
Citation: Budiyanto, A.; Azetsu, K.;

Matsunaga, N. Accelerated Transfer

Learning for Cooperative

Transportation Formation Change via

SDPA-MAPPO (Scaled Dot Product

Attention-Multi-Agent Proximal

Policy Optimization). Automation

2024, 5, 597–612. https://doi.org/

10.3390/automation5040034

Academic Editor: Duc Truong Pham

Received: 13 September 2024

Revised: 22 November 2024

Accepted: 22 November 2024

Published: 27 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Accelerated Transfer Learning for Cooperative Transportation
Formation Change via SDPA-MAPPO (Scaled Dot Product
Attention-Multi-Agent Proximal Policy Optimization)
Almira Budiyanto 1 , Keisuke Azetsu 1 and Nobutomo Matsunaga 2,*

1 Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
2 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
* Correspondence: matunaga@cs.kumamoto-u.ac.jp

Abstract: A method for cooperative transportation, which required formation change in a traveling
environment, is gaining interest. Deep reinforcement learning is used in formation changes for multi-
robot cases. The MADDPG (Multi-Agent Deep Deterministic Policy Gradient) method is popularly
used for recognized environments. On the other hand, re-learning may be required in unrecognized
circumstances by using the MADDPG method. Although the development of MADDPG using
model-based learning and imitation learning has been applied to reduce learning time, it is unclear
how the learning results are transferred when the number of robots changes. For example, in the
GASIL-MADDPG (Generative adversarial self-imitation learning and Multi-agent Deep Deterministic
Policy Gradient) method, how the results of three robot training can be transferred to the four robots’
neural networks is uncertain. Nowadays, Scaled Dot Product Attention (SDPA) has attracted attention
and is highly impactful for its speed and accuracy in natural language processing. When transfer
learning is combined with fast computation, the efficiency of edge-level re-learning is improved.
This paper proposes a formation change algorithm that allows easy and fast multi-robot knowledge
transfer using SDPA combined with MAPPO (Multi-Agent Proximal Policy Optimization), compared
to other methods. This algorithm applies SDPA to multi-robot formation learning and performs
fast learning by transferring the acquired knowledge of formation changes to a certain number of
robots. The proposed algorithm is verified by simulating the robot formation change and was able
to achieve dramatic high-speed learning capabilities. The proposed SDPA-MAPPO (Scaled Dot
Product Attention-Multi-Agent Proximal Policy Optimization) learned 20.83 times faster than the
Deep Dyna-Q method. Furthermore, using transfer learning from a three-robot to five-robot case, the
method shows that the learning time can be reduced by about 56.57 percent. A scenario of three-robot
to five-robot is chosen based on the number of robots often used in cooperative robots.

Keywords: multi-robots; formation change; Scaled Dot Product Attention; transfer learning

1. Introduction

Multi-agent systems have strengths in many areas such as research, robotics, au-
tonomous driving, warehouse systems, and game playing. Especially in robotics, multi-
agent systems require cooperative behavior to coordinate from one agent to another in
order to reach a specific task. On the path to completing a specific task, formation change
and control are essential in multi-agent systems. Various environmental conditions require
different formations of the multiple agents, including obstacle avoidance, size and shape
tracks, and various sizes and shapes of object transportation [1–7].

One example of multi-agent application is cooperative transport, in which the for-
mation change of multiple robots is adjusted based on the environment. Nowadays, this
concept is receiving increasing attention [8]. Formation changes can be made at any ar-
bitrary point on the trajectory, and deep reinforcement learning is used. In multi-agent

Automation 2024, 5, 597–612. https://doi.org/10.3390/automation5040034 https://www.mdpi.com/journal/automation

https://doi.org/10.3390/automation5040034
https://doi.org/10.3390/automation5040034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/automation
https://www.mdpi.com
https://orcid.org/0000-0002-5173-1466
https://orcid.org/0009-0000-8211-8376
https://doi.org/10.3390/automation5040034
https://www.mdpi.com/journal/automation
https://www.mdpi.com/article/10.3390/automation5040034?type=check_update&version=1


Automation 2024, 5 598

systems, reinforcement learning is making rapid advancements in autonomous learning.
Reinforcement learning is a framework that effectively solves sequential decision-making
tasks by allowing a learning agent to interact with the environment and learn from mistakes
by using trial and error to improve performance. Challenges of reinforcement learning in
multi-agent systems include the long learning process; the gained knowledge is based on
the circumstance and limitations in the ability of robots to store knowledge [2,3].

