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Abstract: The increasing adoption of Deep Learning (DL)-based Object Detection (OD) models in
smart manufacturing has opened up new avenues for optimizing production processes. Traditional
industries facing capacity constraints require noninvasive methods for in-depth operations analysis
to optimize processes and increase revenue. In this study, we propose a novel framework for capacity
constraint analysis that identifies bottlenecks in production facilities and conducts cycle time studies
using an end-to-end pipeline. This pipeline employs a Convolutional Neural Network (CNN)-based
OD model to accurately identify potential objects on the production floor, followed by a CNN-based
tracker to monitor their lifecycle in each workstation. The extracted metadata are further processed
through the proposed framework. Our analysis of a real-world manufacturing facility over six months
revealed that the bottleneck station operated at only 73.1% productivity, falling to less than 40% on
certain days; additionally, the processing time of each item increased by 53% during certain weeks
due to critical labor and materials shortages. These findings highlight significant opportunities
for process optimization and efficiency improvements. The proposed pipeline can be extended to
other production facilities where manual labor is used to assemble parts, and can be used to analyze
and manage labor and materials over time as well as to conduct audits and improve overall yields,
potentially transforming capacity management in smart manufacturing environments.

Keywords: convolutional neural network; you only look once; YOLO; object detection; deep learning;
smart manufacturing

1. Introduction

The manufacturing sector has long been a cornerstone of economic development, both
driving innovation and providing employment opportunities. According to the World
Bank [1], China holds 28.4% of the market share of global manufacturing, with a con-
tribution of nearly USD 4 trillion to the global economy. The United States of America
is the second-largest contributor at approximately 16.6%, contributing USD 1.8 trillion.
However, the outbreak of the COVID-19 pandemic has exacerbated existing challenges in
the manufacturing landscape, notably the critical issue of labor and supply chain shortages,
collectively referred to as capacity constraint. Industries have encountered difficulty in
finding skilled labor for tasks requiring precise human effort. According to Causa et al. [2],
75% of employers have had a hard time filling open positions, and manufacturing is among
the most hard-hit sectors. Additionally, as per the Analysis on labor challenges in Canada,
second quarter of 2023 by Statistics Canada in June 2023 [3], 59.3% of manufacturing indus-
tries consider rising inflation to be an obstacle over the next three months. Nearly 9 out of
10 organizations surveyed responded that they are having a hard time filling open positions,
with most of these comprised of entry-level or mid-level positions. Manufacturing is the
most hard-hit, with 93% of organizations struggling to find entry-level employees. The
Canadian Federation of Independent Business also reported [4] that as of November 2021,
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55% of small businesses in Canada were experiencing labor shortage and difficulty in hiring
or retaining staff or in getting staff to work the needed hours. Overall, this shortage is
exponentially increasing the existing global supply chain issues.

This confluence of data from various sources underscores a consistent and press-
ing issue of capacity constraint that requires innovative solutions. Researchers and en-
gineers trying to solve this unique challenge have started to use Artificial Intelligence
(AI)- and Computer Vision (CV)-based methods to increase labor productivity and de-
crease bottlenecks in their production pipelines in order to reduce the impact of supply
chain shortages in smart manufacturing [5–8]. Based on an earlier study by Ahmad and
Rahimi [9], applications of OD in smart manufacturing play a pivotal role in enhancing
quality control, cycle times, safety compliance, and surveillance. Puttemans et al. [10] and
Wang et al. [11] employed the DL-based OD model [12] for detecting packages in ware-
house environments, highlighting its utility in real-time applications for product packaging.
Farahnakian et al. [13] and Li et al. [14] both applied OD models for damage detection and
pallet rack identification in industrial warehouse settings.

Despite these advancements in automating manufacturing processes, a significant
gap exists in applying OD-based techniques for capacity constraint analysis of individual
workstations in production pipelines when production capabilities fall short demand
due to shortages in labor, materials, or equipment. The current article addresses this
gap by proposing a pipeline for analyzing capacity constraint using a You Only Look
Once (YOLO)v8-based model [15] for productivity analysis of each station and identifying
bottlenecks in the production pipeline, as even one bottleneck station in a serial pipeline
can drastically reduce overall productivity. Our approach begins with the development and
training of an OD model meticulously designed to identify objects on the production floor.
Subsequently, a CNN-based tracking system is employed to track the lifecycle of these
objects. The extracted metadata are then processed in order to provide insights about the
productivity of each station in the manufacturing facility. The overall approach provides
real-time capacity metrics, and can be further utilized for capacity constraint analysis of
both individual workstations and complete production pipelines.

