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Abstract: This study presents an automated control system for wastewater treatment,
developed using machine learning (ML) models integrated into a Supervisory Control and
Data Acquisition (SCADA) framework. The experimental setup focused on a laboratory-
scale Aerobic Granular Sludge (AGS) reactor, which utilized synthetic wastewater to model
real-world conditions. The machine learning models, specifically N-BEATS and Temporal
Fusion Transformers (TFTs), were trained to predict Biological Oxygen Demand (BOD5)
values using historical data and real-time influent contaminant concentrations obtained
from online sensors. This predictive approach proved essential due to the absence of direct
online BOD5 measurements and an inconsistent relationship between BOD5 and Chemical
Oxygen Demand (COD), with a correlation of approximately 0.4. Evaluation results showed
that the N-BEATS model demonstrated the highest accuracy, achieving a Mean Absolute
Error (MAE) of 0.988 and an R2 of 0.901. The integration of the N-BEATS model into the
SCADA system enabled precise, real-time adjustments to reactor parameters, including
sludge dose and aeration intensity, leading to significant improvements in granulation
stability. The system effectively reduced the standard deviation of organic load fluctuations
by 2.6 times, from 0.024 to 0.006, thereby stabilizing the granulation process within the
AGS reactor. Residual analysis suggested a minor bias, likely due to the limited number of
features in the model, indicating potential improvements through additional data inputs.
This research demonstrates the value of machine learning-driven predictive control for
wastewater treatment, offering a resilient solution for dynamic environments. By facilitating
proactive management, this approach supports the scalability of wastewater treatment
technologies while enhancing treatment efficiency and operational sustainability.

Keywords: machine learning; SCADA systems; wastewater treatment; automated control;
sustainability; predictive analytics; environmental impact

1. Introduction
The integration of machine learning (ML) into SCADA systems for wastewater treat-

ment represents a notable advancement in environmental engineering and industrial
automation. SCADA systems play a critical role in managing complex processes, and ML
algorithms further enhance operational efficiency, predictive maintenance, and decision-
making in real-time. This development is especially significant as industries face increased
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pressure to manage wastewater under tightening environmental regulations [1,2]. Tech-
niques such as Artificial Neural Networks (ANNs), Random Forest (RF), and Support
Vector Machines (SVMs) have proven effective in optimizing energy consumption, chemi-
cal dosing, and compliance with environmental standards [3,4]. These advanced methods
offer adaptability and efficiency, addressing the unique challenges of complex treatment
systems [5]. However, the integration of ML brings challenges in terms of data quality,
cybersecurity, and system complexity, which can affect commissioning and operations [1,6].

Cloud-based infrastructures are considered key for enabling remote monitoring, re-
ducing lifecycle costs, and enhancing scalability [2]. In this rapidly evolving sector, research
and practical case studies are critical for developing best practices in data integration
and system maintenance for wastewater treatment [7,8]. Intelligent automation fosters
sustainable water resource management, aligning with environmental objectives [7,8]. The
integration of machine learning (ML) and SCADA systems into wastewater treatment
represents the industry’s response to contemporary environmental challenges, offering
improved efficiency, reliability, and sustainability [9,10].

The primary objective of treatment facilities is to minimize the discharge of pollutants,
such as nitrogen and phosphorus, which contribute to eutrophication. Stricter regulations
and the pursuit of sustainability are driving the adoption of new technologies, including
membrane filtration, activated sludge, biofilm-based treatments, and innovative biological
processes such as Anammox [11–13]. Treatment plants are increasingly viewed not only
as purification stations but also as sources of secondary resources (e.g., biomass, energy),
contributing to closed-loop production systems. Effective monitoring and control are essential
for the economic viability of advanced treatment methods. Both large-scale facilities (e.g., the
Kuryanovo treatment plant in Moscow with a capacity of 3,000,000 m3/day) and decentralized
systems (10–1000 m3/day) benefit from enhanced software and hardware capabilities. An
optimal balance between complexity and reliability is achieved through a combination of
traditional and innovative approaches; ML and big data analytics are becoming indispensable
elements of automation [2]. When automating, it is crucial to consider the composition of
wastewater. In Russia, wastewater is categorized as surface, industrial, domestic, or mixed
(urban). Urban facilities primarily handle mixed flows (domestic and pre-treated industrial),
whereas surface and untreated industrial waters are treated separately.

This study focuses on treatment facilities for domestic and similar urban wastewaters.
The core technology is bioreactors, where microbial communities consume pollutants under
controlled conditions, producing treated effluent, excess biomass (for processing), and
gasses (CO2, nitrogen). SCADA systems act as intermediaries between remote devices and
visualization and control centers [1,6], encompassing data collection, processing, network
connectivity, and commissioning [11]. A critical issue is the reliance on local control units,
which are functionally and connectivity-limited. In the event of internet outages, these
units revert to simplified operational logic [1].

