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Abstract: Automated driving (AD) is a new technology that aims to mitigate traffic accidents and
enhance driving efficiency. This study presents a deep reinforcement learning (DRL) method for
autonomous vehicles that can safely and efficiently handle highway overtaking scenarios. The
first step is to create a highway traffic environment where the agent can be guided safely through
surrounding vehicles. A hierarchical control framework is then provided to manage high-level
driving decisions and low-level control commands, such as speed and acceleration. Next, a special
DRL-based method called deep deterministic policy gradient (DDPG) is used to derive decision
strategies for use on the highway. The performance of the DDPG algorithm is compared with that of
the DON and PPO algorithms, and the results are evaluated. The simulation results show that the
DDPG algorithm can effectively and safely handle highway traffic tasks.

Keywords: autonomous vehicles; decision-making; deep reinforcement learning (DRL) method;
overtaking; DDPG algorithm

1. Introduction

Autonomous driving (AD) allows vehicles to navigate through diverse driving situa-
tions without requiring human input [1,2]. Thanks to the enormous potential of artificial
intelligence (AI), self-driving cars have become a central topic in global research [3]. Numer-
ous companies, including Toyota, Tesla, Ford, Audi, Waymo, Mercedes-Benz, and General
Motors, are developing their self-driving vehicles and have made great progress in this
field. Automotive researchers are also closely following the progress of self-driving car
design [4]. The efficacy of self-driving cars includes four critical components: perception,
decision-making, planning, and control [5].

Perception is the process of a self-driving car detecting its surroundings through
the use of sensors, which include lidar, radar, cameras, GPS, and others. The decision
module controls the driving behaviors of the vehicle, such as acceleration, braking, lane
changes, and staying in lane. The planning module helps the self-driving car to determine
the best route from one point to another [6]. Lastly, the control module directs the power
transmission system’s components to execute maneuvers accurately and follow the planned
route. Based on the level of intelligence demonstrated by these modules, self-driving cars
are classified into six levels, ranging from Level 0 to Level 5.

The strategy used in decision-making for self-driving vehicles is significant and often
compared to the human brain. This strategy is generally formulated using rules derived
from human driving experiences or modeled by utilizing supervised learning approaches.
For instance, Song and colleagues employed a continuous Markov chain to predict the
movements of nearby vehicles [7]. They then used a partially observable Markov decision
process (POMDP) to develop the overall decision-making framework. In addition, decision-
making capabilities were enhanced for urban road traffic scenarios [8]. The decision-
making policy outlined in this study considers multiple criteria to assist city vehicles
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in making practical and logical choices amid various traffic conditions. Lane change
decision strategies for connected automobiles were investigated in [9]. Moreover, the
authors of [10] emphasized the idea of a driving system that mimics human behavior and
is capable of adapting driving decisions by taking into account the needs and preferences
of human drivers.

The deep reinforcement learning (DRL) method is a powerful tool for addressing
long sequential decision-making problems. In recent years, many studies have explored
the application of deep reinforcement learning in the field of automated driving. For
example, Duane and colleagues proposed a hierarchical structure for learning decision
policies using reinforcement learning (RL) methods. Additionally, researchers in [11,12]
have used deep reinforcement learning (DRL) techniques to address challenges related to
collision avoidance and trail sequencing in self-driving cars. The findings indicate that
the deep reinforcement learning (DRL) approach outperforms traditional reinforcement
learning (RL) methods for both challenges.

In addition to route planning, researchers have also considered fuel consumption for
self-driving vehicles in [13,14]. They have developed an algorithm called Deep Learning Q
(DQL) which has proven to be efficient in executing driving tasks. Han and his team used
the DQL algorithm to determine lane changes or lane keeping for connected autonomous
vehicles, incorporating feedback from nearby vehicles as network-informed knowledge [15].
This policy enhancement helped improve traffic flow and driving comfort. However,
conventional deep reinforcement learning (DRL) techniques face difficulty in addressing
highway overtaking challenges due to the continuous operational space and extensive
range of possible scenarios [16].