Our key contributions with this study can be summarized as follows:

• A novel non-invasive theoretical framework for analyzing the capacity of manufactur-
ing facilities by using OD methods to categorize workstations into different states.

• Collection and annotation of a real-world dataset from a production floor for use in
training an OD model.

• Comprehensive experimentation and evaluation of the proposed framework in a real-
world facility over 6 months, demonstrating its practical applicability and
effectiveness.

This study involved a collaborative research initiative consisting IFIVEO CANADA
INC., a computer vision company, and its client (hereinafter referred to as the client), which
specializes in producing assistive medical wheelchairs. The manual assembly of power-
assist wheelchairs (henceforth referred to as chairs) is a niche yet crucial manufacturing
segment presenting unique challenges.

Our findings revealed significant opportunities for optimizing manual production
processes and addressing capacity constraints, with potential implications for improving
overall manufacturing efficiency.

In the following sections, we first delve into the state-of-the-art OD methods and their
applications in smart manufacturing in Section 2. Next, we propose a theoretical framework
in Section 3, while the technical intricacies of our proposed solution are supported by com-
prehensive analysis and empirical evidence in Section 4. Insights from the manufacturing
facility are discussed in Section 5; finally, Section 6 offers concluding remarks.
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2. Related Work

CNN-based OD methods and their applications in real-world value-added services are
an active area of research, as these models are pivotal in the localization and classification
of objects within a given frame.

Historically, traditional approaches relied on carefully engineered hand-crafted fea-
tures, which was time-consuming and led to less accurate results. However, the advent
of CNN-based deep learning models empowered by increased computational capacity
through Graphical Processing Unit (GPU) technology has revolutionized computer vision.

Two primary categories of OD methods have emerged, namely, region proposal-based
and regression-based methods. A Region Proposal Convolutional Neural Network (R-
CNN) [16] starts by proposing regions, which are subsequently classified into predefined
categories [17,18]. While these models demonstrate high localization accuracy, they are
computationally complex, often falling short of real-time performance due to the need to
propose of thousands of regions per image. To address this limitation, one-stage detectors
were introduced [19], including the groundbreaking You Only Look Once (YOLO) by
Redmon et al. [20], providing real-time performance across various benchmarks. The
following subsections discuss the evolution of YOLO models and their applications in
smart manufacturing.

2.1. Evolution of YOLO Models

YOLO [20] represents a revolutionary approach to OD and localization by treating the
problem as a regression task. In essence, YOLO directly proposes bounding box coordinates
and associated class probabilities from the image pixels, presenting a unified and end-to-
end trainable model. This monolithic architecture learns directly from the input images
during training, eliminating the need for complex multistage pipelines.

The history of YOLO models in OD is marked by significant technical advance-
ments [21]. YOLOv1 [20] (2016) introduced a single end-to-end architecture that simultane-
ously predicted multiple bounding boxes and class probabilities for those boxes, resulting
in significantly improved speed compared to previous region proposal-based methods [16].
This was achieved by dividing the input image into a grid, with each grid cell being re-
sponsible for detecting objects within it. Each cell can predict multiple bounding boxes and
confidence scores for those boxes. The network used a combination of 24 convolutional
layers and two fully connected layers, with a final output tensor providing class probabili-
ties and bounding box coordinates. YOLOv2 [12] (2017) and YOLOv3 [22] (2018) brought
improvements in both speed and accuracy by introducing anchor boxes to predict offsets
rather than using the full bounding box and refining the feature extractor for improved
accuracy. The same authors also proposed Darknet-19 and Darknet-53, consisting of 19
and 53 layered networks, respectively, while incorporating multiscale predictions using a
Feature Pyramid Network (FPN) [23] for improved detection of small objects.

YOLOv4 [24] (2020) proposed the integration of Cross-Stage Partial Connections
(CSPNet) [25], Path Aggregation Network (PANet) [26], and modified Spatial Attention
Module (SAM) [27], along with the use of the Mish [28] activation function and Complete
Intersection Over Union (CIoU) loss [29] for enhancing feature extraction and bounding box
accuracy. YOLOv5 [30] (2020) introduced a more streamlined and simplified architecture
along with model scalability enhancements to adjust the model size based on the available
computational resources. The authors were also able to improve performance by using
novel Mosaic augmentation combined with multiple other data augmentation methods
for data preprocessing. This results in increased variance in the data, thereby improving
detection accuracy. They also used the Sigmoid-weighted Linear Unit (SiLU) activation
function [31] instead of Mish [28] employed in the previous versions. YOLOv6 [32] (2021)
and YOLOv7 [33] (2022) focused on optimizing the balance between speed and accuracy for
edge computing devices. The Efficient Long-Range Attention Network (ELAN) [34] strategy
was used for more effective feature fusion, and an auxiliary head was employed for better
training stability, increased convergence speed, and reduced training time. The authors
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also proposed a Reparameterized Convolutional (RepConvN) block inspired by [35] to
improve feature extraction.