To improve reliability and scalability, the proposed architecture applies control algorithms
and logic in the cloud. This enables updates to control functions without on-site interven-
tions, reducing lifecycle costs by simplifying local programmable logic controllers (PLCs) [2].
The cloud-based approach facilitates functionality adjustments and remote commissioning,
decreasing the need for expert personnel on site and reducing capital expenditures [1]. In-
creasing wastewater volumes necessitate precise measurement and control [2]. Integrating
ML into SCADA enhances adaptability and the intelligence of automation [5]. The choice of
ML models—such as ANN, RF, SVM, or KNN—depends on process requirements and data
quality. Since 2018, ML applications have expanded significantly.

ML decreases the need for manual intervention and increases operational efficiency,
allowing operators to focus on critical tasks. Real-time analytics improve monitoring,
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especially for complex systems [6]. Predictive maintenance can anticipate equipment
failures, reducing downtime and maintenance costs [9]. Real-time ML analytics detect
anomalies and critical events, facilitating timely decision-making [3,9]. However, effective
ML integration into SCADA requires addressing data quality, cybersecurity, and system
compatibility issues, as well as collaboration among domain experts, data scientists, and
system integrators [3,6,9]. As ML in SCADA systems becomes more autonomous, effec-
tive human–machine interaction and operator training are essential [6,9]. The six-step
methodology proposed for SCADA component analysis emphasizes outcomes rather than
procedural details. The cloud-based architecture integrates control logic with analytics,
correlating various data sources (e.g., meteorological data) to enhance efficiency, including
proactive responses to weather changes [1].

In the event of lost cloud connectivity, local control logic maintains essential operations
to ensure uninterrupted service. This lifecycle-oriented approach incorporates ML algo-
rithms for preventive maintenance and data-driven insights, supporting both immediate
improvements and future system evolution in line with technological advancements [1].
Case studies confirm ML’s effectiveness: one facility optimized chemical dosing, reduced
aeration costs, and maintained compliance [4]; another shifted from flow-paced chemical
dosing to ML-based precise dosing, significantly cutting chemical use while maintaining
the required microbial balance [4]. SCADA system development faces integration chal-
lenges due to multi-vendor architecture and compliance requirements, which demand a
resilient and distributed structure for reliable data delivery. Rashad’s study [14] highlights
the success of SCADA systems incorporating PLCs, HMI, and ML classifiers, underscoring
the benefits and limitations of such frameworks:

• PLC and HMI as Key Components: PLCs and HMIs are fundamental components
of SCADA systems. PLCs perform the automatic control of technological processes,
while HMIs provide operators with an interface for interacting with the system.

• Implementation of Add-On Instruction (AOI): Incorporating Add-On Instructions
(AOIs) in PLC programming enables the creation of modular and reusable code. This
simplifies the programming of complex control tasks, enhances processor efficiency,
and facilitates system maintenance. These improvements contribute to the overall
enhancement of SCADA system performance.

• Integration of ML Classifiers: Incorporating ML classifiers into the system allows
for the analysis of large volumes of data collected by the SCADA system. This
facilitates the prediction of system behavior, anomaly detection, and operational
optimization. Consequently, the intellectual capabilities of the SCADA system are
augmented, making it more adaptive and efficient.

• Real-Time Monitoring and Control: SCADA systems are designed for the real-time moni-
toring and management of industrial processes. The integration of ML and enhanced
PLC programming (using AOI) enables the automation of tank-level monitoring, the
maintenance of optimal operating conditions, and the protection of valuable resources.
This reduces the need for manual intervention and increases the system’s responsiveness.

• Advanced Data Analysis: SCADA systems collect and process data from various
sensors and devices. The integration of ML algorithms allows for more sophisticated
data analysis, the identification of hidden patterns, and informed decision-making
based on the obtained information.

These findings underscore the potential of machine learning (ML) in SCADA systems
to improve functionality, efficiency, and reliability in complex industrial processes. In
Houston Water’s wastewater treatment plants, traditional reactive maintenance creates
challenges for operators, who often rely on intuition due to information overload. Shifting
to a proactive approach using predictive ML models allows real-time adjustments, enhanc-
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ing efficiency and ensuring regulatory compliance [15]. Kaittan’s study utilizes PLCs and
SCADA to optimize biochemical processing, while Rajhans [16,17] highlights SCADA’s
role in preventing abnormal events during biological treatment.

Fuzzy logic principles are increasingly integrated into wastewater control systems,
as shown in Abdel-Basset’s [18] risk assessment framework for cyber–physical systems,
combining DEMATEL and TOPSIS methods with neurisophic theory to enhance control
accuracy. IoT-enabled monitoring in water treatment, investigated in [19], allows remote
access, simplifies maintenance, and improves efficiency. Comparisons demonstrate that
fuzzy logic controllers outperform traditional PID systems in stability and energy efficiency.