In [17], the author examined the vehicle lane change process, which consists of
two stages: the lane change decision and lane change movement. The author proposed a
double-layer deep reinforcement learning structure in which the upper structure deep Q
network (DQN) controls the decision-making process and sends lane change information
to the lower deep deterministic policy gradient (DDPG) for vehicle trajectory control. Af-
ter the lane change process, the DON undergoes cooperative optimization based on the
feedback of vehicle position information before and after the lane change.

Moreover, in [18], reinforcement learning has been widely recommended for use in
the field of unmanned driving; however, developing the stability of unmanned vehicles
and satisfying the demands of path tracking and vehicle obstacle avoidance under various
operating conditions remains a challenging issue. In this paper, a control strategy for
unmanned vehicles, based on a DDPG algorithm, was proposed to address the functional
requirements of path tracking and obstacle avoidance. The focus of the strategy is on
preventing collisions for unmanned vehicles.

In [19], the authors proposed a DRL-based motion planning strategy for traffic man-
agement in highway conditions where AV is integrated into two-way traffic and realizes the
lane change maneuver. The AD system incorporates the DRL model using the end-to-end
learning approach. They have created an enhanced DRL algorithm utilizing the DDPG
with clearly defined reward functions.

Moreover, a lane change-tracking control model was proposed based on the deep
reinforcement learning algorithm and simulation experiments were carried out to solve the
problem automatic driving vehicles carrying out safe lane changes on highways. A model
of the vehicle lane change path was built by using a quintuple polynomial approach with
error-tracking functions. A three-degrees-of-freedom vehicle dynamics model was fused
with the deep reinforcement learning framework to build the lane change path tracking
control model, which was updated using a deep deterministic policy gradient (DDPG)
algorithm. The algorithm learned the steering angle required for an optimal lane change
path tracking to control the vehicle to complete the lane change process [20].
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The vulnerability of Deep Q-Network amplifier learning algorithms and the DDPG
against black-box attacks is examined by the authors in [21]. They utilize zero-order opti-
mization methods like Zo-Signs which enable effective attacks without gradient information,
revealing vulnerabilities in existing systems. Their findings indicate that these attacks have
the potential to significantly decrease AV performance and diminish rewards by 60% or more.
Additionally, they explore hostile training as a defensive strategy to enhance the robustness
of DRL algorithms, Figure 1, finding that the performance is affected, although there is
a trade-off.
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Figure 1. DRL algorithms.

In addition, ref. [22] suggests an advanced adaptive cruise control system with lane
changing assistance (LCACC) for an articulated vehicle. This study employs a two-tier
hierarchical control structure. The upper layer generates high-level commands, while the
lower layer encompasses two modified DDPG networks, which control the steering and
throttle/brake based on the commands from the upper layer. The lateral and longitudinal
control of the vehicle are separated and managed by two modified DDPG networks.
By appropriately designing the state and reward function, the actions of the articulated
vehicle, such as steering and acceleration/braking, are more akin to human actions, thereby
ensuring a comfortable ride.

The current paper presents a driving policy for self-driving cars using a deep reinforce-
ment learning approach. The policy is designed for overtaking in highway traffic scenarios
and ensures both safety and efficiency in complex environments.

The study starts by defining the driving scenario on a highway, to guide the agent
safely and effectively. Then, a hierarchical control structure is introduced, which oversees
both the lateral and longitudinal movements of the agent and other vehicles around it.
Finally, the study uses the DDPG algorithm, a specialized deep reinforcement learning
(DRL) technique, to develop a decision-making strategy specifically designed for highway
traffic environments.

Finally, we evaluate and discuss the performance of the proposed simulated control
framework. Figure 2 depicts the data learning methodology adopted in this study.

The study presents the following primary innovations and contributions:
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Figure 2. Training process.

The research introduces an optimal lane change strategy for self-driving cars within
complex dynamic traffic. It is based on a deep reinforcement learning approach (DRL),
where the decision-making phase is carried out using the DDPG algorithm. Here, lane
change optimality is defined for vehicle safety and travel time. To the best of the author’s
knowledge, this is the first time that DDPG was used for this application.