YOLOv8 [15] (2023), the latest in the series, represents the culmination of ongoing
efforts to optimize OD for both performance and computational efficiency while introduc-
ing a more advanced network architecture incorporating recent developments in neural
network design. The authors used an anchor-free model inspired by [36] with a decoupled
head to independently process objectness, classification, and regression tasks, along with
the CIoU [29] and Distribution Focal Loss (DFL) [37] functions for bounding box loss and
the binary cross-entropy [38] for classification loss. Figure 1 illustrates the fully visual-
ized YOLOv8 architecture, with different stages of the network shaded in distinct colors
for clarity.
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Figure 1. Complete YOLOv8 [15] architecture, consisting of backbone and head; C represents the
convolutional block, U is the upsampling block, and C2F is the CSPNet with two convolutional layers.
A detailed diagram can be found in [39].

The YOLO series continues to be a prominent example of innovation in CV and DL.
Each version has contributed to the rapid progression and adaptability of DL models,
helping them to become more efficient and capable and making them suitable for real-
world applications. Models can be easily trained to detect required objects in the production
facility using annotated image data. Compatibility with portable or standalone computers
and mobile hardware devices makes these models ideal for real-time applications in smart
manufacturing. The following section demonstrates how these advanced OD models are
being leveraged to address challenges in industrial settings.

2.2. Applications of OD in Smart Manufacturing

Researchers have been actively identifying innovative ways to utilize the power of OD
methods in smart manufacturing. Recently, Zendehdel et al. [40] used the YOLOv5 [30]
model to identify and localize tools on the manufacturing floor as a way to enhance worker
safety. Liu et al. [41] proposed a novel Lighter and Faster YOLO (LF-YOLO) model for
defect detection based on the X-ray imagery of welds, and also proposed using a Rein-
forced Multiscale Feature (RMF) module to extract more hierarchical information. Wang
et al. [42] proposed a lightweight YOLO-style object detector known as Attention YOLO
(ATT-YOLO) for surface defect detection in electronics manufacturing. Zhao et al. [43]
modified YOLOv5 [30] to detect steel surface defects and presented a modified architecture
that utilizes low-level features for better detection. Puttemans et al. [10] and Vu et al. [44]
respectively employed YOLOv2 [12] and YOLOv5 [30] to detect packages in warehouse
environments, highlighting its utility in real-time applications for product packaging. Zhao
et al. [45] proposed a modified lightweight YOLOv5 that achieved real-time performance
in detecting particleboard surface defects. This was achieved by replacing the conventional
convolutional layers with depthwise convolution layers and integrating Squeeze and Exci-
tation Network (SENet) [46] layers to optimize the model’s parameters. Rahimi et al. [47]
proposed modifications to YOLOv3 for detecting large-scale objects in the automobile
industry and enhanced the model by altering its architecture and activation function. Ah-
mad et al. [48] applied YOLOv3 for detecting and tracking cranes in steel manufacturing
plants, showcasing the adaptability of these deep learning models for specific industrial
surveillance tasks. Liu et al. [49] proposed YOLO for Industrial Manufacturing Field
(YOLO-IMF), an improved YOLOv8 algorithm for surface defect detection in the industrial
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manufacturing field. Luo et al. [50] modified YOLOv8 for edge computing by reducing the
parameters and computational load as well as by modifying the lightweight ShuffleNetV2
network [51] and using it as the feature extractor in YOLO. Ahmad and Rahimi [52] com-
pared the performance of different YOLO models for Personal Protective Equipment (PPE)
detection to ensure human safety in manufacturing environments.

Additionally, Krummenacher et al. [53] applied deep learning for wheel defect detec-
tion. O’Brien et al. [54] introduced a method for quality inspection during the production
of medical devices, addressing the need for high accuracy and low error tolerance in
applications involving medical equipment manufacturing. Farahnakian et al. [13] and
Li et al. [14] used OD methods for damage detection and pallet rack identification in indus-
trial warehouse settings. Wei et al. [55] and Luo et al. [56] demonstrated the effectiveness
of deep learning in detecting humans and industrial tools from a distance, showcasing
the versatility of these models in diverse industrial scenarios. Wang et al. [11] advanced
product defect detection using a deep learning approach that synergized preprocessing tech-
niques with deep learning, thereby reducing computational load and excluding irrelevant
background content.

