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Abstract: Electric Vehicles (EVs) are set to play a crucial role in the energy transition. Although
EVs offer significant environmental benefits, their technology still faces major challenges related
to performance optimization, energy efficiency improvement, and cost reduction. A key point to
address these challenges is the accurate identification of the speed/torque operating points of the
drive systems. However, this identification is generally achieved using mechanical sensors, which are
fragile, bulky, and expensive. This paper aims to develop, implement, and validate a speed/torque
observer in real time based on the Extended Kalman Filter (EKF) approach for an EV equipped with
an Open-End Winding Induction Motor with Dual Inverter (OEWIM-DI). The implementation of
the EKF is based on the state modeling of the OEWIM-DI, enabling the observation of the torque
and speed using voltage and current measurements. The validation of this approach is conducted
experimentally on the FPGA and DS1104 boards. The results show that this approach offers excellent
performance in terms of accuracy, stability, and real-time response speed. These results suggest
that the proposed method could significantly contribute to the advancement of EV technology
by providing a more robust and cost-effective alternative to traditional mechanical sensors while
improving the overall efficiency and performance of EV drive systems.

Keywords: electric vehicle; open-end winding induction motor; dual inverter; extended Kalman
filter; speed/torque observer; FPGA; DS1104

1. Introduction

Today, global industry is in the midst of an energy transition, driven by the need
to reduce greenhouse gas emissions and combat climate change [1]. At the heart of this
transition, Electric Vehicles (EVs) are emerging as the solution of the future, marking a major
turning point in the transportation sector [2,3]. This rapid turnaround is encouraged by
advances in EV technology and favorable government policies worldwide [4,5]. However,
the development of EVs faces several challenges hindering their widespread adoption, such
as optimizing performance, enhancing energy efficiency, and reducing both production
and operating costs [6]. A crucial factor in overcoming these challenges is the accurate and
real-time identification of EV speed/torque operating points [7].

Traditionally, speed and torque are measured directly using mechanical sensors [8–10].
However, the use of mechanical sensors has major drawbacks due to their complex installa-
tion as well as their fragility, size, and high cost [11,12]. This has a negative impact on the
reliability, efficiency, and overall cost of EVs [13–16]. Given these constraints, numerous
recent studies have focused on developing torque and speed observers, including the
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Luenberger state observer [17], the sliding mode observer [18], and the Extended Kalman
Filter (EKF) [19–22]. The EKF has proven to be a particularly promising observer for non-
linear systems. As an extension of the classical Kalman filter, originally designed for linear
systems, the EKF adapts to nonlinear systems by linearizing the state transition and obser-
vation models around the current state estimate [23]. Furthermore, it improves observation
accuracy by combining system measurements with its mathematical model [24,25]. For in-
stance, studies such as [26,27] focused on methods aimed at reducing periodic disturbances
and attenuating velocity ripple. These disturbances can induce oscillations in speed and
torque, adversely affecting the drive’s performance and efficiency.

By addressing these issues, EKF-based methods enhance the precision of real-time
control in systems where maintaining consistent torque and speed is critical, particularly in
EV applications. Several studies, including [28–31], have demonstrated the EKF’s capability
to adaptively adjust torque and speed observations, even under disturbances and dynamic
operating conditions. This adaptability is particularly beneficial in EVs, where conditions
such as load, road gradient, and speed can change unpredictably [32]. The EKF’s robustness
in these dynamic conditions ensures smoother performance, reduces mechanical stress,
and improves energy efficiency.

Speed estimation using an EKF is performed in two ways: under the infinite inertia
assumption and with the aid of the equation of motion. The first approach assumes that
the mechanical states change much more slowly than the electrical states, allowing for the
assumption of constant speed during sampling intervals [24,28,29]. However, this method
ignores the dynamics of the mechanical system, which can lead to degraded estimation
performance at low speeds. To address this limitation, the second approach incorporates the
equation of motion, which requires load torque information [19,20,22,23,31,32]. However,
this information can be costly to measure and is often unavailable in many applications.
Therefore, load torque is included as a joint state in the state vector, enabling it to be
estimated alongside the other states. This method also enables the estimation of the viscous
friction term as part of the load torque estimation. Consequently, the second approach
improves speed estimation performance over a wide speed range and provides insights
into the load within the system under control.