Since the formation change requires a long learning time, many speed-up meth-
ods based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [9] have
been considered. We have also applied a model-based learning method, namely Deep
Dyna-Q [10], which estimates the state based on the states collected by the agent, and
imitation learning [11], which imitates the trajectory to approximate the state of an expert.
Both methods have led to improved learning times compared to MADDPG. Deep Dyna-Q
effectively explored formation control through both simulations and actual experiments. In
the simulations, the rate of successful formation changes was influenced by factors such
as the discount rate, learning rate, the number of collisions among agents, and collisions
between agents and transport objects. In actual experiments, the implementation of a
Model Error Compensator (MEC) reduced movement errors in the robots. As a result, the
robots were able to achieve successful formation changes.

Transfer learning (TL) is developed in reinforcement learning to overcome the long
learning time and accelerate the learning process. Transfer learning [12] is the process
of sharing information from one agent to another agent. By utilizing pertinent prior
knowledge, transferable knowledge from a source task speeds up learning and improves
the quality of solutions in target tasks. Various learning strategies and communication
protocols have been implemented to overcome this issue and to enhance stability, training,
and observability [13–15].

In transfer learning, single-agent transfer learning has shown positive transfer, but
multi-agent transfer learning is still developing. Conversely, irresponsible knowledge reuse
could result in a detrimental transfer. Therefore, it is essential to develop flexible, safe,
and robust methods for reusing knowledge in multi-agent applications. Transfer learning
should take into account autonomous, cooperative learners and stochastic environments
where joint rewards and local observations are used as feedback. This approach is applicable
and realistic for a wide range of multi-agent domains. The popular transfer learning
strategies applied in reinforcement learning are imitation learning and policy transfer.

Well-known examples of imitation learning include behavioral cloning, which imitates
behavioral trajectories precisely, and GAIL [16], which estimates rewards from expert
behavioral trajectories and uses them for reinforcement learning. There is also self-imitation
learning, which uses past good experiences as the behavioral trajectories of experts [4,5,17].
However, when the number of robots used or the transport environment changes, the input
vector changes, making it difficult to transfer the learning results.

In recent years, Scaled Dot Product Attention (SDPA) [18], which has high accuracy
and speed, has gained attention in natural language processing. The SDPA algorithm is fast
because it can calculate input in parallel and provide accurate translations by understanding
the context while grasping the anaphoric relationships between words. Therefore, we are
considering using this SDPA scheme to learn robot formation. SDPA can learn quickly
when the attention mechanism, which focuses on the weights of features, can be applied
to reinforcement learning, Additionally, we can expect more robust knowledge transfer
against environmental changes, such as in the number of robots.

In this paper, a formation change algorithm is proposed, which allows easy and fast
multi-robot knowledge transfer by using SDPA combined with MAPPO (Multi-Agent
Proximal Policy Optimization). The proposed algorithm is verified by simulating the robot
formation change. The contribution of this paper is that it not only achieved fast learning
by using the SDPA algorithm but also made it easy to transfer the learning results from a
neural network, which was difficult with reinforcement learning.



Automation 2024, 5 599

2. Formation Change Using SDPA with Transfer Learning

Conventional search algorithms for formation changes have difficulty transferring
knowledge when the number of robots changes during transport. Therefore, we will focus
on the SDPA algorithm, which considers the weights of features. With this scheme, we can
expect a learning algorithm that can respond to changes in the input vector.