While these studies demonstrate the effectiveness of OD methods in various aspects of
smart manufacturing, there remains a gap in applying these techniques for comprehensive
capacity constraint analysis. Our work addresses this gap by proposing a non-invasive
framework that leverages state-of-the-art OD models for real-time monitoring and analysis
of manufacturing processes.

3. Capacity Constraint Analysis

Capacity constraint in a manufacturing environment is defined as a situation where
the production capacity of a business is insufficient to meet demand. This limitation can
manifest in various forms, including labor, materials, or equipment constraints. According
to the Theory of Constraints [57,58], every system has bottlenecks that dictate the pace
of the entire production line, and addressing these bottlenecks can significantly increase
overall output. Common bottleneck types include machine bottlenecks due to breakdowns,
labor shortages or insufficient staffing, delays in materials supply, complex or inefficient
processes, communication gaps, logistical challenges, power supply issues, and capacity
mismatches. The initial step in this process involves thoroughly analyzing the constraints
in order to pinpoint the actual limiting factors. In this section, we propose a comprehensive
framework for analyzing workstations, particularly those operated by manual labor. This
framework aims to identify the root causes of capacity limitations so that manufacturers
can develop strategic long-term solutions to enhance manufacturing efficiency and output.

In order to effectively analyze workstations and identify bottlenecks in the manu-
facturing process, it is essential to consider productivity, which is fundamentally defined
as the output per unit of input. Productivity is a critical metric for operational efficiency,
especially in contexts with limited labor resources. While different organizations may use
various parameters for this analysis, our proposed framework incorporates a holistic set of
definitions considering both workforce and materials. This integrated approach ensures
a more accurate identification of constraints and facilitates the development of targeted
solutions to optimize manufacturing processes.

Definition 1 (Station Productivity). We define station productivity as the output generated when
a worker is actively engaged in working with materials.

This measure focuses on the station’s effectiveness in producing items, rather than
solely assessing the worker’s efficiency in the quantity of objects produced; the results is a
nuanced measure of efficiency that highlights how effectively a station utilizes its resources
(both human and material) to generate output.
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We can express this as a Boolean function using logical operators by assigning Boolean
variables to Material (M) and Worker (W), where True represents presence and False
represents absence; then, the overall state can be represented as follows:

f1(M, W) = M ∧ W (1)

where ∧ represents the logical and operator.

Definition 2 (Non-Productivity). Non-productivity at a station occurs when no value is produced
due to worker unavailability.

This situation typically happens when a worker is absent from their station. However,
it is important to differentiate between avoidable and unavoidable non-productive time.
For example, breaks are a necessary aspect of work that, while non-productive, contribute
to overall worker productivity and wellbeing by preventing fatigue and maintaining mental
health. Mathematically, non-productivity can be represented as

f2(M, W) = M ∧ ¬W, (2)

where ¬, M , and W represent the logical not operator, materials, and workers, respectively.

Definition 3 (Downtime). In this context, downtime refers to periods when a worker is present
but lacks the necessary materials to continue production.

This situation can arise due to supply chain issues, scheduling errors, or unforeseen
delays in material delivery. Downtime is a critical aspect of station productivity, as it
directly impacts the output despite the availability of workers. The definition can be
mathematically expressed as

f3(M, W) = ¬M ∧ W, (3)

where M and W respectively represent materials and workers.

Definition 4 (Idle Time). Idle time is characterized by the absence of both workers and materials
at a station.

This occurs during off-hours or designated break times. Understanding idle time
is crucial for workforce planning and ensuring that staffing levels are appropriate to the
demands of the production schedule. The definition can be mathematically expressed as

f4(M, W) = ¬M ∧ ¬W, (4)

where M and W respectively represent materials and workers.
The above definitions can be mathematically combined by representing productivity,

non-productivity, downtime, and idle time as S1, S2, S3, and S4, respectively:

f (M, W) = S1 · (M ∧ W) + S2 · (M ∧ ¬W) + S3 · (¬M ∧ W) + S4 · (¬M ∧ ¬W) (5)

where M represent materials and W represents workers. Visually, Equation (5) can be
represented as a simple lookup table, as shown in Table 1, which can be used to find the
status of each frame.
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Table 1. Different possibilities for station productivity; ✓represents availability at the station.