In Europe, the EU Water Framework Directive (WFD) stresses integrated water man-
agement within drainage basins, emphasizing system interaction understanding, optimal
sensor placement, and Instrumentation, Control, and Automation (ICA) implementation
for holistic water resource management [20]. Recent research focuses on integrating AI
into wastewater treatment using regression and classification models, including linear
regression, decision trees, random forests, and neural networks (e.g., RNN, LSTM, Trans-
former Networks) [21–35]. The primary modeling challenges involve data selection and
preparation, with feature identification being essential for effective ML deployment in
SCADA-based wastewater monitoring. Figure 1 presents a block diagram of the automated
control system for wastewater treatment processes based on machine learning methods.
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In the present study, we examine the operation of a laboratory-scale Aerobic Granular
Sludge (AGS) reactor with the objective of creating and enhancing machine learning models
for integration into Supervisory Control and Data Acquisition (SCADA) systems. AGS
reactors represent a significant advancement in wastewater treatment technology due to
their high biomass retention, superior settling characteristics, and ability to withstand
variable loading conditions [36]. Despite these advantages, the complex and dynamic
nature of the biological processes within AGS systems poses challenges for traditional
control methodologies. By leveraging advanced machine learning algorithms, we aim to
develop predictive models that can accurately capture the nonlinear relationships between
operational parameters and reactor performance, thus facilitating real-time optimization
and control within the SCADA framework.

The relevance of this research lies in addressing the critical need for intelligent control
strategies tailored to AGS reactors, which remain underexplored in the context of automation
and process optimization. Recent studies address the modeling of activated sludge granulation
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processes using machine learning algorithms [37–40]. These models focus particularly on the
mechanisms of sludge settling, aimed at optimizing the granulation process.

The scientific novelty emerges from the application of state-of-the-art machine learning
techniques, such as deep learning and reinforcement learning, to model the intricate
interactions within the microbial communities of the AGS system. This approach departs
from conventional methods by focusing on the development of algorithms that can adapt
to the highly variable and complex conditions of biological wastewater treatment processes.
In practical terms, integrating these sophisticated models into SCADA systems promises
to enhance process stability, improve effluent quality, reduce energy consumption, and
lower operational costs. The outcomes of this research have the potential to significantly
contribute to the field of wastewater treatment by providing a robust framework for the
intelligent control of AGS reactors, thereby promoting sustainable and efficient wastewater
management solutions.

This comprehensive study focuses on optimizing activated sludge granulation pro-
cesses for subsequent application in various biological wastewater treatment technologies.
This article presents a segment of the research dedicated to machine learning methods
applied in modeling the granulation process and implemented within an automated control
system. This phase involved data collection during laboratory setup operations, statistical
evaluation and the processing of the data, model preparation, training and validation,
performance assessment, and its subsequent integration into an SCADA-based system.

2. Materials and Methods
The experiment was performed in a laboratory bioreactor–fermenter equipped with

a suite of analytical equipment. The main system, developed by Yocell Biotechnology,
comprises a bioreactor vessel with a working volume of 11 L, constructed from borosilicate
glass. The vessel is outfitted with a controllable electromechanical agitator with adjustable
rotation speed, a pneumatic aeration system with adjustable aeration intensity, and a
heating and cooling system via an external circuit. The bioreactor operated in a sequencing
batch reactor (SBR) mode with a flow rate of 90 L per day. Figure 2 presents a photograph
of the SBR used in the study.
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Table 1 presents the operational parameters of the reactor.

Table 1. Reactor operation parameters.

Parameter Values

Fill Time [s] 600
Idle Time [s] 60

Aeration Time [s] 9000
Settling Time [s] 300–600

Decanting Time [s] 600–1200

The study was conducted using synthetic wastewater resembling the composition of
wastewater from the Moscow region in Russia. The synthetic wastewater was prepared
based on dry peptone, Ammonium chloride (NH4Cl), Sodium acetate (NaCH3COO), and
Potassium dihydrogen phosphate (KH2PO4). During the study, the concentrations in
the wastewater were varied according to the experimental program and are presented
within the ranges shown in Table 2. The historical data collected included the following
wastewater characteristics:

• Biochemical Oxygen Demand (BOD5), mgO2/L—target indicator, also available in the
model as a predictor with a 5-day temporal lag.

• Chemical Oxygen Demand (COD), mgO2/L—Chemical Oxygen Demand, often con-
sidered as a predictor with a linear correlation with BOD5. In this case, however, no
consistent linear relationship between BOD5 and COD was observed, highlighting the
need for modeling.

• Ammonium Nitrogen (NH4-N), mg/L—a critical component of wastewater, which,
due to its origin, may exhibit certain dependencies with BOD5.

• Orthophosphate Phosphorus (PO4-P), mg/L—similar to ammonium nitrogen in relevance.
• Total Suspended Solids (TSSs), mg/L—a wastewater indicator with a nonlinear associ-

ation with BOD5.

Table 2. Concentrations of synthetic wastewater.

