
[
θ1(k), . . . , θnp(k)

]
is defined by

Θ(k) = Θ(k − 1) +
ψ̂(k − 1)

δ + |ψ̂(k − 1)|2
[
ϕ̂(k)− ψ̂T(k − 1)Θ(k − 1)

]
, (30)

with ψ̂(k − 1) = [ϕ̂(k − 1), . . . , ϕ̂(k − np)]T . The algorithm of MFAPC is formulated
as follows:

• PPD estimation

ϕ̂(k) = ϕ̂(k − 1) +
η∆u(k − 1)

µ + |∆u(k − 1)|2
[
∆y(k)− ϕ̂(k − 1)∆uT(k − 1)

]
. (31)

• Reset algorithm for PPD
If (i) |ϕ̂(k)| ≤ ϵ, or (ii) |∆u(k − 1)| ≤ ϵ, or (iii) sgn(ϕ̂(k)) ̸= sgn(ϕ̂(1)), then
ϕ̂(k) = ϕ̂(1).

• Coefficients calculation

Θ(k) = Θ(k − 1) +
ψ̂(k − 1)

δ + |ψ̂(k − 1)|2
[
ϕ̂(k)− ψ̂T(k − 1)Θ(k − 1)

]
. (32)

• Reset algorithm for the coefficient equation
If |Θ(k)| ≥ M, then Θ(k) = Θ(1).

• PPD prediction

ϕ̂(k + j) = θ1(k)ϕ̂(k + j − 1) + θ2(k)ϕ̂(k + j − 2) + · · ·+ θnp(k)ϕ̂(k + j − np), (33)

with j = 1, 2, . . . , Nu − 1.
• Reset algorithm for PPD prediction
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If (i) |ϕ̂(k + j)| ≤ ϵ, or (ii) sgn(ϕ̂(k + j)) ̸= sgn(ϕ̂(1)), then ϕ̂(k + j) = ϕ̂(1)
and j = 1, 2, . . . , Nu − 1.

• Control input

∆UNu(k) = [ÂT
1 (k)Â1(k) + λI]−1 ÂT

1 (k)[Y
∗
N(k + 1)− E(k)y(k)], (34)

u(k) = u(k − 1) + gT∆UNu(k). (35)

3. Experimental Setup

The 3TS, as depicted in Figure 2, is an experimental test rig on which controllers can
be implemented. In Figure 3, the scheme of the MIMO 3TS used for control purposes is
depicted, consisting of three cylindrical tanks, each with a maximum capacity of 60 cm
and cross sections Ai, where i = 1, 2, 3. Tank 3 connects to tank 1 and tank 2 using pipes
with cross sections A13 and A23. Tanks 3 and 2 have outlets q3 and q4 through valves with
cross sections Ao. Water is pumped from the reservoir to PV1 (proportional valve) and
PV2, providing input flows q1 and q2 into tank 1 and tank 2. The outputs of the system
are the water levels of tank 1 (h1) and tank 2 (h2). The mathematical representation of this
nonlinear MIMO system is

A1
dh1

dt
= q1 − q13,

A2
dh2

dt
= q2 − q23 − q4,

A3
dh3

dt
= q13 + q23 − q3,

(36)

with

q13(t) = az13 · A13 · sgn(h1 − h3)
√

2g|h1 − h3|,

q23(t) = az23 · A23 · sgn(h2 − h3)
√

2g|h2 − h3|,

q3(t) = az3 · Ao ·
√

2gh3,

q4(t) = az4 · Ao ·
√

2gh2.

The parameters of the 3TS dynamics are given in Table 1. The 3TS can also represent
an SISO system when q4 is the only outlet for tank 2 (Figure 3).

Table 1. Definition of parameters of the 3TS.

Variables/Parameters Definitions Range/Unit

h1, h2, h3 Water level of tanks 1, 2, and 3 m
q1, q2 Input flow of tanks 1 and 2 [0 3.5 × 10−4] m3/s
q3, q4 Outlets from tanks 3 and 2 m3/s
q13, q23 Outflow from tanks 1 and 2 to tank 3 m3/s
az13, az23 Outflow coefficients of the pipes from tanks 1 and 2 to tank 3 (0 1]
az3, az4 Outlet coefficients of tanks 3 and 2 (0 1]
A1, A2, A3 Cross-sectional area of tanks 1, 2, and 3 m2

A13, A23 Cross-sectional area of the outflow pipes from tanks 1 and 2 to tank 3 m2

Ao Cross-sectional area of the outlet pipes from tanks 2 and 3 m2

g Gravitational acceleration m/s2
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Figure 2. Test rig of the 3TS at the Chair of Dynamics and Control (SRS) at the University of Duisburg-
Essen (UDE): (1) pressure sensor, (2) two-way switch valve, (3) ball valve, (4) programmable logic
controller, (5) digital/analog module, (6) analog/digital module, and (7) tanks [28].

(a) SISO system (b) MIMO system
Figure 3. Experimental device scheme.