State Symbol Material Worker

Productive S1 ✓ ✓

Non-productive S2 ✓

Downtime S3 ✓

Idle time S4

Cycle Time Study

We can find the station status for each frame; however, aggregating that status over
time provides the real value for the life of an object in the scene, also known as the cycle
time. We want to track when an object appears in and leaves the scene; this can be measured
using several methods, as introduced by [59]. Here, we discuss several of these methods
along with their respective advantages and disadvantages:

Stop Watches Tasks performed by workers can be manually timed in the manufacturing
environment. This traditional method is commonly used for establishing benchmarks in
manual operations. However, reliance on human observation limits the scalability and
accuracy of this method, and may not accurately represent normal working conditions due
to observer bias and the Hawthorne effect. Additionally, manual timing cannot easily be
integrated into the broader data ecosystems that smart manufacturing relies on for real-time
decision-making.
Video Recording with Offline Analysis This allows for efficient analysis of processes
by reviewing recorded footage. Video recording enables detailed post hoc analysis to
identify bottlenecks and inefficiencies that may not be visible in real time. However, it
suffers from delays in feedback, as the analysis only occurs after the fact. Additionally,
storage and management of large video datasets can be challenging.
Breaking Activities into Tasks and Subtasks This can help in understanding task per-
formance and supports line balancing, especially in complex manufacturing processes. By
decomposing activities into granular subtasks, manufacturers can identify specific areas
for optimization; however, this approach is time-consuming and requires significant initial
input to define tasks accurately. Additionally, real-time adaptability to changes in the
manufacturing environment might be limited without advanced automation tools.
Working with Predetermined Standard Times This approach offers deep insights into
task performance by using historical data and industry standards to establish benchmarks.
While predetermined times provide a solid foundation for efficiency analysis, they may
not align perfectly with actual timings due to variability in human and machine perfor-
mance. Moreover, this method may not capture the nuances of novel or highly customized
manufacturing processes, requiring continuous updating of standard times.
Sensor-based Tracking This involves using data from Industrial Internet of Things
(IIoT) sensors and workflow systems for real-time productivity analysis, the results of
which can be fed into predictive analytics models to forecast potential delays and optimize
production schedules. However, while this method is efficient, it does b not provide
insights into the root causes of productivity changes, as sensors typically provide raw data
which lack context. Integration with other data sources such as quality control systems is
necessary in order to gain a comprehensive understanding.
Visual Tracking This method combines non-intrusive real-time data collection with
identification of improvement opportunities by visual tracking of objects and processes.
In smart manufacturing scenarios, visual tracking can be implemented through advanced
computer vision systems that monitor the production line, providing real-time feedback
to operators and management. These systems can detect anomalies, track the flow of
goods, and even analyze worker movements for ergonomic improvements. Although
the upfront investment in visual tracking technology can be substantial, it is increasingly
becoming cost-effective due to advancements in AI and ML. Additionally, the integration
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of visual tracking with other smart manufacturing systems can lead to a more holistic view
of production efficiency.

While most methods require manual calculation and human input, visual tracking
is real-time, does not need human feedback after development is complete, and yields
accurate results. It can be implemented by OD-based methods, and can be used to accurately
and effectively conduct cycle time studies. Within our proposed methodology, we use the
YOLOv8 model [15] as a state-of-the-art OD model, as previously discussed in Section 2.1.

4. Methodology

The proposed methodology consists of a two-step approach: (1) obtaining data for use
in training an OD model (in the preceding section, we highlighted the state-of-the-art per-
formance of YOLOv8, which is used as the primary OD model in this study), and (2) testing
the model by conducting a capacity constraint analysis in a real manufacturing facility.

4.1. Dataset Description

Manual annotation of the dataset employed in training and evaluation of the OD model
was carried out using videos sourced directly from the four production line stations within
the client’s facility over the course of roughly two months. Each station was responsible for
different operations in the facility. The camera viewing angles covering each station were
very different due to the nature of the neighboring mounts used to hold the equipment.
The variability in the collected data (as seen in Figure 2) provided the necessary variation
required to train an effective OD model. As the client’s facility runs only for one 8.5 h
shift every day, the lighting conditions in the indoor environment remained consistent at
each station. A total of 33,956 individual frames were extracted from these recordings at a
frequency of 0.3 frames per second ( f ps). As the scene in each station did not change and
only the objects moved, we performed stratified data splitting into training and validation
sets to avoid data leakage, as data from each day should only be in either split. Thus,
we separated each day of data randomly out of five working days each week for use as
validation data. The total images used for training/validation ended up as 29,070/4886,
consisting of two object classes, i.e., workers and chairs.