Parameter Mean Median Std

BOD5, mgO2/L 364 365 30.5
NH4-N, mg/L 41.99 42.37 4.04
PO4-P, mg/L 4.60 4.57 0.61
COD, mgO/L 498.2 495.5 68.3

TSS, mg/L 557.34 544.44 162.55

Data accumulation for model training commenced post-granulation setup, with system
operation conducted in a quasi-static mode. The primary regulated parameters included:

• Dissolved Oxygen Concentration: Essential for the active growth of granular sludge
and for maintaining aerobic conditions conducive to granule stability, maintained at
3 mg/L during the aeration phase.

• Settling Time: Critical for the separation of granular sludge and treated water. Opti-
mized to prevent granule washout, and used to control MLVSS and organic load.

• Carbon–Nitrogen–Phosphorus Ratio: A balanced ratio of 100:10:1 was maintained to
ensure granule growth and stability, preventing structural disintegration.

• Active Sludge Dose (MLVSS): To maintain required granule density, MLVSS was kept
at 5–6 g/L depending on organic load.

• pH: Controlled within the range of 7.0–8.0 to prevent granule disintegration and
ensure effective biological activity.
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• Aeration Intensity: Kept at 1.2–2.5 L/min per liter of reactor volume, based on influent
BOD5 concentration, to avoid excessive turbulence or oxygen deficiency.

• Mixing of Sludge Mixture: Mixing speed was maintained at 30–60 rpm, adjusted
inversely with aeration intensity.

• Organic Loading Rate (OLR): In a laboratory bioreactor setting, OLR was regulated
via the F/M ratio, fixed at 0.3 kg BOD5/kg MLVSS per day. MLVSS adjustments were
made to account for influent BOD5 fluctuations, using settling and decanting times to
control MLVSS.

The bioreactor was further enhanced with a set of analytical sensors corresponding to
those used in actual wastewater treatment facilities: the Hamilton VisiFerm DO sensor for
dissolved oxygen (Hamilton Company, Reno, NV, USA), the Hamilton Polilyte Plus pH
ARC sensor for pH measurement (Hamilton Company, Reno, NV, USA), the HACH A-ISE
system for nitrogen compound analysis (Hach, Loveland, CO, USA), and the CarboVis
701/705 IQ system for analyzing COD (Xylem Analytics, San Diego, CA, USA).

Control and calibration measurements were conducted using the HACH Lange
DR6000 UV–vis spectrophotometer (Hach, Loveland, CO, USA), the WTW OxiTOP-IDS
system (Xylem Analytics, San Diego, CA, USA), the WTW Oxi3310 equipped with the
CellOX 325 sensor (Xylem Analytics, San Diego, CA, USA), and the WTW pH 3310 analyzer
(Xylem Analytics, San Diego, CA, USA). Control tests were performed using standard
methods. All equipment underwent verification and calibration. Real-time operating
sensors were calibrated prior to testing. The setup was controlled using an integrated
controller as well as a personal computer through Siemens Simatic software (Siemens
SIMATIC WinCC 7.4). In addition to automating the control of the main components of
the setup, data collection from all analyzers was integrated into the control program. The
collected data were exported to a csv file for further analysis.

In this study, obtaining BOD5 values is essential for control purposes. However, there
is no direct method for measuring BOD5 using online sensors. The only feasible solution
involves measuring Chemical Oxygen Demand (COD) and subsequently converting it to
BOD5. Nevertheless, this approach carries significant risks due to the possibility of unregu-
lated COD discharges, leading to unstable COD/BOD5 ratios. The machine learning task in
this study aims to forecast BOD5 values based on historical data and current concentrations
of wastewater contaminants, measured in real-time by corresponding analytical sensors.
These predictive solutions are then integrated into the SCADA system, as detailed in the
Results and Discussion Section.

The study employed Neural Basis Expansion Analysis for Interpretable Time Series Fore-
casting (N-BEATS) and Temporal Fusion Transformers (TFTs) as machine learning models.

N-BEATS (Neural Basis Expansion Analysis for Interpretable Time Series Forecasting)
is a state-of-the-art deep neural network specifically designed for time series forecasting.
Introduced in 2020, the model has demonstrated outstanding results, outperforming many
existing methods, including statistical models and other neural networks [41]. The model
architecture consists of the Stack, Block, and Basis expansion layer components. Initially, N-
BEATS was developed for univariate forecasting; however, its architecture can be adapted
for multiple predictors through the following steps:

• Combining historical target values with current predictor values into a single input vector;
• Updating the model’s input layer to accept the extended input vector;
• Training the model on a dataset that includes predictors.