2.1. SDPA-MAPPO Algorithm
MAPPO Algorithm

Once the action is determined, all uncertainties are determined by the policy π based
on the Markov decision process so that the expected value can be obtained. The policy
gradient method learns a policy that maximizes this expected value. Then, the policy
gradient method learns to maximize the objective function. The policy gradient method
has the problem of instability since it is difficult to determine an appropriate update size,
and large updates may cause the policy to deteriorate. Therefore, TRPO (Trust Region
Policy Optimization) [19] has been proposed, which trains by restricting the update width
so that the output of the policy network does not change too much before and after the
update. TRPO is an excellent algorithm, but it has problems such as complex calculations
and difficulty sharing parameters. In contrast, PPO [20] suppresses the updated width by
clipping instead of the constraint conditions adopted in TRPO. In this paper, we use PPO
to reduce the update width. The clipping conditions are as follows in Equation (1) [20]:

LCLIP(θ) =Ê[min(r(θ)Â, clip(r(θ), 1 − e, 1 + e)Â)] (1)

where Ê is the estimate, r(θ) is the previously mentioned policy, θ is the policy parameter, e is
the hyperparameter, and Â is the advantage function. PPO is a method suitable for learning
a single agent. However, multi-agent learning cannot achieve high performance [21]. In
this paper, we use Multi-Agent Proximal Policy Optimization (MAPPO), which is an
improved version of PPO for MAS (Multi-agent system), as a deep reinforcement learning
algorithm [22]. Equations (2) and (3) [22] are value functions for agent i and agent j.

Vi
joint = ϵVi(Oi

t) + (1 − ϵ)V j(Oj
t) (2)

V j
joint = ϵV j(Oj

t) + (1 − ϵ)Vi(Oi
t) (3)

The Oi, Vi, and Vi
joint are the observed value, the value function, and the value function

combined by weighted average, respectively. Vi
joint contains its observation information

and the observation information of other agents.

2.2. SDPA Algorithm

The input vector in each robot in the simulation used in this experiment is defined as
shown in Figure 1. P(x, y) is the robot’s coordinates, V(x, y) is the robot’s velocity, G(x, y)
is the relative distance between the goals, and R(x, y) is the relative distance between the
robots. These elements make up the input dimensions of the neural network (NN). For
the case of three robots, the input dimension would consist of 7-dimension inputs, which
include P(x, y), V(x, y), G1(x, y), G2(x, y), G3(x, y), R1(x, y), and R2(x, y) for each robot.

Figure 2 illustrates an overview of the SDPA-MAPPO approach for the three-robot case.
The overview shows the input process, embedding, SDPA process, and deep
reinforcement learning.



Automation 2024, 5 600

Figure 1. Definition of input vector [9].

Figure 2. Overview of SDPA-MAPPO approach.

First, the input process is discussed. In a neural network (NN), the input is typically
represented by a vector. One simple way to represent the input is by using a one-hot vector.
A one-hot vector is a vector in which one component is 1, and the rest are all 0. Although
it can be expressed concisely, the dimension of the vector depends on the dimension of
the input. Then, in the embedding block in Figure 2, the fixed-size vector is created. A
fixed-size (embedding dimension) vector is formed using a distributed representation. The
distributed representation is shown in the following Figure 3.

Figure 3. Distributed representation.

Distributed representation is a linear mapping of a one-hot vector onto a lower-order
vector space. The transformation matrix WT

embedding is expressed as (size of the embedding



Automation 2024, 5 601

dimension) × (size of the input dimension). By using the transformation matrix for the
one-hot vector, we can calculate the vector using the embedding dimension size.

In Figure 2, the SDPA block performs several functions: multiplying embeddings,
calculating similarity and importance, and generating a vector to focus attention on. Utiliz-
ing this input in a deep reinforcement learning NN enables the creation of more complex
combinations of features. In this way, SDPA plays an auxiliary role in deep reinforcement
learning NNs, so learning is expected to be faster.

Attention can be described as follows: Q, K, and V represent Query, Key, and Value,
where

√
dK is the number of dimensions of Key, as shown in Equation (4) [18].

Attention(Q, K, V) = so f tmax(
Q × KT
√

dK
)V (4)

First, Key, Query, and Value are created based on the vectors generated by distributed
representation. Next, the Q matrix and the transposed matrix of the Key matrix are
multiplied. The matrix obtained by the inner product has a size of (input dimension) ×
(input dimension). The matrix is then weighted with the activation function. The weighted
matrix is used as attention weight to calculate the similarity of the Values. Figure 4 depicts
a schematic diagram of the derivation of the attention weight.

Figure 4. Derivation of attention weight.