The current study is organized into several sections. In Section 2, you will find
an overview of the highway driving environment, which includes information on the
operational control modules and surrounding vehicles. Section 3 focuses on the DDPG
algorithm, providing a detailed discussion of the parameters of the reinforcement learning
framework (RL). In Section 4, you will find the evaluation of the results. Finally, Section 5
concludes the study.

2. Driving Environment

The following section describes the driving scenario that was analyzed on the highway.
To create this scenario, we used MATLAB software (version 2022) to construct a three-lane
highway environment. After that, we designed the agent and the surrounding traffic
environment. Furthermore, we introduced a hierarchical motion controller to monitor the
lateral and longitudinal movements of both the agent and the surrounding vehicles.

When driving, we make decisions on the best way to get to our destination. This
involves several behaviors such as changing lanes, keeping in our lane, accelerating, or
braking. Our main goals are to avoid accidents and drive efficiently. Overtaking is a
common behavior, which includes accelerating and passing other vehicles.

This passage discusses how self-driving cars make highway decisions, using the
driving scenario shown in Figure 2. In the picture, the orange car is the self-driving car,
while the green cars are the surrounding cars. The self-driving car starts driving at random
speeds in the middle lane. Its goal is to drive as efficiently as possible while avoiding
collisions with other cars. The decision-making algorithm is evaluated based on how well
it balances these two goals. The speeds and starting positions of the surrounding cars are
randomly selected to reflect the uncertainties of real traffic. At the beginning of the task, all
the other cars are in front of the self-driving car, two per lane. From start to finish, the entire
process is called an episode in this article. First, the three-lane highway is created. Then,
the self-driving car and the surrounding cars are added to the environment. Finally, the
self-driving car is equipped with sensors like cameras and LiDAR (as shown in Figure 3).

The subsequent section introduces a deep reinforcement learning (DRL) approach to
facilitate the learning process and establish the highway decision policy.
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Figure 3. Sensor modeling and highway traffic environment in MATLAB software. ((a): Camera and
Lidar integration, (b): Traffic environment modeling).

3. Method

In the present research, deep reinforcement learning (DRL) techniques are applied to
facilitate decision-making for an agent navigating within a highway environment.

3-1 Deep Reinforcement Learning (DRL) Method

Machine learning (ML) is a branch of artificial intelligence (AI) that concentrates
on enhancing the efficiency of computational algorithms using data [19]. ML falls into
three primary categories: supervised learning, unsupervised learning, and reinforcement
learning (RL). In RL, an autonomous agent learns to perform tasks within an environment
by seeking to maximize a predetermined reward function. The agent is rewarded when it
takes the appropriate actions while interacting with its environment. On the other hand,
if the chosen action is unfavorable, the agent is either penalized with negative rewards
or punishments.

Supervised learning involves learning from labeled examples provided by experts.
However, this method is not well-suited for solving interactive problems because accurately
labeling interactions can be complex [20].

Unsupervised learning, on the other hand, focuses on discovering hidden structures
within unlabeled data. While uncovering such structures can be advantageous, this approach
cannot optimize rewards, which is a key objective of reinforcement learning (RL) [20].
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Reinforcement learning (RL) addresses problems characterized by vast numbers of
actions and states within an environment. Function approximators, such as Artificial
Neural Networks (ANN), can be employed to handle the challenges posed by a large state
spaces and action spaces. The utilization of a neural network as a function approximator in
RL is referred to as deep reinforcement learning (DRL).

Markov decision processes (MDPs) typically structure RL problems, incorporating a
set of states, a set of actions, a transition function (T) between states, and a reward function
(R) [21], often expressed as the tuple (S, A, T, R). The likelihood of transitioning from states
at time step t, after taking action a, resulting in a new state s + 1, is denoted as T(s, at, St+1)
and ranges between 0 and 1. Immediate rewards from this transition are represented as R
(st, at, st+1) and ry, respectively. The graphic in Figure 4 offers a visual representation of the
fundamental components of the RL model for autonomous vehicles.

State

And Action

Reward
Al Agent

2

Figure 4. RL model for autonomous vehicle [23].