The N-BEATS model, while effective for time series forecasting, has limitations. It
requires large datasets to learn temporal patterns effectively, making it less suitable for
sparse or small datasets. The model’s reliance on high-quality data and extensive prepro-
cessing increases the risk of poor performance with noisy or incomplete data. N-BEATS is
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computationally intensive, requiring significant resources for training, and its architecture
may overfit without careful tuning. Additionally, it is less adept at handling multivariate
time series or complex temporal dependencies compared to models like TFT. Lastly, its
“black box” nature limits interpretability, which may be a concern for certain applications.
The modifications to the N-BEATS architecture effectively addressed its limitations by
enabling it to handle multivariate time series and complex dependencies through a single
block design with additional features. By incorporating residual learning, the model im-
proved predictive accuracy and reduced overfitting, while preprocessing steps, such as
lagged features and standardization, ensured robustness against noisy and incomplete data.
These enhancements allowed the model to provide reliable BOD5 predictions in wastewater
management applications.

The Temporal Fusion Transformer (TFT) is a modern deep learning model specifically
designed for multivariate time series forecasting with complex temporal dependencies. Intro-
duced by Google in 2019, TFT combines the benefits of recurrent neural networks and attention
mechanisms, providing high forecasting accuracy and model interpretability [42,43]. The
model architecture consists of the following components: Variable Selection Network, LSTM
Encoder–Decoder, Static Covariate Encoders, Gated Residual Network, and Interpretable
Multi-Head Attention.

The Temporal Fusion Transformer (TFT) is a powerful model for time series forecasting
but has limitations. It requires large datasets, making it less effective with sparse or
limited data. High computational complexity and sensitivity to hyperparameter tuning
can lead to long training times and potential overfitting. While it includes interpretability
features, understanding its outputs may still be challenging. TFT struggles with highly non-
stationary data or varying seasonal patterns without extensive preprocessing. Additionally,
its performance heavily relies on high-quality feature engineering. Lastly, the model’s
complexity and inference speed may hinder its use in real-time applications or scenarios
with sudden data shifts.

To evaluate the accuracy of the predicted values, the metrics Coefficient of Determina-
tion (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) were used,
calculated according to Formulas (1)–(3).

R2 = 1 − D[y|x]
D[y]

= 1 − σ2

σ2
y
= 1 − ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3)

where D[y] = σ2
y represents the variance of the random variable, D[y|x] = σ2 denotes the

variance of the model error, n is the number of observations, yi is the target value, ŷi is the
predicted value, and yi is the mean value.

A correlation assessment using chi-squared values was employed. The chi-squared
test is a statistical method used to examine the dependence between categorical, discrete,
and continuous numerical variables. It can be applied to test hypotheses about data
distribution within a sample, as well as to analyze contingency tables (for example, to
assess the independence of variables).

The general algorithm for calculating the chi-squared statistic is as follows:

1. Formulation of Hypotheses:

• Null Hypothesis (H0): The variables are independent.
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• Alternative Hypothesis (H1): The variables are dependent.

2. Data Collection and Organization:

• A contingency table is created, displaying the frequency of observations for each
category (in the case of assessing categorical relationships).

3. Calculation of Expected Values:

• For each cell in the contingency table, the expected value is calculated using
Formula (4):

Eij =
(Ri × Ci)

N
(4)

where Eij is the expected frequency, Ri is the total frequency for row i, Cj is the total
frequency for column j, and N is the overall total number of observations.

1. Calculation of Chi-Squared Statistic:

• Formula (5) is used:

χ2 = ∑
(
Oij − Eij

)2

Eij
(5)

where Oij—represents the observed frequency in a cell.

2. Determination of Degrees of Freedom:

• For a contingency table, the degrees of freedom (df) are calculated using Formula (6):

df = (r − 1)× (c − 1) (6)

where r is the number of rows and c is the number of columns.

3. Comparison with Critical Value:

• The critical chi-squared χ2 value is determined for the specified significance level
(in this study 0.05);

• If the calculated χ2 value exceeds the critical value obtained from the chi-squared
distribution table, the null hypothesis is rejected. This rejection indicates that there
is a statistically significant association between the variables under investigation.

The determination of degrees of freedom and the subsequent comparison with the
critical chi-squared value are essential steps in the chi-squared test. By performing these
calculations, researchers can objectively assess the independence or dependence of variables
within SCADA systems used in wastewater treatment. This statistical validation supports
the identification of meaningful relationships between operational parameters, thereby
enhancing the monitoring and optimization processes within the system.

3. Results and Discussion
A dataset consisting of 366 rows and five features was obtained in the course of the study.

Table 3 presents an example of the structure of the compiled table with the initial data.

Table 3. A portion of the dataset used in the study.

Date BOD_5 COD NH_4 PO_4 TSS

16 August 2022 302.63 441.32 28.45 2.65 157.21
17 August 2022 330.4 338.6 32.21 3.3 264.92
18 August 2022 363.06 560.15 36.69 3.49 299.1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
16 August 2024 421.5157994 621.18 53.82 6.25 1196.8
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Figure 3 presents a histogram of the target feature, BOD5, showing a normal distribution
of values. The dataframe contains no missing values, anomalies, or excessive outliers.
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Figure 4 presents the concentration trends of the main contaminants in the influent
wastewater (characteristics), shown after weekly resampling.
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Figure 4. Wastewater characteristics by days of the experiment after resampling (by week).