Another crucial aspect in the development of EVs is the energy conversion system.
Induction motors have been widely adopted in EVs due to their numerous advantages,
including simplicity of construction, reliability, robustness, low cost, and minimal main-
tenance requirements [33,34]. Their ability to provide a fast torque response and high
efficiency in variable speed drives makes them especially well suited for EVs [35]. Sev-
eral configurations exist for integrating power electronics into induction motors, and a
particularly effective structure is presented in [36–39]. The innovative design involves
opening up the neutral point of the stator windings, deviating from the conventional
star/delta configuration. This approach allows each end of the windings to be supplied by
an inverter with an independent or common DC source, creating a dual-inverter configura-
tion. This configuration is known as an Open-End Winding Induction Motor with Dual
Inverter (OEWIM-DI). The OEWIM-DI structure has received considerable attention for
EVs. The unique features of this design offer multiple advantages in terms of power man-
agement, control flexibility [40], and fault tolerance [41,42]. Consequently, the OEWIM-DI
configuration presents itself as a promising solution for EVs [7].

This paper focuses on the development, implementation, and real-time validation of
an EKF-based speed and torque observer for an OEWIM-DI-driven EV. The originality of
the proposed approach lies in the use of the EKF based on accurate state modeling of the
OEWIM-DI. This method enables the estimation of EV torque and speed using only voltage
and current measurements, thereby eliminating the need for additional mechanical sensors.
To highlight the originality of the proposed approach, Table 1 presents a comparative litera-
ture review showcasing notable advancements in the identification of EV speed/torque
operating points. The use of the EKF, which is the main focus of this paper, follows on from
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this work, seeking to improve the accuracy and robustness of the real-time observation of
speed/torque operating points. The contributions of this research are as follows:

- The development of an accurate state model of the OEWIM-DI;
- The design of an EKF for real-time speed and torque observation;
- The experimental implementation and validation of the observer on the FPGA and

DS1104 boards.

Table 1. A literature review on the identification of speed/torque operating points.

Refs. Application
to EV

Motor
Type

Mechanical
Sensor

Real-Time
Validation Method Used

Evaluation Criteria

Cost Volume/Size Complexity

[43] No PMSM Without Yes
Extended

Kalman Filter
Observer

Medium Medium Medium

[44] No PMSM Without Yes Sliding Model
Observer Medium Medium High

[45] No IM With Yes Encoder
Measurement Medium Medium Medium

[46] Yes PM With Yes Dynamometer
Measurement High Medium Medium

[47] Yes IM With Yes Dynamometer
Measurement High High Medium

[48] Yes IM With No Calculate
Simulation Medium Medium Medium

[49] Yes PMSM Without Yes
Recursive

Least Square
Estimator

Low Low Medium

[50] Yes DSIM With No Calculate
Simulation High High Medium

[51] No IM Without Yes
Extended

Kalman Filter
Observer

Low Low Medium

[52] Yes SynRM With Yes Encoder
Measurement High High Medium

Our work EV New
power train OEWIM Without Yes

Extended
Kalman filter

Observer
Low Low Medium

The remainder of this paper is organized as follows: Section 2 introduces the EV
system under study and presents the models of the system components. Section 3 details
the methodology and design of the EKF. Section 4 presents the experimental setup and
the tests carried out, followed by an in-depth discussion of the results. Finally, Section 5
concludes the paper with a summary of the key contributions and recommendations for
future research directions.

2. The Modeling of the EV System Driven by an OEWIM-DI

This section first describes the forces exerted on the EV, followed by the power chain
model. Finally, the mathematical model of an OEWIM in the stationary reference frame
is presented.