The expected discounted return R; after time step f can be defined as:

Rt = Z:o ’)/t.rt (1)

where v signifies a discount factor within the range [0, 1]. The discount factor y falls
within the range of 0 to 1. T’s value can be finite or infinite (c0) depending on the specific
problem. The assignment of action probabilities to states is referred to as a policy 7 (als).
The value function v (s) represents the expected return under policy 7 from state s and is
formulated as:

Vn(St) = En[Rt|St, 7'[] (2)

The action—value Q (s, a) function is as follow:
Q7 (st,at) = Ex[R¢|St, ap, 7] 3)

which also contains the iterative Bellman equation:

Q™ (st,at) = Exlrt + v maxQ™ (s¢11,a141)] 4)

However, some RL problems cannot be expressed as Markov decision processes
(MDPs). In some cases, the states may not be fully visible or directly observable from
the environment. In such situations, problems can be formulated as partially observable
Markov decision processes (POMDPs). One approach to addressing these issues involves
leveraging past knowledge and incorporating previous observations along with current
ones to treat the problems as MDPs [20]. For instance, in Atari Games, observations can be
derived from four consecutive images [3]. The primary goal of RL is to learn a policy that
maximizes the expected returns. DDPG is an algorithm for continuous action domains that
operate out-of-policy. It comprises two main components: learning a Q function through a
critic network and learning a policy through a policy network. The Q learning aspect of the
algorithm aims to approximate the optimal Q function Qx(s, a) as shown in Equation (4) by
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minimizing Equation (5) With a critic network Q(s, a) with parameters ¢ and aggregated
experiences d containing tuples (s, a, 1, s, a”), the Mean Squared Bellman Error (MSBE) can
be characterized as:

(,0) = Ep [(Qa(s,a) = (r+7 (1 - d)maxQa (5,4)))’] 5)

The policy network aims to learn a deterministic policy, ug (s), in order to select
actions that maximize Q*(s, a). To achieve this, we can utilize gradient ascent. However, to
maintain stability during the learning process, the DDPG algorithm utilizes a replay buffer
and target networks. These target networks comprise a target critic network and a policy
target network. Although the structures of both networks mirror the originals, the parame-
ters ¢ trail those of the originals. We update the target networks using Polyak averaging,
which enables them to keep pace with the primary networks slowly and enhances stability.
The target networks can be updated using Polyak averaging, enabling them to gradually
align with the primary networks and enhance stability.

3-2 Parameter specification

To develop a DDPG decision-making approach, we need to create some variables
that can simulate a driving scenario. In this simulation, the control mechanisms are the
throttle and steering angle of the vehicle. We also need to consider the state variables,
which include the relative distance and velocity differences between the agent vehicle and
its surrounding counterparts, as outlined in relations (6) and (7).

AS = 1S53 — Syl (6)

AV = [ Vag — Vg | (7)

In this particular context, ‘s” and ‘v’ refer to the positional and speed data that are ob-
tained from the vehicle’s dynamics. The indices ‘ag’ and ‘su’ are specifically used to denote
the agent and the surrounding vehicles. It is essential to note that Equations (6) and (7)
can also be interpreted as components of the P-transfer model, which is used within the
framework of the reinforcement learning method (RL).

The study’s reward function takes into account three main factors: efficiency, safety,
and driving objectives. The agent’s primary goal is to drive at the highest possible speed
while staying in the correct lane and avoiding collisions with other vehicles on the road. At
each time step (t), the reward is calculated using a formula (Equation (8)) that considers
these factors.

R; = —100.collision + 40(L — 1)* — 10(Vag — Vag max)* (8)

In this study, a decision-making strategy for autonomous vehicles is proposed, simu-
lated, trained, and evaluated using MATLAB software. The environment consists of three
lanes and six surrounding vehicles, where a collision is denoted by {0, 1} to indicate if
the agent has encountered a collision or not. The lane count is represented by {1, 2, 3},
indicating the specific lane number on the highway. The training and evaluation process
involves a value network with 128 layers and a total of 100 episodes, where the discount
factor and learning rate are set to 0.8 and 0.2, respectively.

In this study, Simulink software (2022 version) was used to simulate the overtaking
scenario, as shown in Figure 5.