As an example, Figure 5 displays the attention weight when learning with three robots.
Akshat et al. [23] used curriculum learning, but in this paper, a more complex formation
change problem can be realized using deep reinforcement learning with SDPA.

Figure 5. Visualization of attention weight.



Automation 2024, 5 602

The weighted average of the value is taken using the obtained attention weight.
Figure 6 shows the process for obtaining the weighted average.

Figure 6. The weighted average of the value.

The weighted average, resulting from the SDPA process, is used as input for deep
reinforcement learning. The feature of this algorithm is that the reinforcement learning
input for each agent is modified by the SPDA weights. When the number of robots
is increased, a new input layer is added for new learning. So, in the new reinforce-
ment learning, the input layer weights learned by three robots can be transferred to new
reinforcement learning.

The dashed line in Figure 2 represents the input position from deep reinforcement
learning. In Figure 2, the neural network (NN) configuration is explained. The middle
layer consists of one layer, and the number of neurons is 128. The output layer represents
the target acceleration vector a(x, y), with the number of neurons in the output layer being
2. The activation function used in the NN is the ReLU function, which produces output
values between 0 and 1.

3. Learning Speed of SDPA
3.1. Transition in Reward Value During Learning

The problem dealt with in this paper is a formation change problem where the robot
moves from the right transport position to the left transport position (black), as shown in
Figure 7 [24]. The robot reaches the new transport position (black) within the given time
without colliding with the object or other robots. The robot’s starting positions (R, G, B) are
known, but the robots can then move to any of the three positions for transport. The area
of the experimental environment is (1 × 1), the robot’s diameters are 0.08, and the target
point diameters are 0.05.

Figure 7. Environment without the obstacles in simulation: The starting positions of the robots
are indicated by the yellow, red, and blue circles, while the target positions are represented by the
black circles.



Automation 2024, 5 603

In the following analysis, we present the reward values of formation learning from the
initial state using SDPA-MAPPO. Figures 8–10 show the changes in reward values when
there are three, four, and five robots, respectively. The vertical axis of the graph represents
the average reward value, while the horizontal axis indicates the number of episodes.

Figure 8. Transition of reward on SDPA-MAPPO(3).

Figure 9. Transition of reward on SDPA-MAPPO(4).

Figure 10. Transition of reward on SDPA-MAPPO(5).



Automation 2024, 5 604

Figure 8, depicts the rapid increase in reward value from approximately –3.4 to about
–0.54 over 1000 episodes, followed by stabilization and convergence around –0.36, indicating
completion of learning at 1200 episodes. Meanwhile, in the case of the transition reward
of SDPA-MAPPO in four robots, the reward value increases rapidly from about –2.7 to
about –0.4 in 1500 episodes. It can be seen in Figure 9 that the reward is stabilized and
converged around –0.36 at 2000 episodes. For five robot simulations, as shown in Figure 10,
the reward converged around –0.34, so the learning process is completed at 3200 episodes.

3.2. Evaluation of Learning

In each episode, we calculated the difference in distance between the robot’s final
position and the target point. The final distance shows the distance average of all robots’
positions to the target point. A smaller final distance indicates that the robot is closer to the
target, showing better system performance.

Since the target point size is 0.05, the goal condition requires that the errors in the
distance between the robot and the target point are within 0.05. Figures 11–13 are the final
distances of SDPA-MPPO for three, four, and five robots, respectively. All robots have
successfully reached the goal, as shown in these figures. In Figure 11, the initial distance
between the robot and the target point is 9 mm, which then reached 0.4 mm final distance
in about 1000 episodes for three robots. For four robots and five robots, both final distances
are about 0.05 and reached in 1500 and 3200 episodes, respectively.

Figure 11. Final distance in three robots.

Figure 12. Final distance in four robots.



Automation 2024, 5 605

Figure 13. Final distance in five robots.

Table 1 compares the learning performance of the proposed method using SDPA-
MAPPO and previous studies conducted under similar conditions. Learning convergence,
measured in the number of episodes, indicates convergence speed, with smaller num-
bers representing faster convergence. First, we compare the learning end times from the
three random states with SDPA-MAPPO(3) (address as SDPA(3) on the Table 1), GASIL-
MADDPG(3), and Deep Dyna-Q(3). For formation learning involving three robots, SDPA(3)
is about 20.83 times faster than Deep Dyna-Q. It is noted the learning time increases as
the number of robots increases in SDPA-MAPPO. For example, the learning time with five
units is 2.6 times longer than that with three units.