The target characteristic exhibits a pronounced upward trend, which is most clearly
revealed after decomposition. Figure 5 presents the trend and seasonal component plots of
the target feature BOD5.

The seasonal component is not pronounced, which is also associated with the absence
of explicit seasonality in the preparation of synthetic wastewater. This study aimed to
enable system operation under conditions lacking explicit seasonal dependencies, which are
generally present in municipal wastewater to varying degrees. The strength of correlation
between the target feature and measurable predictors was assessed using chi-squared
values, as described in Section 2. The correlation matrix with calculated values is presented
in Figure 6.
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The correlation matrix reveals relationships between the target feature and other
characteristics (ranging from 0.85 to 0.92) as well as among the predictors themselves. In this
project, there is an understanding of the relationship between the concentrations of biogenic
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substances in the influent water and TSS due to the characteristics of synthetic wastewater
preparation. The allowable multicollinearity threshold was set at 0.99; thus, predictor
exclusion is not required. As specified in the task, the relationship between COD and
BOD5 is minimal (0.4), which may be associated with the nature of wastewater formation.
Additionally, to assess the correlation significance of time lags, an autocorrelation function
(ACF) plot for the target feature time series was generated. The ACF plot is presented in
Figure 7.
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As shown in the plot, the maximum time lag for this time series is 20 at a significance
level of 0.05. Thus, a corresponding number of input neurons will be used in model
construction. It can be observed that the time series is characterized by low dependency,
which necessitates considering the influence of additional predictors when building the
model. Based on the identified correlation patterns, neural networks following the N-
BEATS and TFT architectures were constructed.

Figure 8 presents a simplified diagram of the N-BEATS architecture. A modification
has been introduced to the network structure.

The N-BEATS model architecture begins with an input layer that accepts sequences
of length 20, each containing multiple features corresponding to the lagged values and
additional parameters. The core of the model consists of three stacks, each containing
three N-BEATS blocks, designed to handle multivariate time series data. Each block begins
by flattening the input tensor to a one-dimensional vector. The flattened vector is then
processed through four fully connected layers, each with 256 units and ReLU activation
functions, to capture complex nonlinear relationships in the data. This stacked architecture
allows for a hierarchical decomposition of the input data, with residuals from each block
passed to subsequent blocks within the same stack, and residuals from each stack forwarded
to the next stack for further refinement of the forecast and backcast outputs.

Following the dense layers, the model computes a set of parameters (thetas) with
a dimension of 128 through a linear activation layer. These thetas are used to generate
both the backcast and forecast outputs. The backcast is produced by a dense layer that
reconstructs the input sequence, aiming to model the residuals between the input and its
approximation. It reshapes the output to match the original input dimensions. The forecast
output, representing the BOD5 prediction five days ahead, is generated through another
dense layer with linear activation. A residual connection is implemented by subtracting
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the backcast from the input layer, allowing the model to focus on learning the differences
between the input and its approximation. This residual learning strategy helps in refining
the predictive performance of the model.
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Figure 8. N-BEATS Architecture. The modified N-BEATS architecture differs from the standard
version in several ways. The input layer accepts multivariate time series, combining lagged target
values and additional predictors, whereas the standard model processes only univariate time series.
The modified architecture includes a flatten layer to convert inputs into a one-dimensional vector, a
step not required in the standard version. Each N-BEATS block incorporates four fully connected
layers (256 neurons, ReLU activation) and a linear layer for parameter (theta) computation, with
explicit generation of backcast (reconstruction) and forecast (prediction). Additionally, a residual
connection subtracts the backcast from the input, improving model learning, which is less emphasized
in the standard model.

For training, we used the Adam optimizer with a mean squared error (MSE) loss
function. The model was trained over 100 epochs with a batch size of 16. Data preprocessing
involved sorting the data chronologically, creating lagged features, handling missing values
resulting from lagging, and standardizing both the input features and the target variable
using the StandardScaler. The dataset was split into training and testing sets with an
80/20 ratio. This modified N-BEATS model effectively leverages historical BOD5 values
and additional water quality parameters to provide accurate predictions. By integrating
both temporal lags and multivariate features, the model captures essential patterns and
dependencies crucial for forecasting BOD5 levels in wastewater management applications.

The architecture of the TFT model comprises an encoder–decoder framework tailored
for multivariate time series forecasting. The encoder ingests sequences of past observations,
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including both the target BOD5 values and supplementary features, capturing historical
patterns and temporal dynamics. The decoder processes future-known features over the
prediction horizon, excluding the target variable, enabling the model to incorporate any
available future information. As “future-known features”, previously predicted BOD5

values are employed, since the forecast is made 5 days ahead, allowing the accumulation
of the necessary data. However, it should be noted that these data are derived from the
predictions of the same model.