Figure 2. Camera views of the four stations in the production facility. The people in the images are
blurred to protect their identity and comply with the request from the industry partner.
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4.2. Training

To train the YOLOv8 model, as defined by [15], we employed a transfer learning
approach to refine the pretrained model, which was initially trained on the Microsoft
Common Objects in Context (MS-COCO) dataset [60]. The open-source model imple-
mentation (we used the open-source implementation of the YOLOv8 model available at
https://github.com/ultralytics/ultralytics (accessed on 10 February 2024)) is available in
five different sizes: nano (n), small (s), medium (m), large (l), and extra-large (x), depending
on the number of parameters. Table 2 represents the number of parameters in each model.
We separately trained nano, medium, and large models in order to compare their accuracy
and detection speed. The model output layers was reconfigured to identify two distinct
object types. To enhance accuracy, non-maximum suppression [61] was utilized for output
refinement. Moreover, the cosine annealing learning rate method [62] was implemented as
a scheduler, which we chose due to its demonstrated excellence in various benchmark tests.

To augment our dataset, we incorporated several methods, including random vertical
flipping and a mosaic of four frames as per [36]. These techniques expanded the effective
dataset size for model training and contributed to a more robust learning process. The
training was carried out using two NVIDIA RTX TITAN GPUs (Manufacturer: NVIDIA
Corporation, City: Santa Clara, Country of origin: United States) with a batch size of 128 for
the nano and medium models and 64 for the large model due to GPU memory limitation.

4.3. Evaluation Metrics

Detection accuracy and inference speed are key metrics for evaluating OD models.
Accuracy is often evaluated using Precision (P) and Recall (R), which are derived from the
counts of True Positive (TP), False Positive (FP), True Negative (TN), and False Negative
(FN), while speed is measured in f ps. The formulas for these metrics are as follows:

R =
TP

TP + FN
, (6)

P =
TP

TP + FP
. (7)

Furthermore, Mean Average Precision (mAP) assesses the detection accuracy. This measure
is calculated for each class based on P and R, then averaged to yield an overall score. To
quantify the accuracy of object localization, the Intersection over Union (IoU) metric is
used; this metric is calculated between the labeled objects (ground truth) and the model’s
predictions, as follows:

IoU =
Area(bpred ∩ bg)

Area(bpred ∪ bg)
(8)

where bg represents the ground truth bounding box and bpred denotes the bounding box
predicted by the OD model. The IoU threshold functions as a Boolean operator to elim-
inate FP bounding boxes that score below a certain IoU value. This threshold deter-
mines the necessary sensitivity for the localization to be classified as positive or negative
(e.g., IoU ≥ threshold). Different models may employ varying threshold values in their
evaluations, such as 0.25, 0.5, or 0.75. Table 2 lists the evaluation results and inference speed
of the different YOLOv8 models, with operations quantified by Floating-Point Operations
Per Second (FLOPS).

https://github.com/ultralytics/ultralytics
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Table 2. Different model sizes of YOLOv8 Model from [15]; mAP values are calculated for single-scale
on the MS-COCO [60] val2017 dataset.

Model mAP0.50−0.95 GPU (ms) Parameters (M)

YOLOv8-n 18.4 1.21 3.5
YOLOv8-s 27.7 1.40 11.4
YOLOv8-m 33.6 2.26 26.2
YOLOv8-l 34.9 2.43 44.1
YOLOv8-x 36.3 3.56 68.7

4.4. YOLOv8 Model Performance

We evaluated the performance of three variants (nano, medium, large) of the YOLOv8
model in detecting the worker and chair classes on a separate test set. The medium model
exhibited superior overall performance with 94.4% mAP@50, which was higher than the
nano and large models by 1.8% and 0.6%, respectively. Theoretically, the large model
should have performed better due to more learnable parameters; however, as only two
classes existed within four camera views, more parameters could have caused overfitting
on the training set due to more limited variation compared to large-scale general-purpose
datasets. Furthermore, a larger batch size can improve learning due to batch normalization,
as observed by [63,64].

We present the evaluation results of the different model types trained on our collected
dataset in Table 3. In each column, the items with the highest value are denoted in boldface.
While the large model has a slightly better P and R on worker detection, it is also compute-
heavy, with 40% more trainable parameters. It takes 0.17 milliseconds (ms) more than
the medium model on each frame, and this compounds fairly rapidly during real-time
inference without adding significant value. Hence, we chose the medium model to conduct
our analysis of the client’s manufacturing facility and obtain insights into the productivity
of each station.

Table 3. Performances comparison of nano, medium, and large YOLOv8 [15] models, with the highest
values in each column highlighted in boldface.