4. Problem Formulation from a Practical Point of View
4.1. Siso System Control

To control the water level in the SISO system presented in Figure 3, only the input
data, q2, and output data, h2, of the system are required. The outlet q4 is regarded as a
disturbance. Hence, the nonlinear system (1) can be described as

h2(k + 1) = f
(
h2(k), h2(k − 1), . . . , h2(k − ny), q2(k), q2(k − 1) . . . , q2(k − nu)

)
. (37)

Accordingly, the CFDL and PFDL linearized models

h2(k + 1) = h2(k) + ϕs(k)∆q2(k) (38)

and
h2(k + 1) = h2(k) + Φ(k)∆QL(k), (39)

with

QL(k) = [q2(k), . . . , q2(k − L + 1)]T ,

Φ(k) = [ϕs1(k), ϕs2(k), . . . , ϕsL(k)],
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are obtained by applying the equivalent dynamic linearization techniques of Section 2.

4.2. Multi-SISO System Control

Owing to the data-driven characteristics of MFAC, the outflows q13 and q23 in the
MIMO 3TS depicted in Figure 3 can also be regarded as disturbances on tanks 1 and 2,
respectively. The MIMO system is partitioned into two SISO subsystems (Figure 4), with
q1 and q2 as water input flows and h1 and h2 as outputs. This consideration leads to a
significant reduction in the PPD and PG matrix elements. This reduction is even more
significant in MFACP, in which both estimation and prediction of the PPD are required.
Therefore, the general formulation for the coupled multi-SISO system is

hi(k + 1) = fi
(
hi(k), . . . , hi(k − ny), qi(k), . . . , qi(k − nu)

)
, i = 1, 2. (40)

The linearized models based on CFDL and PFDL are

hi(k + 1) = hi(k) + ϕmi (k)∆qi(k), i = 1, 2 (41)

and
hi(k + 1) = hi(k) + Φi(k)∆QiL(k), i = 1, 2, (42)

respectively, with

QiL(k) = [qi(k), . . . , qi(k − L + 1)]T ,

Φi(k) = [ϕmi,1(k), ϕmi,2(k), . . . , ϕmi,L(k)].

The test rig (Figure 2) is considered the main system controlled experimentally. The MFAC,
MMFAC, and MFAPC controllers are implemented on the SISO system based on the
linearized models in (38) and (39) and on a multi-SISO 3TS based on (41) and (42).

Figure 4. Difference between centralized and decentralized MFAC, MMFAC, or MFAPC.

5. Experimental Results
5.1. Metric for Parameter Tuning and Performance Comparison

The efficiency of the controllers is evaluated based on finding a compromise between
the output error and the energy consumed by the controller developed in [27]. Graphically,
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this criterion is an illustration of the Integral Squared Errors (ISEs) versus the Integral
Squared Input (ISI)—representing the energy utilized by the controller as

ISE vs. ISI =
[∫ T

0
ε(t)2dt,

∫ T

0
u(t)2dt

]
. (43)

After repeating the experiment with various parameters for each controller, the control
performances are compared according to (43). The controller with lower ISE and ISI values
is considered to deliver better performance.

Proper tuning of parameters for MFAC is essential, as inappropriate parameters can
have a negative impact on the control performance [29]. Parameter adjustment can be
conducted through variety of techniques, such as using neural networks [29], reinforcement
learning [30], or VRFT [31]. Determining the optimal parameters for the proposed con-
trollers, leading to their best performance, can also be achieved using (43). In this process,
the reference for tank 2 is set to 25 cm for a duration of 60 seconds, and the experiment
is repeated with a systematic change in feasible values for the design parameters such as
ρ, λ, Nm, s, and L. Consequently, the results are captured and compared using (43); the
finally selected values of these design parameters are given in Table 2. The initial values
ϕ(1), ϕ1(1), . . . , ϕL(1) = 0.1 and design parameters η = 1 and µ = 1 are considered for all
the approaches.

Table 2. Parameters of the controllers.

Controller Color Parameters

ρ λ Nm s L
MFAC-CFDL 0.9 1 - - -
MFAC-PFDL 0.9 1 - - 10
MMFAC-CFDL 0.9 1 20 0.1 -
MMFAC-PFDL 0.1 1 20 0.1 10
MFAPC-CFDL 0.9 1 - - -

For the MFAPC approach, additionally, an output horizon of N = 20 and an input
horizon of Nu = 1 are chosen. By having np = 2, the initial values θ1(1) = 0.5 and
θ2(2) = 0.1, in addition to δ = 1, are considered. If the control horizon Nu = 1 and the
reference for the SISO partition is assumed to be constant for the whole parameter-tuning
experiment, the predictive control u(k) (34) becomes

u(k) = u(k − 1) + ρϕ(k)
1
N (h∗2(k + 1)− h2(k))

λ/N + |ϕ(k)|2 . (44)

According to ([3], Remark 6.1), (44) is insensitive to the parameter λ due to the division by
N. Additionally, to see how prediction features in Section 2.4 affect the performance of the
conventional MFAC-CFDL approach, ρ = 0.9 is selected.