A distinctive aspect of our model is the incorporation of an additive attention mech-
anism between the encoder and decoder. This attention layer allows the decoder to se-
lectively focus on relevant encoder time steps, enhancing the model’s ability to capture
long-term dependencies and complex feature interactions. By combining the context vectors
from attention with decoder outputs, the model effectively fuses historical and future infor-
mation. To address the challenge of limited data, we employed extensive preprocessing,
including scaling and careful sequence generation, ensuring the model effectively learns
from the available observations. Training was conducted using the Adam optimizer and
mean squared error loss function over 50 epochs, with early stopping based on validation
performance to prevent overfitting. The scientific novelty lies in the tailored adaptation
of the TFT model for wastewater quality prediction, specifically BOD5 forecasting, by
integrating lagged features and multiple parameters within an attention-based sequence-
to-sequence framework. This approach not only enhances predictive accuracy but also
offers interpretability through the attention weights, potentially revealing critical periods
and features influencing BOD5 levels. Such insights are invaluable for environmental
monitoring and decision-making in wastewater management. Figure 9 presents a graphical
representation of the TFT model architecture.

Table 4 presents the key metric values for the models under consideration.

Table 4. The key metric values.

Model R2 RMSE MAE

TFT 0.898 1.115 1.010
N-BEATS 0.901 1.085 0.988

According to the modeling results, the N-BEATS model demonstrated the best metric
performance, with an MAE of 0.988 and a coefficient of determination of 0.901, and was
subsequently incorporated into the SCADA system.

The SCADA system in this study is built on Siemens SIMATIC WinCC 7.4, developed
by Siemens AG in Munich, Germany, and integrated with Siemens S7 series programmable
logic controllers (PLCs) for seamless communication and reliable control. Analytical sensors
measure key wastewater parameters such as dissolved oxygen, pH, nitrogen compounds,
and COD, with signal converters transforming analog outputs into digital data streams for
real-time monitoring and control. Historical data, collected between 16 August 2022 and 16
August 2024, was stored locally using PostgreSQL, structured into time series tables with
timestamps, variable names, and values. This setup supports a retention policy of up to
three years for detailed data, with optional aggregation for long-term storage. Data from
WinCC were exported to PostgreSQL using native tools, forming the basis for subsequent
machine learning (ML) tasks. Apache Airflow automated data extraction at scheduled
intervals, performing preprocessing steps such as scaling, generating lagged features, and
addressing missing values. The processed data were then sent to the ML model via a
RESTful API built with FAST API, with predictions (BOD5 values) returned and stored in
PostgreSQL for integration into SCADA workflows and further analysis. To ensure data
reliability and system integrity, the database was backed up daily with incremental copies
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and fully on a weekly basis, while pgAdmin was employed for performance monitoring.
The N-BEATS model, enhanced with additional predictors and residual learning, delivered
robust predictive accuracy, addressing issues of noise and overfitting, and was seamlessly
integrated into the SCADA system to support both real-time and retrospective analysis.
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Based on the predicted values (BOD5) provided by the ML model, the SCADA system
dynamically adjusts the sludge dosing rate and modifies the duration of settling and decant-
ing stages. Higher predicted BOD5 values prompt the system to increase the sludge dosage
accordingly and extend the settling and decanting phases. These parameters—sludge
dosing rates and process stage durations—are set via SCADA, ensuring the treatment
process remains proactive and responsive to anticipated wastewater loading conditions.
Figure 10 presents the SCADA system flowchart.
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The operation of the SCADA-based automated system stabilized the organic load on
the activated sludge, thus contributing to the stabilization of the sludge granulation process.
Figure 11 presents the predicted and actual BOD5 values, illustrating the model’s performance.

The prediction accuracy is relatively high (as confirmed by the metrics in Table 4);
however, a residual bias is noticeable. To verify the presence of bias, residual analysis was
performed. Figure 12 presents the residual plot, which shows that the model errors are
biased (the model underestimates the predicted values).
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The observed bias in values is likely due to an insufficient number of features used in
model training, given the time series has low autocorrelation [39]. To improve the quality
of model predictions, additional features could be incorporated in the future (which would
require further analytical instrumentation).

Nevertheless, intelligent predictive control of the sludge dose allowed for the leveling
of organic loads on the activated sludge. This is shown in Figure 13, which presents the
actual F:M ratio values, as well as the F:M values at a constant MLVSS (5 g/L).
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As shown in the graph, preventive regulation of the activated sludge dose was able to
partially smooth out fluctuations in the organic load on the activated sludge, which, in turn,
stabilized the activated sludge granulation process. The standard deviation was reduced by
2.6 times (from 0.024 before regulation to 0.006 after regulation). Such predictive modeling
with feedback through SCADA systems can be applied for various functional purposes.
However, granular activated sludge technologies are the most vulnerable in terms of
maintaining a quasi-static system state, making control methods for such systems of
particular interest. The integration of modern ML algorithms enables the use of time series
data resembling white noise; however, further research on the possibility of connecting
various predictor sets is needed to improve model quality.
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4. Conclusions
This study presented the development and implementation of an automated control

system for wastewater treatment processes based on machine learning (ML) models, specif-
ically focusing on a laboratory-scale Aerobic Granular Sludge (AGS) reactor. By leveraging
advanced predictive models integrated into a SCADA (Supervisory Control and Data
Acquisition) framework, the system demonstrated significant improvements in stabilizing
and optimizing activated sludge processes.