Table 1. Number of episodes for learning convergence.

SDPA(3) SDPA(4) SDPA(5) GASIL-MADDPG(3) Deep Dyna-Q(3)

Learning convergence (128 steps) 1200 1500 3200 25,000 40,000

3.3. Result of Formation Change Using SDPA

Figures 14 and 15 show an example of three robots changing their transport formation.
Figure 14 illustrates the formation in simulation with three robots and Figure 15 illustrates
the formation change for four robots [25]. The solid red, blue, yellow, green, and purple
lines represent the trajectories of the robots.

There are four split pictures in Figures 14 and 15. In Figure 14-1, the green, red, and
blue squares show the initial position of robots. All the robots started to move to the target
positions in Figure 14-2 and Figure 14-3. We can see that robot 1 is maneuvering to avoid
the transportation target. Finally, in Figure 14-4, all the robots reached the target positions.
In Figure 15-1, all the robots are in the starting position and start to move from Figure 15-2.
The green and blue robots rapidly moved to the nearest position and reached the target
position in Figure 15-3. For longer trajectories, the yellow and red robots reached the target
position in Figure 15-4. Each robot is finally adjacent to the target, and the formation change
is achieved.



Automation 2024, 5 606

Figure 14. Formation change for three robots using SDPA: The initial positions of the robots are
represented by numbered circles 1 to 3, while their target positions are indicated by the red, blue, and
green squares.

Figure 15. Formation change for four robots using SDPA: The initial positions of the robots are
represented by numbered circles 1 to 4, while their target positions are indicated by the red, blue,
yellow, and green squares.

4. Transfer Learning of SDPA-MPPO in Case of Number Change in Robots
4.1. Existing Transfer Learning

In this section, the existing transfer learning method is summarized. Much of the
existing transfer learning has been developed, including action advising, human-focused



Automation 2024, 5 607

transfer, reward shaping and heuristics, and learning from demonstrations. Additionally,
there are popular inter-agent transfer methods, namely imitation, curriculum learning,
inverse reinforcement learning, transfer in deep reinforcement learning, and scaling learn-
ing to complex problems [15]. These methods were developed in order to accelerate the
learning time.

One of the recognized transfer learning methods is imitation learning. Like a human
who imitates others by observing their behavior, transfer learning in multi-agent also
relies on imitation. This method is as simple as learning from a demonstration or from
an expert and applying it to the agent. In this section, the Deep Dyna-Q and GASIL-
MADDPG method is discussed in comparison to the proposed method in the paper and
the non-transfer learning method.

Before SDPA-MAPPO, one of the popular learning methods for cooperative trans-
portation is Deep Dyna-Q. Deep Dyna-Q is reinforcement learning that uses model-based
learning. The result of the investigation of Deep Dyna-Q is the system has high-speed
learning and excellent performance results. This method was also investigated in actual
experiments. On the other hand, for trajectory learning in a large workspace, the Deep
Dyna-Q method is not fast enough.

The updated research after Deep Dyna-Q is GASIL-MADDPG. Besides using based
learning, the GASIL-MADDPG combines based learning with imitation learning. The
GASIL-MADDPG extracts past successful experiences, and as a result, the learning time
is speeded up. Even though the GASIL-MADDPG has sped up the learning time, the
method still has inflexibility when the number of robots changes. The SDPA-MAPPO
tries to solve the problem of inflexibility when the number of robots changes, which is
the transfer learning method. So, these two methods, as rationality, are representative
comparisons for each kind of method to compare to the SDPA-MAPPO method, which
is the transfer learning method. Regarding fairness, the environmental system is built as
closely as possible for every method. As shown in Figure 16, the results of Deep Dyna-Q
and GASIL-MADDPG were tuned under the same conditions. So that the results are
representative of the effectiveness of each comparison method.

Figure 16. Transition Reward on GASIL-MADDPG vs. non-transfer learning method [26].