5.2. Comparison of Approaches for the Considered SISO System

The results of the applied controllers on tank 2 as an SISO system are presented. The
constant reference of the system to be controlled changes according to

h∗2(t) =


25 [cm] t ≤ 40 [s]
40 [cm] 40 [s] < t ≤ 80 [s]
30 [cm] 80 [s] < t ≤ 120 [s]

(45)

for the purpose of adaptability investigation. From Figure 5, it can be concluded that
all controllers successfully track the reference trajectory. The predictive behavior of the
MFAPC-CFDL approach is noticeable at t = 40 [s]. Specifically, when considering N = 20
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and a sample time of 100 [ms], the MFAPC-CFDL integrates information from the desired
reference for the next 2 [s], leading to an advanced increase in input flow when the desired
reference is about to increase at t = 40 [s].
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Figure 5. Performanceof the controllers on the SISO system with constant reference having abrupt
changes: (a) water level control and (b) input flow.

According to Figure 6, it becomes evident that the MFAPC-CFDL approach yields a
better result in terms of cumulative ISE. Additionally, it can be confirmed from Figure 6 that
the tracking performance of conventional MFAC can be improved by including predictive
features. However, the MMFAC-CFDL and MMFAC-PFDL approaches still perform better
in terms of energy consumption.
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Figure 6. Performance evaluation of the controllers on the SISO system with constant reference
having abrupt changes: (a) cumulative ISE, (b) cumulative ISI, and (c) performance evaluation.
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The performance of the controllers is further evaluated when the SISO system has
a time-varying reference. In Figure 7, the proposed controllers successfully follow the
desired path, except for the MMFAC-PFDL controller, which does not exhibit proper energy
consumption when the desired path varies over time. It is expected that the MFAPC
controller will track the time-varying reference better as it updates the prediction horizon
of N = 20 with varying values of the reference, keeping the actual water level closer to the
desired level (Figure 8). However, this improvement comes at the cost of investing more
input energy, as can be concluded from the performance evaluation in Figure 8.
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Figure 7. Performance of the controllers on the SISO system with time-varying reference: (a) reference
control and (b) input flow.
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Figure 8. Performanceevaluation of the controllers on the SISO system with time-varying reference:
(a) cumulative ISE, (b) cumulative ISI, and (c) performance evaluation.
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5.3. Comparison of Approaches for Multi-SISO System

In this section, the three-tank MIMO system is considered as an interconnection of
SISO subsystems. The controllers are applied to each subsystem and work in parallel over
a time span of 200 [s] to track a path that varies slowly between 10 [cm] and 30 [cm] in
tank 1 and between 20 [cm] and 30 [cm] in tank 2. It can be seen from Figure 9 that the
controllers’ performance in tracking the desired levels in both tanks is acceptable, except for
MMFAC-PFDL, which cannot follow the desired levels. This is clearly shown in Figure 10,
where the inputs of the controllers are compared over the whole experiment.
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Figure 9. Tracking performance of the controllers on the multi-SISO 3TS with time-varying reference.
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Figure 10. Control input flow on the multi-SISO 3TS with time-varying reference.
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Figures 11 and 12 provide information on changes in ISE and ISI for each tank through-
out the experiment. MFAPC still demonstrates superior tracking performance for tank 2
compared to the other controllers. Additionally, as no direct outlet is considered for tank
1, there is less disturbance, resulting in the ISE values achieved for tank 1 being relatively
close. It is also important to note that MFAPC consumes more energy due to its method of
processing future information. The ISE-ISI graph further confirms that the use of MFAPC
on each subsystem leads to relatively better tracking results than MFAC and MMFAC.
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Figure 11. Performance evaluation of the controllers on decoupled tank 1 with time-varying reference:
(a) cumulative ISE, (b) cumulative ISI, and (c) performance evaluation.
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Figure 12. Performance evaluation of the controllers on decoupled tank 2 with time-varying reference:
(a) cumulative ISE, (b) cumulative ISI, and (c) performance evaluation.

6. Summary and Conclusions

In this contribution, the reference tracking of an MIMO nonlinear system is experimen-
tally conducted using various MFAC approaches, including conventional MFAC-CFDL/-
PFDL, modified MFAC (MMFAC-CFDL/-PFDL), and a predictive approach (MFAPC-
CFDL). The performance of the applied approaches is compared using the ISE-ISI criterion,
cumulative ISE, and cumulative ISI. The experimental device is a nonlinearly coupled
three-tank system. The novel approach in this contribution entails treating the influences



Automation 2024, 5 543

of these nonlinear couplings as disturbances when applying the model-free adaptive con-
trollers, which leads to simplification of the control algorithms in terms of there being
fewer parameters to be tuned when separately applied to multiple SISO partitions of the
whole MIMO system. The findings indicate that multi-SISO reference tracking is experi-
mentally realizable due to the nature of the applied model-free adaptive controllers, while
the design of a centralized MIMO control would be prohibitive. Furthermore, the results
show that including predictive features in conventional MFAC-CFDL can lead to better
reference tracking, especially with slowly time-varying references. On the other hand,
MMFAC-CFDL/-PFDL results in reduced energy consumption.
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