2.1. A Model of the Forces Exerted on an EV

The modeling of EVs can be complex due to the nature of the system, which presents
numerous interactions and dynamics that are difficult to characterize [15,53]. In this paper,
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only the forces exerted on the EV are modeled, as illustrated in Figure 1, and the equations
of the motion of the EV are presented in Table 2.
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Figure 1. Elementary forces acting on a vehicle.

Table 2. EV equations of motion.

Quantity Equation

Rolling resistance Frr = Krmg (1)
Acceleration force Fa = ma + Jm

G2

ηG RW 2 a (2)
Slope force Fhc = ±mgsin α (3)
Aerodynamic resistance Fad = 1

2 AV2ρCd (4)
Mechanical equation for each
drive wheel Te = JT

dWm
dt + K f Wm + TL (5)

Load torque TL = RwFte (6)
Driving torque Te =

TL
G = Rw Fte

G (7)
Total traction force Fte = Frr + Fa + Fhc + Fad (8)

2.2. Power Chain Model

Static converters play an essential role in the electrical architecture of EVs. These power
electronic devices ensure the efficient management and conversion of energy between the
battery and the electric motor. Figure 2 illustrates the powertrain topology of the EV
considered in this paper.
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The OEWIM and converter topology studied are illustrated in Figure 3. In this config-
uration, the OEWIM is fed by two dual-level inverters (indices i and j), with the converters
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connected in parallel to a common DC voltage source. This configuration prevents over-
loads without the need for additional equipment [36,54].
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This configuration offers several advantages over conventional EV topologies. Firstly,
this configuration allows for better power distribution between the two inverters, reducing
stress on each component and improving the overall system’s reliability [55]. Secondly, it
offers greater flexibility in motor control, enabling finer optimization of performance and
energy efficiency [56]. In addition, this topology can potentially reduce harmonics and
electromagnetic noise, thus improving driving comfort [40]. The other advantage of this
configuration is that if one of the inverters is faulty, the system will remain in operation but
at a reduced power [57].

Figure 1 shows the possible voltage distribution vectors of inverters i and j feeding
the first stator winding, consisting of six active vectors and two zero vectors depending on
the inverter’s switching state. Combining the two inverters gives a total (23 × 23 = 64) and
possible switching states (23 = 8 states for each inverter) [58].

In the configuration studied, the stator windings of the three motor phases are equally
out of phase by a phase angle of ϑ = 120◦. These windings are supplied on both sides by
the two dual-level inverters. This design eliminates the appearance of a homopolar current
due to the connection path between the two inverters. The elimination of the zero sequence
voltage plays a crucial role in suppressing this unwanted current [59,60].

This approach makes it possible to accurately analyze and quantify the phase voltages
generated by the two inverters in the OEWIM system. By applying the electric circuit theory,
it is possible to understand how the voltages are distributed in the various stator windings,
thus providing a solid basis for the study and optimization of EV performance [61,62].

The phase voltages across each stator winding can be obtained according to Figure 3
as follows: 

vsa = vaiN − vajN
vsb = vbiN − vbjN
vsc = vciN − vcjN

(9)

with 
vaiN = Vmcos(ωt)
vbiN = Vmcos(ωt − 120◦)
vbiN = Vmcos(ωt + 120◦)

(10)


vajN = Vmcos(ωt + ϑ)
vbjN = Vmcos(ωt − 120◦ + ϑ)
vbjN = Vmcos(ωt + 120◦ + ϑ)

(11)
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2.3. A Mathematical Model of an OEWIM

The choice of induction machine model is aligned with the objectives and operating
conditions of the studied system. Figure 4 shows a diagram of the equivalent circuit of the
OEWIM transient dynamic model used in this paper [63].
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The dynamic behavior of the OEWIM can be represented mathematically by the
following series of differential equations [64]:

Electrical equations for stator and rotor:{
vs = Rsis +

d
dt ϕs

vr = 0 = Rrir + d
dt ϕr − j(pΩ)ϕr

(12)

Stator and rotor flux equations: {
ϕs = Lsis + Lmir
ϕr = Lrir + Lmis

(13)

Using the stationary reference frame (α, β), (12) and (13) can be rewritten as (14) and
(15), respectively: 

vsα = Rsisα +
d
dt ϕsα

vsβ = Rsisβ +
d
dt ϕsβ

vrα = 0 = Rrirα +
d
dt ϕrα − pΩϕr β

vr β = 0 = Rrirβ +
d
dt ϕrβ + pΩϕrα

(14)


ϕsα = Lsisα + Lmirα

ϕsβ = Lsisβ + Lmirβ

ϕrα = Lrirα + Lmisα

ϕrβ = Lrir β + Lmisβ

(15)

The mechanical equations are given by

J
dΩ
dt

= Tem − TL − fcΩ (16)

Tem =
3
2

p
(
ϕsαisβ − ϕsβisα

)
(17)

where vr and vs represent the rotor and stator voltages, respectively; ir and is denote
the components of rotor and stator current, respectively; ϕr and ϕs represent the flux
components of the rotor and stator; Rr and Rs are the resistance of the rotor and stator; and
Lr and Ls denote the rotor and stator inductances. Lm represents the mutual inductance,
p denotes the number of pole pairs, and J stands for the inertia. The friction coefficient
is denoted by fc, and Ω represents the mechanical speed. The electromagnetic and load
torques are denoted as Tem and TL, respectively.
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Thus, the state-space model of the machine is given as follows:

..
isα..
isβ.
ϕrα.
ϕrβ.
Ω


=


K1 0 K2 K3ωr 0
0 K1 −K3 K2 0

K4 0 K5 −ωr 0
0 K4 ωr K5 0

−K6ϕrβ K6ϕrα 0 0 K7




isα

isβ

ϕrα

ϕrβ

Ω

+


K8 0
0 K8
0 0
0 0
0 0


[

vsα

vsβ

]
−


0
0
0
0

K9

TL (18)

where K1 = − 1
σLs

(Rs +
L2

m
Tr Lr

), K2 = 1
σLs

( Lm
LrTr

), K3 = 1
σLs

(
Lm
Lr

)
, K4 = Lm

Tr
, K5 = − 1

Tr
,

K6 = 3
2

p
J

Lm
Lr

, K7 = − fc
J , K8 = 1

σLs
, K9 = 1

J , ωr = pΩ, and Tr =
Rr
Lr

.
The next section focuses on designing an EKF-based speed/torque observer utilizing

an extended version of the model in (18).

3. Design of EKF-Based Speed/Torque Observer

The EKF is a mathematical tool that uses measurable physical quantities to estimate
the system parameters, without the need for sensors, or when these parameters are not
directly measurable. The EKF is adapted to stochastic systems, using system noise and the
statistical characteristics of measurement noise to create a system with multiple inputs and
outputs [30].

For the EKF implementation, the nonlinear equations of state can be represented by{ .
xk = f(xk, uk) + wk

yk = h(xk) + vk
(19)

where
xk is the state vector.
uk is the input vector.
yk is the measurement vector.
wk and vk are the process and measurement noise, respectively, assumed to be Gaus-

sian and zero-mean.
The simplified EFK is based on the linearization of the system around the estimated

current state. This approach allows nonlinearities to be handled iteratively by updating
the state and covariance estimates at each time step. The fundamental concept of EKF is
described by the flowchart in Figure 5.Automation 2024, 5 620 
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The basic steps illustrated in Figure 5 are summarized as follows [23,51,65,66]:

a. Initialization

Define x̂(0|0): the initial estimate of state;
Define P (0|0): the initial error covariance matrix;
Define Qk: the covariance matrix of process noise;
Define R: the measurement noise covariance matrix.
The covariance matrices Qk and R are empirically tuned to balance the response speed

and stability of the observer.