GASIL-MADDPG [26] is a method that combines imitation learning and model-based
learning at the same time and then applies them to MADDPG. GASIL stands for Generative
adversarial self-imitation learning, a combination of self-imitation learning and GAIL
(Generative adversarial imitation learning). In self-imitation learning, the method uses past
successful experiences as an expert’s behavioral reference. In GAIL, rewards are calculated
based on the experts’ trajectory.

The transition rewards of GASIL-MADDPG are compared to the non-transfer learning
method, Deep Dyna-Q, in Figure 16. These transition rewards are based on the environment



Automation 2024, 5 608

of three robots in Figure 7. The rewards were calculated based on the reward function.
Compared to the non-transfer learning methods, GASIL-MADDPG had the fastest learning
speed. The GASIL-MADDPG method had a speed learning of about 25,000 episodes.
In comparison, other methods show a speed learning of about 40,000 episodes for Deep
Dyna-Q methods.

For converged rewards, GASIL-MADDPG has achieved –125 rewards, while Deep
Dyna-Q is below –125. A more positive reward indicates better performance for the agent.
A more positive reward indicates better performance of the agent, a closer distance between
the goal and the agents, and fewer collisions.

Under this circumstance, the GASIL-MADDPG as existing learning showed good
performance in the learning speed process. On the other hand, the number change in robots
in applications is unavoidable. When the number of robots changes, the training results
from three robots cannot be transferred as previous successful experiences. Therefore,
alternative methods are required to address this situation.

4.2. Reward Value of Transfer Learning

We show that the proposed SPDA-MAPPO is an algorithm that can flexibly transfer
learning results even if the number of NN inputs changes. First, we will train the NNs
with SPDA-MAPPO using three robots. As mentioned above, transfer learning becomes
difficult with conventional methods because the NN input changes when the number of
robots differs.

By using the input of NNs generated from SPDA-MAPPO, it is possible to easily
transfer the weights of three units. Next, we use SPDA-MAPPO to learn from the weights
of the NNs learned by the three robots and the initial weights of the newly added NNs.
The reward values of four robots are shown in Figure 17, and the reward values of five
robots are shown in Figure 18. From this result, it can be seen that the learning results of
the three machines are transferred.

The comparison of transition rewards between non-transfer learning and transfer
learning for four robots can be seen in Figures 9 and 17. Without transfer learning, the sys-
tem converged in about 2000 episodes, compared with transfer learning, which converged
from fewer than 1000 episodes, specifically in 650 episodes. This comparison showed that
with transfer learning, the learning process time is significantly reduced. This is because
the transfer learning is extracted from the last successful experience as a reference, allowing
transition reward with transfer learning to converge in a speedy process. In the same
case with four robots transfer learning, the five robots transfer learning converged from
850 episodes. The comparison for five robot transition rewards without and with transfer
learning can be seen in Figures 10 and 18.

Figure 17. Transition of reward on transfer learning (4).



Automation 2024, 5 609

Figure 18. Transition of reward on transfer learning (5).

4.3. Evaluation of Transfer Learning

Figures 19 and 20 are the results of transfer learning of the learning results of three
robots to four and five robots, respectively. Based on Figures 19 and 20, transfer learning
reaches the goal faster than without transfer learning. Compared to Figure 12 for four
robots, Figure 19 reached the converged final distance from about 650 episodes. The same
result about speedy convergence for five robots compared to Figures 13 and 20 with transfer
learning, the distance converged from about 850 episodes.

Figure 19. Final distance in four robots based on transfer learning.

Figure 20. Final distance in five robots based on transfer learning.



Automation 2024, 5 610

Table 2 compares the case without and with transfer learning. The learning speed of
conventional reinforcement learning has not been improved by using transfer learning until
now. The reason is that the input vector changes when the number of units changes, and
the weights of the conventional NN cannot be used. By using the proposed SDPA-MAPPO,
the learning time of SDPA can be further reduced by 56.67% compared to the previously
mentioned learning time.

Table 2. Comparison results of transfer learning.