The experimental setup utilized an AGS reactor with a working volume of 11 L, where syn-
thetic wastewater was treated under quasi-static operational conditions. Key process parameters,
including dissolved oxygen concentration, settling time, carbon–nitrogen–phosphorus ratio, and
active sludge dose (MLVSS), were regulated to maintain the reactor’s performance. Dissolved
oxygen was held at 3 mg/L during aeration, while the C:N ratio was maintained at an optimal
100:10:1, ensuring steady microbial growth and sludge granulation stability. Notably, the MLVSS
concentration was kept at 5–6 g/L to support granule density and bioreactor efficiency.

To address the absence of direct online measurement methods for Biological Oxygen
Demand (BOD5), a predictive machine learning approach was adopted. Given that Chemi-
cal Oxygen Demand (COD) often lacks a stable linear correlation with BOD5 in synthetic
wastewater (with a correlation value of approximately 0.4), alternative data-driven methods
were necessary. Machine learning models were therefore implemented to predict BOD5

values, using real-time COD measurements and other influent contaminant concentrations
from online sensors as input features. The study employed N-BEATS (Neural Basis Expan-
sion Analysis for Interpretable Time Series Forecasting) and Temporal Fusion Transformers
(TFTs) as the primary ML models for this predictive task, ultimately selecting the N-BEATS
model based on superior performance.

Quantitative evaluation of the models revealed that N-BEATS achieved a Mean Abso-
lute Error (MAE) of 0.988 and a coefficient of determination (R2) of 0.901, as indicated in
Table 3. These metrics confirmed the model’s high predictive accuracy, making it suitable
for integration into the SCADA control system. The SCADA system was equipped with
sensors, a signal converter, a PLC (programmable logic controller), and a communication
network (using the Modbus protocol) to enable data acquisition and automated control. The
Siemens SIMATIC WinCC Unified platform served as the SCADA server, where ML model
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predictions were used to adjust control parameters dynamically. For example, the system
managed aeration, settling, and decanting times to achieve optimal reactor performance.

One notable outcome of the system’s operation was the stabilization of the organic
load on activated sludge. By implementing intelligent control over the sludge dose, the
system successfully leveled organic load fluctuations, as illustrated in Figure 8. Preventive
regulation of the sludge dose led to a 2.6-fold reduction in standard deviation, from 0.024
before regulation to 0.006 after regulation. This stabilization directly contributed to the
improvement of granule formation within the activated sludge, thereby enhancing the
overall efficiency of the treatment process. Additionally, this adaptive control reduced the
need for manual adjustments, supporting continuous, unattended operation.

Residual analysis, shown in Figure 7, highlighted that while the model achieved high
accuracy, a minor bias was observed, with the model tending to underestimate BOD5 values
slightly. This bias is potentially attributable to the limited number of features available
for training the model, particularly given the low autocorrelation observed in the time
series data (with a maximum significant time lag of 20). Future improvements in predictive
accuracy may be achievable by incorporating additional features into the model, which
would require further analytical instrumentation.

The integration of machine learning algorithms into SCADA-based automated sys-
tems demonstrated several important benefits for wastewater treatment. Firstly, predictive
models such as N-BEATS and TFT enabled accurate, real-time forecasting of critical param-
eters, facilitating proactive control of reactor conditions. The inclusion of machine learning
algorithms allowed the control system to handle time series data with low correlation,
effectively using data that resemble white noise. This ability is especially relevant for
granular sludge technologies, which are sensitive to maintaining quasi-static operational
states and therefore require robust, adaptive control strategies.

While the SCADA-based system performed successfully within a controlled laboratory
environment, further research is needed to evaluate its scalability and adaptability in full-
scale wastewater treatment facilities. The ML models used in this study, specifically
N-BEATS and TFT, proved effective in managing complex nonlinear relationships inherent
in biological wastewater treatment processes. However, given the limitations observed in
residual bias, future studies could explore the incorporation of a broader range of predictor
variables to enhance model robustness and accuracy further.

In conclusion, this research highlights the potential of combining machine learning
models with SCADA systems to improve the control and efficiency of wastewater treatment
processes. The success of the N-BEATS model, which reduced the MAE to 0.988 and
achieved an R2 of 0.901, demonstrates the feasibility of using advanced ML techniques for
predictive control in dynamic, data-intensive environments. By stabilizing the organic load
on activated sludge and reducing the standard deviation by 2.6 times, the automated control
system showcased here holds promise for advancing wastewater treatment technology.
The integration of intelligent algorithms into SCADA systems may pave the way for
more resilient and adaptive solutions in the field of environmental engineering, ultimately
contributing to more sustainable wastewater management practices.
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