In the following section, we will evaluate and confirm the effectiveness and validity of
the proposed decision-making algorithm.



Automation 2024, 5

571

Vision
Detection Object &
Generator Detections|
Actors| [Sensor Index: 1]
(Vehicle Coord.)
Camera
scenariooverakingnew -
Ego Vehicle Pose|
(World Coord.)|
Lidar l—
e P&?L?Q?‘;" Point Cloud—————D) Lfsetvelocity
Ego Vehice [Sensor Index 2] ou2
LofTime gap
: [
scton Ls{Relative distance
k. SoRelative velocity
L
\—OngMmal velocity
—{Curvature
D——oseran
Steering angk @
D— W [ t—>iLateral deviation
‘ yawange
|

g —

Figure 5. Block diagram.

4. Discussion

In this section, we assess and examine the control function of the DDPG algorithm
proposed for the decision-making process of an agent in a highway traffic environment.
Firstly, we compare and verify the effectiveness of the decision policy with another method
in the evaluation. The simulation results indicate that the decision policy is optimal.
Secondly, we prove the ability of the proposed DDPG algorithm to learn by analyzing the
accumulated rewards. Figure 6 displays the overtaking exercise performed by the agent
(blue car) in the traffic environment designed for the highway.
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Figure 6. Overtaking maneuver in the highway environment. ((a): preparing for overtaking; (b): exe-
cuting overtaking; (c): executing overtaking; (d): terminating overtaking).

4-1 Effectiveness of the DDPG algorithm

This section introduces three methods for decision-making in a highway traffic envi-
ronment. Firstly, we evaluate the deep Q-learning algorithm (DQN) and proximal policy
optimization (PPO), followed by an examination of the proposed DDPG algorithm. We
also demonstrate the advantage of the DDPG algorithm over the DQN and PPO algorithms
in this section. It is worth noting that we consider the parameters of the three deep learning
algorithms, DDPG, DOQN, and PPO, to be the same.

The performance of the control policy in the deep reinforcement learning method
(DRL) is indicated by the total reward earned in each episode. Figure 7 shows the average
reward in the three deep learning methods, DDPG, DQN, and PPO, over 25 episodes.
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Based on Figure 7, the curves show the incremental progress of the agent’s perfor-
mance in interacting with the environment. However, the curve may decrease due to
the complexity of the traffic environment designed on the highway, which can cause the
agent to collide with surrounding vehicles or cross the lines on the highway during the
overtaking exercise. According to Figure 6, the DDPG algorithm has a better learning rate
for executing the overtaking maneuver designed in the highway environment compared to
the DON and PPO algorithms.

The study focuses on using the vehicle’s speed and distance as state variables. Figure 8
illustrates the operating distance values obtained using the DDPG, DQN, and PPO methods.
Also, Figure 8 displays the longitudinal speed values of the agent over 25 s, using the DDPG,
DQN, and PPO methods.

450
400
350
300
250

200

Distance (m)

150

100

50

Figure 8. Agent distance; DDPG, DQN, and PPO methods.

Based on Figure 8, it appears that the control measures implemented by the DDPG
agent enabled the vehicle to travel further and avoid collisions, as indicated by the larger dis-
placement.

According to Figure 9, a higher speed leads to greater rewards, indicating that the
DDPG approach is more effective than the DQN and PPO algorithms in the highway
environment. On the other hand, based on the simulation results shown in Figures 6-8, the
DDPG technique is more effective in achieving safety and efficiency goals in the highway
traffic environment compared to the DON and PPO algorithms.
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Figure 9. Agent Speed; DDPG, DQN, and PPO methods.

4-2 learning rate of the DDPG algorithm

This section is dedicated to discussing the learning rate and convergence rate of the
DDPG algorithm. As mentioned before, the main goal of deep reinforcement learning algo-
rithms is to update the Q-action value function Q (s, a) using different methods. Figure 10
shows a graph of longitudinal acceleration using DDPG, DQN, and PPO algorithms for
25 s.
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Figure 10. Agent acceleration; DDPG, DON, and PPO methods.