Qk = diag
([

1e−21e−21e−21e−21e−21e−1
])

(20)

R = diag
([

1e−21e−2
])

(21)

b. Prediction

The prediction step consists of estimating the state and covariance at time k + 1 using
the system model.

Linearization:
To apply the EKF, the nonlinear functions f and h are linearized using a Taylor series

expansion around the estimated state x̂k.
The Jacobian matrix of the state transition function is

Fk =
d f
dx

|x̂k ,uk (22)

The Jacobian matrix of the observation function is

Hk =
dh
dx

|x̂k (23)

State prediction is carried out as follows:

x̂k+1|k = f (x̂k, uk) (24)

Covariance prediction is carried out as follows:

Pk+1|k = FkPkFk
T + Qk (25)

c. Update or Correction:

The update step adjusts the state estimate using the new measurements.
The Kalman gain is as follows:

Kk+1 = Pk+1|k Hk+1
T
(

Hk+1Pk+1|k Hk+1
T+Rk+1

)−1
(26)

The status update is carried out as follows:

x̂k+1|k+1 = x̂k+1|k + Kk+1[y k+1 − h
(

x̂k+1|k

)
] (27)

The covariance update is carried out as follows:

Pk+1|k+1 =
[

I − Kk+1Hk+1]Pk+1|k (28)

where I is the identity matrix.
In our study, the EKF is used to observe the speed and torque of the EV. It relies solely

on the measurements of stator currents and voltages while leveraging a nonlinear state
model of the OEWIM. The EKF operates in two main stages: prediction and update.
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- Prediction: At each instant k, the EKF uses the nonlinear model of the OEWIM to
estimate the future states of the system, including speed and torque. This estimation is
based on previously calculated states, system inputs (applied voltages), and a dynamic
model of the motor.

- Update: Once new measurements of the stator currents and voltages are available,
the EKF compares them to the values predicted using the model. This comparison
determines a correction based on the difference between actual observations and
initial estimates. The filter then adjusts its estimates to align with the real data, thereby
improving the accuracy of the observed states.

A crucial aspect of the EKF is its ability to handle uncertainties inherent in measure-
ments and models. For the OEWIM, process noise wk (related to motor modeling) and
measurement noise vk (from current and voltage sensors) are incorporated into the estima-
tion process. By accounting for these uncertainties, the EKF provides more robust estimates,
even in the presence of disturbances or rapid changes in the motor’s operating conditions.

The general formulation of the discretized model used by the EKF to represent the
dynamics of the OEWIM can be expressed as follows (Figure 6) [24]:{

x̂k+1 = Ad x̂k + Bduk + wk
yk+1 = Hx̂k + wk

(29)

x̂k =
[
îsα,k, îsβ,k, ϕ̂rα,k, ϕ̂rβ,k, ω̂r,k, T̂L,k

]T
and uk =

[
usα,k usβ,k

]

Ad =



1 − K1T 0 K2T K3Tωr,k 0 0
0 1 − K1T −K3T K2T 0 0

K4T 0 1 − K5T −Tωr,k 0 0
0 K4T Tωr,k 1 − K5T 0 0

−K6Tϕrβ,k K6Tϕrα,k 0 0 1 − K7T K9T
0 0 0 0 0 1

; Bd =


K8T 0

0 K8T
0 0
0 0
0 0

; H =



1 0
0 1
0 0
0 0
0 0
0 0



T

.

where T is the sampling time.
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connected to the grid via an autotransformer and a rectifier. The variable load of the OE-
WIM is obtained by adjusting the resistance of the DC generator. Appropriate current and 
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Figure 6. The structure of the EKF observer.