Conventional Learning Transfer Learning

Learning convergence (4 robots) 1500 650
Learning convergence (5 robots) 3200 850

4.4. Result of Formation Change with Transfer Learning

Here is an example of transfer learning using SDPA-MAPPO. Figure 21 shows the
results of training four transport robots using transfer learning from the results of three
transport robots. In Figure 21, the added robot 4 moves to the goal while mainly avoiding
the object to be transported.

Figure 22 shows the results of learning five transport robots using transfer learning
from the results of three robots. From Figure 22, robot 1 and robot 4 move to the goal
while largely avoiding the objects to be transported. Despite the complexity of the problem
of transporting five vehicles, SDPA-MAPPO was shown to learn approximately 20 times
faster than the results in Figure 10.

Figure 21. Formation change of four robots using transfer learning: The initial positions of the robots
are represented by numbered circles 1 to 4, while their target positions are indicated by the red, blue,
yellow, and green squares.



Automation 2024, 5 611

Figure 22. Formation change of five robots using transfer learning: The initial positions of the robots
are represented by numbered circles 1 to 5, while their target positions are indicated by the red, blue,
yellow, green, and purple squares.

5. Conclusions

In this paper, a formation change algorithm is proposed. It allows easy and fast multi-
robot knowledge transfer by using SDPA combined with MAPPO (Multi-Agent Proximal
Policy Optimization), compared to other methods. The proposed algorithm is verified by
simulating the robot formation change. The contribution of this paper is that it not only
achieved fast learning by using the SDPA algorithm but also made it easy to transfer the
learning results from a neural network, which was difficult with reinforcement learning.
The proposed SDPA-MAPPO learned 20.83 times faster than Deep Dyna-Q. Furthermore,
using transfer learning from a three-robot to five-robot case, the method shows that the
learning time can be reduced by about 56.57 percent.

Author Contributions: Conceptualization, N.M.; methodology, N.M., A.B., and K.A.; software, A.B.
and K.A.; validation, N.M., A.B., and K.A.; investigation, N.M., A.B., and K.A.; writing—original
draft preparation, N.M., A.B., and K.A.; writing—review and editing, N.M. and A.B.; visualization,
N.M., A.B., and K.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Restrictions apply to the datasets.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhu, Z.; Lin, K.; Jain, A.K.; Zhou, J. Transfer Learning in Deep Reinforcement Learning: A Survey. IEEE Trans. Pattern Anal. Mach.

Intell. 2023, 45, 133443362. [CrossRef] [PubMed]
2. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
3. Kono, H.; Murata, Y.; Kamimura, A.; Tomita, K.; Suzuki, J.T. Transfer Learning Method Using Ontology for Heterogeneous

Multi-agent Reinforcement Learning. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2014, 5, 156–164. [CrossRef]
4. Brackett, P.; Liu, S.; Liu, Y. C-MAIRL: Semi-Centralized Multi-Agent Imitation Reinforcement Learning. IEEE Access 2023,

11, 579657976. [CrossRef]
5. Didi, S.; Nitschke, G. Multi-Agent Behavior-Based Policy Transfer. In EvoApplications 2016: Applications of Evolutionary Computation;

Springer: Berlin/Heidelberg, Germany, 2016; p. 18197.

http://doi.org/10.1109/TPAMI.2023.3292075
http://www.ncbi.nlm.nih.gov/pubmed/37402188
http://dx.doi.org/10.14569/IJACSA.2014.051022
http://dx.doi.org/10.1109/ACCESS.2023.3282168


Automation 2024, 5 612

6. Omidshafiei, S.; Pazis, J.; Amato, C.; How, J.P.; Vian, J. Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under
Partial Observability. In Proceedings of the ICML7: Proceedings of the 34th International Conference on Machine Learning,
Sydney, Australia, 6–11 August 2017.

7. Bai, C.; Yan, P.; Pan, W.; Guo, J. Learning-Based Multi-Robot Formation Control With Obstacle Avoidance. IEEE Trans. Intell.
Transp. Syst. 2022, 23, 11811–11822. [CrossRef]

8. NEC. NEC Develops Autonomous Mobile Robot Control Technology That Doubles Efficiency While Maintaining Safety. Available
online: https://www.nec.com/en/press/202201/global_20220127_01.html (accessed on 9 December 2023).