Based on the analysis presented in Figure 10, it is evident that the agent in the DDPG
algorithm is more familiar with the driving environment when compared to the agent in
the DQN algorithm. This implies that the DDPG algorithm has a faster convergence rate
for the highway decision-making problem, as compared to the DQN algorithm. Moreover,
in the DDPG algorithm, the acceleration value of the agent is higher than that of the DQN
algorithm, indicating that the agent is more inclined towards maintaining speed, which
reflects the higher efficiency of the DDPG algorithm in the highway environment.

To compare the learning rates of the DDPG and DQN algorithms, Figure 10 shows the
cumulative rewards obtained by the two methods.

According to the data presented in Figure 11, the DDPG algorithm exhibits consistently
higher cumulative reward values compared to the DQN algorithm. This indicates that the
control policy employed by the DDPG algorithm is superior and that the DDPG method can
better comprehend the driving environment. Essentially, the agent in the DDPG algorithm
is capable of searching for the optimal control policy at a faster rate.
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Table 1 presents a comparison of the three mentioned algorithms.

Table 1. Comparison of DDPG, DQN, and PPO algorithms.

Parameter DDPG DON PPO
Max distance (m) 410 380 311
Max speed (m/s) 25 21 20
Max acceleration (m/s?) 2.6 22 1.8
Max average reward 22 20 18

The DDPG algorithm’s adaptability to changing parameters in driving scenarios
will be assessed through two new scenarios, with their performances being evaluated
and explained.

In the first scenario, the overtaking agent was positioned next to the orange car to
perform the overtaking maneuver. The results indicate that the maneuver was executed suc-
cessfully without any collisions. However, due to the inherently risky nature of overtaking,
the agent received only a minimal reward.

The low reward in the overtaking exercise can be attributed to two factors. Firstly, the
agent crossed the lane lines during the maneuver. Secondly, there is a high probability of

an accident during the same maneuver. Figure 12 demonstrates how the agent executed
the maneuver.

a

© ) @

Figure 12. Dangerous overtaking maneuver in the highway environment. ((a): preparing for
overtaking; (b): executing overtaking; (c): executing overtaking; (d): terminating overtaking).
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In Figure 13, the reason for the agent receiving a lower reward while performing the
maneuver is depicted.

Vehicie Coordinates View

onghudingl Distance (m)

Lateral Distance (m) . Ym)

Figure 13. Dangerous action in the highway environment.

Figure 13 shows that the driver cut off the lane while overtaking and performed the
maneuver in a situation where a collision was imminent. In scenario two, as shown in
Figure 14, the speed of the car that was overtaken by the agent increased, resulting in a
collision and a negative reward for the agent.

Vehicie Coorainates View

Longtudnal Distance (m)
X(m)
—

Latersl Dstance (m) Y

X(m)
-

Longhudinal Drstance (m)

Lateral Distance (m) ¥ (m)

(b)

Figure 14. Collision in the overtaking maneuver in the highway environment ((a): preparing for

overtaking; (b): collision).

Additionally, it could be beneficial to employ separate agents to learn specific scenarios.
One agent could focus on the longitudinal movement of the car, while the other could
specialize in the transverse movement. This division of training allows each agent to
concentrate on specific tasks, thereby enhancing the overall training effectiveness.

5. Conclusions

This study presents a decision-making algorithm that is efficient and safe, relying on
deep reinforcement learning (DRL), and is specifically designed for self-driving cars on
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highways. The algorithm used in this study is DDPG (deep deterministic policy gradient).
The control framework developed can generalize across different driving scenarios, ac-
counting for variations in the number of lanes and surrounding vehicles. Simulation results
demonstrate that the proposed algorithm provides optimal performance and convergence
rates. Moreover, our algorithm has a higher learning rate when compared to the DQN and
PPO algorithms.

Our future work will involve exploring the application of our proposed decision-
making system in real-time driving scenarios. We also plan to investigate the benefits
of a connected environment, in which vehicles can share information. Additionally, we
will utilize real-world driving data to evaluate the performance of our proposed decision-
making method in actual driving environments. All of these efforts are aimed at enhancing
the safety and efficiency of autonomous driving systems in real-world applications.
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