The next section first introduces the experimental setup used in real-time validation.
Various tests were carried out on this test rig in order to demonstrate the effectiveness
of the proposed EKF-based speed/torque observer for an EV application driven by an
OEWIM-DI.
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4. Real-Time Validation Results and Interpretation

The experimental test bench (Figure 7) used in this paper consists of a 1.5 kW OEWIM,
driven by two inverters connected to a common DC bus source. This DC bus is connected to
the grid via an autotransformer and a rectifier. The variable load of the OEWIM is obtained
by adjusting the resistance of the DC generator. Appropriate current and speed sensors
provide the necessary information to the controller, while the EV torque is calculated using
the equations presented in Table 2.
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To further assess the robustness and performance of the EKF-based speed/torque
observer for the OEWIM applied to EVs, a series of tests were carried out, such as variations
in speed/torque operating points. The aim of these tests was to assess the system’s ability to
accurately track and adapt to changes in speed and torque under various dynamic driving
patterns similar to those encountered in real life, as illustrated in Figure 8.
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Real-time validation was carried out on an experimental setup developed by the
authors. This experimental setup included a DS1104 and FPGA boards and an OEWIM-DI.
The FPGA board was used to implement the EV model (Appendix A) and OEWIM-DI
controls, while the DS1104 board was used to implement the EKF observer.
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4.1. Test 1: Flat Terrain

In the first test, it was assumed that the EV was driving on a flat road. The speed profile
applied consisted of the following phases: a 2 s stop phase, followed by an acceleration
phase to 100 km/h, a 4 s stabilization phase, and, finally, a deceleration phase to 0 km/h,
followed by another 2 s stability and stop phase. For the reverse speed, we started with the
stop phase, followed by an acceleration phase to 100 km/h in 2 s, and then a stabilization
phase of 4 s, followed by deceleration to 0 km/h in 2 s. The results obtained in the first test
are illustrated in Figure 9. According to the results obtained in the first trial, we observed a
very good match between the measured and observed quantities.
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4.2. Test 2: Inclined Terrain

In the second test, it was assumed that the EV was driving on a 10% slope. The same
speed profile as that in the first test was applied (without introducing the reverse direction
in this test). In this context, the EV can either go up or down this slope. The results of this
test are shown in Figures 10 and 11. These results show a very good match between the
measured and observed quantities whether the EV was ascending or descending.
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The analysis of a turn focuses on two key points: the entry, where speed is the most 
critical, and the apex, which represents the ideal trajectory for efficiently navigating the 
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The torques experienced by the EV during this test are shown in Figure 13a,b. It can 
be observed that the aerodynamic torque mirrors the vehicle’s speed. 

The primary goal of this test is to evaluate the vehicle’s response and the stability of 
its traction system when subjected to significant lateral forces. This scenario highlights the 
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ness of the electric motor management system in the face of rapid changes in driving con-
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Figure 11. The couple’s rethinking during the second trial: (a) ascending; (b) descending.

4.3. Test 3: Turning Behavior

This test allowed us to observe the behavior of the EV when making right and left
turns at a constant vehicle speed (100 km/h).

At time t = 4 s, the EV begins the right turn at 100 km/h. In this scenario, the drive
wheels travel different paths and rotate at different speeds, even though they are turning in
the same direction. The inside drive wheel rotates at a lower speed, while the outside drive
wheel rotates at a higher speed. The speeds are illustrated in Figure 12a,b. The electric
differential adjusts the reference speed for each drive wheel, decreasing the speed for the
right-drive wheel on the inside of the turn and increasing the speed for the left-drive wheel
on the outside of the turn.
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form, respectively. The experimental results obtained from the developed test platform 
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operating points, even under dynamically changing conditions. This real-time accuracy 
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based methods to adjust the EKF’s covariance matrix could dynamically improve the 
accuracy, particularly under variable conditions. 
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− Continuous Parameter Refinement: Machine learning techniques can be utilized to 
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Figure 12. Speed response during test 3: (a) right turn; (b) left turn.

The analysis of a turn focuses on two key points: the entry, where speed is the
most critical, and the apex, which represents the ideal trajectory for efficiently navigating
the turn.