9. Miyazaki, K.; Matsunaga, N.; Murata, K. Formation path learning for cooperative transportation of multiple robots using
MADDPG. In Proceedings of the 21st International Conference on Control, Automation and Systems, Jeju, Republic of Korea,
12–15 October 2021.

10. Budiyanto, A.; Matsunaga, N. Deep Dyna-Q for Rapid Learning and Improved Formation Achievement in Cooperative Trans-
portation. Automation 2023, 4, 210–231. [CrossRef]

11. Hao, X.; Wang, W.; Hao, J.; Yang, Y. Independent Generative Adversarial Self-Imitation Learning in Cooperative Multiagent
Systems. In Proceeding of the 18th International Conference on Autonomous Agents and Multiagent Systems, Montreal, QC,
Canada, 13–17 May 2019.

12. Yang, T.; Wang, W.; Tang, H.; Hao, J.; Meng, Z.; Mao, H.; Li, D.; Liu, W.; Chen, Y.; Hu, Y.; et al. An Efficient Transfer Learning
Framework for Multiagent Reinforcement Learning. In Proceedings of the 35th Conference on Neural Information Processing
Systems, New York, NY, USA, 6–14 December 2021.

13. Liu, Y.; Hu, Y.; Gao, Y.; Chen, Y.; Fan, C. Value Function Transfer for Deep Multi-Agent Reinforcement Learning Based on N-Step
Returns. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China,
10–16 August 2019; p. 45763.

14. Chu, T.; Chinchali, S.; Katti, S. Multi-Agent Reinforcement Learning for Networked System Control. In Proceedings of the ICLR
2020, Addis Ababa, Ethiopia, 26–30 April 2020. .

15. Leno, F.; Silva, D.; Costa, A.H.R. A Survey on Transfer Learning for Multiagent Reinforcement Learning Systems. J. Artif. Intell.
Res. 2019, 64, 645–703.

16. Ho, J.; Ermon, S. Generative Adversarial Imitation Learning. In Proceedings of the 30th Conference on Neural Information
Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; p. 19.

17. Torabi, F.; Warnell, G.; Stone, P. Behavioral Cloning from Observation. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018.

18. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In
Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

19. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.; Abbeel, P. Trust Region Policy Optimization. In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 6–11 July 2015.

20. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithm. arXiv 2017,
arXiv:1707.06347.

21. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13
December 2014; Volume 2.

22. Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.; Wu, Y. The Surprising Effectiveness of PPO in Cooperative Multi-Agent
Games. In Proceedings of the 36th Conference on Neural Information Processing Systems Track on Datasets and Benchmarks,
Virtual, 28 November 2022.

23. Agarwal, A.; Kumar, S.; Sycara, K.; Lewis, M. Learning Transferable Cooperative Behavior in Multi-Agent Teams. In Proceedings
of the 19th International Conference on Autonomous Agents and MultiAgent Systems, Auckland, New Zealand, 9–13 May 2020.

24. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long
Beach, CA, USA, 4–9 December 2017.

25. Azetsu, K.; Budiyanto, A.; Matsunaga, N. Fast Transfer Learning using Scaled Dot Product Attention for Formation Change of
Transport Robots. In Proceedings of the 2024 63rd Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE), Kochi, Japan, 27–30 August 2024.

26. Azetsu, K.; Budiyanto, A.; Matsunaga, N. Fast Learning for Multi-Agent with Combination of Imitation Learning and Model-
Based Learning for Formation Change of Transport Robots. In Proceedings of the International Joint Conference on Neural
Networks, Yokohama, Japan, 30 June–5 July 2024.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TITS.2021.3107336
https://www.nec.com/en/press/202201/global_20220127_01.html
http://dx.doi.org/10.3390/automation4030013

	Introduction
	Formation Change Using SDPA with Transfer Learning
	SDPA-MAPPO Algorithm
	SDPA Algorithm

	Learning Speed of SDPA
	Transition in Reward Value During Learning
	Evaluation of Learning
	Result of Formation Change Using SDPA

	Transfer Learning of SDPA-MPPO in Case of Number Change in Robots
	Existing Transfer Learning
	Reward Value of Transfer Learning
	Evaluation of Transfer Learning
	Result of Formation Change with Transfer Learning

	Conclusions
	References