Model Size
P (%) R (%)

All Worker Chair All Worker Chair

Nano 89.2 84.4 93.9 87.1 86.0 88.2

Medium 89.9 85.4 94.4 88.8 89.5 88.0

Large 89.8 85.7 93.8 89.0 90.2 87.7

Model Size
mAP50 (%) mAP50−95 (%)

All Worker Chair All Worker Chair

Nano 92.6 91.7 93.5 64.7 64.8 64.6

Medium 94.4 93.8 95.0 68.8 69.7 68.0

Large 93.8 93.8 93.9 68.9 70.0 67.7

Figure 3 presents the training metrics of the medium model after each training epoch,
showing that the mAP@50 reaches a plateau after 65 epochs. P and R are always opposing
metrics [65], with increasing P affecting R, as can be seen in Figure 3a,b. Hence, mAP
provides a better measure for considering the convergence of the model.
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Figure 3. Normalized (a) precision, (b) recall, (c) mAP@50, and (d) mAP50-95 of the YOLOv8 [15]
model training.

4.5. Complete Pipeline

The complete pipeline consists of different stages, as shown in Figure 4. A video
frame is initially processed through an OD model for detecting objects in the scene. As
explained in Section 4.2, we used the trained YOLO model, which processes only one frame
at a time and provides no temporal information. To obtain this information and assign
a unique Identifier (ID) to each object, we used the state-of-the-art Deep Simple Object
Tracking (DeepSort) [66] model, which uses Kalman Filtering (KF) [67] to maintain tracking
continuity from the previous state and predict the location of the bounding box in the
subsequent frame. This algorithm leverages a deep CNN architecture in the prediction
process, combining the strengths of KF with the representational power of CNNs.

This unique ID helps to distinguish between different objects, and can be aggregated to
obtain the timestamps for the start and end of the object’s life cycle. Each object is assigned
a region on the floor to identify the item under process. These metadata are then processed
through the proposed framework (as defined in Section 3), where we assign a station status
from S1, S2, S3, and S4 to each frame. These statuses are then aggregated and logged into
the database, which is used for bottleneck detection in the entire pipeline by highlighting
the reason as either non-productive, downtime, or idle time.

The lifecycle of each object is also logged in the database, and specific alerts are
generated if the object’s lifecycle increases by a predefined threshold (often calculated as
some multiple of the average processing time depending on the use case). These alerts
can help line managers and manufacturers to optimize the supply chain by providing the
required parts for installation and improving labor productivity.
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Figure 4. Complete pipeline of the proposed methodology.

5. Insights into Manufacturing Facility

The synergistic combination of YOLO and our proposed framework aims to highlight
the specific challenges faced by the client in manufacturing assistive medical wheelchairs
based on OD, localization, and tracking throughout the production process. With permis-
sion from the existing workers in the clients’ facility, we strategically deployed cameras on
the manufacturing floor to capture live video feeds for analysis. Figure 5 showcases the
frame captured from an installed camera on-site with the view of a station where workers
are assembling a chair.

Figure 5. View of floor lines, with power wheelchairs and workers represented by yellow and red
boxes, respectively. The people in these images are blurred to protect their identities and comply
with the request from the industry partner.
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Challenges

The wheelchair manufacturing process commences with specifications from healthcare
professionals tailored to individual patient needs. These specifications dictate the assembly
at various stations, each manned by a dedicated worker. Despite a standard processing
time at each station, delays are common due to labor shortages and workers having to
move between stations. Communication gaps exacerbate these delays, especially when the
floor managers may be unaware of inventory issues. Transition periods, notably during
shift changes, create inefficiencies and bottlenecks, impeding the production timeline. The
presence of faulty items in the production line necessitates additional quality control time,
disrupting the manufacturing flow. As indicated by data from the Manufacturing Execution
System (MES), this inability to promptly identify and address bottlenecks further delays
production. The MES data are often inaccurate, as they are primarily reliant on manual
worker input. While informative, continuous manual time studies are impractical and may
lead to skewed productivity metrics.

Given these challenges, we propose a non-invasive system for capacity constraint
analysis. This system tracks the station and cycle time of chairs, allowing for effective
labor and inventory planning. Over six months (July to December), we collected videos
from four workstations identified by MES data as a primary bottleneck. For simplicity,
we can label them as A, B, C, and D, with Station C being the critical one. As the facility
works only for the morning shift, data were collected for 8.5 h daily. We excluded three
standard 25 min break times and detected workers and chairs using the trained YOLOv8
model as outlined in Section 3. Each frame’s status was aggregated to extract various
metrics. Figure 6 shows that Station C is 27.9% unproductive, indicating a critical labor
shortage with a high percentage for the whole duration. Figure 7 reveals a consistent trend
in productivity over the months, contrary to the expected increase towards the year’s end
due to high demand. This consistency points to a critical labor shortage. Figure 8 depicts
normalized hourly productivity data. Notably, productivity is higher in the morning
than in the afternoon. Figure 9 represents the daily insights into the client’s capacity
constraint. They are productive only for 60% to 65% of the time during the 8.5 h shift, and
the remaining time is mostly unproductive when a worker is not available at the station to
work on the chair.