The torques experienced by the EV during this test are shown in Figure 13a,b. It can
be observed that the aerodynamic torque mirrors the vehicle’s speed.
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Figure 13. Torque response during test 3: (a) right turn; (b) left turn.

The primary goal of this test is to evaluate the vehicle’s response and the stability of
its traction system when subjected to significant lateral forces. This scenario highlights the
challenges of maintaining tire grip and managing centrifugal forces. The data collected will
help analyze the effectiveness of the torque and speed observer, as well as the robustness of
the electric motor management system in the face of rapid changes in driving conditions.

5. Conclusions

In this paper, a novel approach based on a real-time EKF observer was proposed
for the accurate identification of the speed/torque operating points of an EV traction
system equipped with an OEWIM-DI. To implement the proposed method in real time,
the EKF observer and EV model were deployed on a DS1104 controller board and an
FPGA platform, respectively. The experimental results obtained from the developed
test platform demonstrate that the observer reliably tracks speed and torque across a
wide range of operating points, even under dynamically changing conditions. This real-
time accuracy confirms that the proposed EKF observer effectively addresses a critical
requirement for enhancing EV performance and efficiency, making it a valuable tool for
improving EV control.

Several directions for future research have emerged from this study:

- Adaptive Covariance Adjustment: Incorporating adaptive artificial intelligence-based
methods to adjust the EKF’s covariance matrix could dynamically improve the accu-
racy, particularly under variable conditions.

- Comparative Studies: Conducting a comparative study with EV systems that apply a
constant voltage–torque relationship will help evaluate the performance benefits and
limitations of the EKF-based approach relative to conventional methods.

- Continuous Parameter Refinement: Machine learning techniques can be utilized to
refine the EKF observer’s parameters in real time, potentially incorporating adaptive
and heuristic algorithms for optimization.

- Integration of Advanced Energy Management: Integrating the EKF observer with
advanced energy management systems could further enhance the overall vehicle
efficiency by optimizing power distribution and reducing energy loss in real-world
driving conditions.

Overall, this work highlights the potential of EKF observers in enhancing EV per-
formance and opens new avenues for future innovations in adaptive control and energy
management within electric vehicle systems.
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Nomenclature

Fte Traction force (Newtons)
Frr Rolling resistance force (Newton)
Fa Acceleration force (Newton)
Fhc Hill climbing resistance (Newton)
Fad Aerodynamic drag force (Newton)
m Vehicle mass (Kg)
g Acceleration of gravity (N/m)
a Vehicle acceleration (m/s2)
Jm Wheel inertia moment ( Kg.m2

)
ηG Gear efficiency (% )
RW Wheel radius (m)
ρ Air density ( Kg.m3

)
Kr Tire rolling resistance coefficient
G Gear ratio
Cd Drag coefficient
vS,vr Various stator/rotor voltages (V)
is,ir Various stator/rotor currents (A)
ϕs,ϕr Various stator/rotor flux (Wb)
Rs,Rr Various stator/rotor resistors (Ohm)
Ls,Lr Various stator/rotor inductances (H)
Lm Mutual inductance (H)
σ Total leakage coefficient
J Inertia ( Kg.m2

)
p Number of pole pairs
fc Friction coefficient ( N.m.s.rad−1

)
Ω Mechanical speed (Rad.s−1)
Tem,TL Electromagnetic and load torques (N.m)
EV Electric vehicle
OEWIM Open-end winding induction motor
PMSM Permanent magnet synchronous motor
PM Permanent magnet
DSIM Dual-star induction machine
SynRM Synchronous reluctance motor
IM Induction motor
DC Direct current
EKF Extended Kalman filter
DI Dual inverter
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Appendix A

The parameters of the EV used for real-time implementation.

Vehicle Parameters

Specification Parameters

m 150 Kg

g 9.81 m/s2

RW 0.23 m

ρ 0.23 Kg/m2

G 5

Cd 0.25

A 1 m

µ 0.015

fc 0.00138 N.m.s.rad−1
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