73.1%

25.5%Productive (73.1%)
Unproductive (25.5%)
Idle (0.8%)
Downtime (0.6%)

Figure 6. Pie chart representing the status of Station C over 6 months.

Further analysis of the lifecycles of individual chairs is presented in Figure 10, where
the box plot represents the five-number summary of the processing time of the chair each
week. We have filtered out processing times of less than two minutes due to instances
where a person is occluding the chair and the model is not able to detect it for a certain
time; the tracker loses detection and completes the life cycle, then assigns a new ID after
the chair is visible, resulting in two distinct IDs being assigned for the same chair. It is
evident that the median time (represented by the red colored line) is reduced to 15 minutes
on some days, while it also increases to 23 minutes (week 42), resulting in a 53% increase in
processing time and a decrease in daily output. Upon manual verification of the video data,
the worker in charge was on vacation on week 42, and another worker from a different
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station was taking care of the station. A similar trend is also visible during days when a
worker handles multiple stations or during a severe inventory situation (week 39).
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Figure 7. Monthly aggregated status of Station C over 6 months.
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Figure 8. Hourly aggregated data showing the status of Station C over 6 months.

These insights are crucial for workflow optimization. They are most effective when
applied in a production environment with real-time metrics and an alert system for in-
creasing processing time, as mentioned in Figure 4. Such a system enables floor managers
to promptly address issues, thereby improving efficiency and productivity. For example,
if the analysis reveals frequent downtimes due to material shortages, manufacturers can
adjust their inventory management strategies; similarly, patterns of non-productivity can
inform staffing decisions and training programs. This approach is highly scalable, and can
be directly implemented in other manufacturing industries where the production pipeline
consists of workstations for individual tasks and human workers are required for the
precise assembly of the parts.
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Figure 9. Daily status of Station C in terms of productivity over 6 months.
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Figure 10. Box plot of the processing time for all the chairs over 6 months, aggregated for each week
for Station C. The red line and the lower and upper box boundaries represent the median and the 25th
and 75th percentiles, respectively. Please note that these numbers are scaled in order to anonymize
them, as requested by the industry partner.

6. Conclusions

In this work, we implemented a non-invasive system for monitoring capacity con-
straints in manufacturing environments. Data were collected from four manufacturing
assembly line stations over six months. Having reviewed the existing literature on OD,
we propose a state-of-the-art end-to-end framework using YOLOv8 for object detection,
providing insights into labor and inventory management, and revealing notable labor short-
ages and inefficiencies. Our study underscores the importance of real-time metrics and alert
systems for enhancing efficiency and productivity in manufacturing environments. The
overall productivity of Station C was calculated to be only 73.1% over 6 months, suggesting
significant potential for technological integration in optimizing manufacturing processes.

6.1. Implementation of the Results in Practice

The findings from this study have significant practical implications. By utilizing the
proposed framework, manufacturers can gain real-time insights into labor and inventory
issues, allowing them to make informed decisions quickly. The proposed framework can be
directly integrated into existing assembly line systems, thereby facilitating improvements in
labor allocation, reducing inefficiencies, and optimizing overall productivity. In particular,
the identified bottlenecks at Station C can serve as a starting point for targeted interventions,
ensuring that resources are deployed more effectively and that output matches demand.

6.2. Limitations of the Proposed Framework

While providing promising and groundbreaking results, the application of OD in
this context also presents limitations in terms of tracking, especially when occlusion or
overlapping objects are present in the frame in the form of a worker occluding the object
being worked on or a guest visiting the station to casually chat for an extended period.
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Long periods when the object is not visible can inflate the results. Additionally, the accuracy
of the analysis depends on the precision of the OD model; thus, training an effective model
is critical.

While the proposed framework provides valuable insights, it is crucial to implement
it ethically. Worker privacy must be respected, and the collected data should be used solely
for productivity analysis, not for individual performance evaluation. Clear communication
with workers about the purpose and scope of the monitoring is essential.

6.3. Future Direction

Future work will focus on expanding the scope of the current system, particularly by
incorporating LMMs to predict future trends in labor and inventory management. These
models will allow for prescriptive insights that not only reflect past performance but also
suggest actionable steps for future improvements. Additionally, further research will
explore the application of the proposed framework to other industries and manufacturing
environments along with ways to enhance the system’s scalability and robustness for
broader industrial use. Integration with emerging technologies such as edge computing
and IoT will also be considered to further streamline data collection and analysis.
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