Carbon-Neutrality Research in China—Trends and Emerging Themes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of the Data
2.2. Performance Analysis and Science Mapping
3. Results
3.1. Performance Analysis Using CNKI and Scopus Bibliometric Tools
3.2. Science Mapping Using VOSviewer
4. Discussion
Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Growth of the World’s Urban and Rural Population, 1920–2000; UN Department of Economic and Social Affairs, Population Studies, No. 44: New York, NY, USA, 1969. [Google Scholar]
- United Nations. World Population Prospects 2022; UN Department of Economic and Social Affairs—Population Division: New York, NY, USA, 2022. [Google Scholar]
- Chen, M.; Liu, W.; Tao, X. Evolution and assessment on China’s urbanization 1960–2010: Under-urbanization or over-urbanization? Habitat Int. 2013, 38, 25–33. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Washington, H.; Kopnina, H. Discussing the silence and denial around population growth and its environmental impact. How do we find ways forward? World 2022, 3, 1009–1027. [Google Scholar] [CrossRef]
- Liang, S.; Zhong, Q. Reducing environmental impacts through socioeconomic transitions: Critical review and prospects. Front. Environ. Sci. Eng. 2023, 17, 24. [Google Scholar] [CrossRef]
- UN-Habitat. Urban Energy; UN Human Settlements Programme (UN-Habitat): New York, NY, USA, 2023; Available online: https://unhabitat.org/topic/urban-energy (accessed on 15 April 2023).
- IEA. The World Total Energy Consumption—Data and Statistics; The International Energy Agency (IEA): Paris, France, 2023; Available online: https://www.iea.org/data-and-statistics/data-product/world-energy-statistics#energy-statistics (accessed on 15 April 2023).
- Chung, A.W.L.; To, W.M. A bibliometric study of carbon neutrality: 2001–2022. HKIE Trans. 2023, 30, 1–11. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022—Mitigation of Climate Change—Summary of Policymakers; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf (accessed on 15 April 2023).
- NASA. World of Change: Global Temperatures; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2023. Available online: https://earthobservatory.nasa.gov/world-of-change/global-temperatures (accessed on 15 April 2023).
- Bendyk, E. Global Solidarity or Collective Suicide: Why We Cannot Abandon the Paris Agreement’s Global Warming Target; European Council on Foreign Relations: London, UK, 2023; Available online: https://ecfr.eu/article/global-solidarity-or-collective-suicide-why-we-cannot-abandon-the-paris-agreements-global-warming-target/ (accessed on 15 April 2023).
- Xia, L.; Wei, J.; Wang, R.; Chen, L.; Zhang, Y.; Yang, Z. Exploring potential ways to reduce the carbon emission gap in an urban metabolic system: A network perspective. Int. J. Environ. Res. Public Health 2022, 19, 5793. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, T.; Jing, L. China’s energy transition towards carbon neutrality with minimum cost. J. Clean. Prod. 2023, 388, 135904. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, N.; Wang, S.; Wen, M.; Chen, Z. Will carbon trading reduce spatial inequality? A spatial analysis of 200 cities in China. J. Environ. Manag. 2023, 325, 116402. [Google Scholar] [CrossRef]
- Ahamer, G. Influence of an enhanced use of biomass for energy on the CO2 concentration in the atmosphere. Int. J. Glob. Energy Issues 1994, 6, 112–131. [Google Scholar]
- Quakernaat, J. Hydrogen in a global long-term perspective. Int. J. Hydrogen Energy 1995, 20, 485–492. [Google Scholar] [CrossRef]
- Schlamadinger, B.; Spitzer, J.; Kohlmaier, G.H.; Lüdeke, M. Carbon balance of bioenergy from logging residues. Biomass Bioenergy 1995, 8, 221–234. [Google Scholar] [CrossRef]
- Tonooka, Y.; Liu, J.; Kondou, Y.; Ning, Y.; Fukasawa, O. A survey on energy consumption in rural households in the fringes of Xian city. Energy Build. 2006, 38, 1335–1342. [Google Scholar] [CrossRef]
- Zhang, W.L.; Chen, S.P.; Chen, J.; Wei, L.; Han, X.G.; Lin, G.H. Biophysical regulations of carbon fluxes of a steppe and a cultivated cropland in semiarid Inner Mongolia. Agric. For. Meteorol. 2007, 146, 216–229. [Google Scholar] [CrossRef]
- Jie, C. The sustainable processes for production of biomass derived fuels in China. Int. Energy J. 2008, 9, 25–30. [Google Scholar]
- Zeng, S.-J.; Cen, N.S. Carbon neutrality and Beijing Green Olympics. Beijing Soc. Sci. 2008, 2008, 4–8. [Google Scholar]
- Tan, D.; Huang, X.J. Correlation analysis and comparison of the economic development and carbon emissions in the Eastern, Central and Western part of China. China Popul. Resour. Environ. 2008, 18, 54–57. [Google Scholar]
- Ben, Y.; Chen, Z.-L.; Xu, Z.-Z.; Qi, F.; Ye, M.-M.; Shen, J.-M.; Jiang, A.-X. Selection and kinetic mechanism of psychrotrophs in low temperature wastewater treatment. Chin. J. Environ. Sci. 2008, 29, 3189–3193. [Google Scholar]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- To, W.M. A bibliometric analysis of world issues—Social, political, economic, and environmental dimensions. World 2022, 3, 619–638. [Google Scholar] [CrossRef]
- To, W.M.; Lee, P.K.C. mHealth and COVID-19: A bibliometric study. Healthcare 2023, 11, 1163. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Assoc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Ma, Z.; Ma, M.; Cai, W.; Xiang, X.; Zhang, S.; Chen, M.; Chen, L. Carbon peak and carbon neutrality in the building sector: A bibliometric review. Buildings 2022, 12, 128. [Google Scholar] [CrossRef]
- Tang, D.; Gong, X.; Liu, M. The impact of government behaviors on the transition towards carbon neutrality in the construction industry: A perspective of the whole life cycle of buildings. Front. Environ. Sci. 2022, 10, 945921. [Google Scholar] [CrossRef]
- Mao, L.; Zhu, Y.; Ju, C.; Bao, F.; Xu, C. Visualization and bibliometric analysis of carbon neutrality research for global health. Front. Public Health 2022, 10, 896161. [Google Scholar] [CrossRef]
- Zhang, Y.; Fei, X.; Liu, F.; Chen, J.; You, X.; Huang, S.; Wang, M.; Dong, J. Advances in forest management research in the context of carbon neutrality: A bibliometric analysis. Forests 2022, 13, 1810. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, M.; Jiang, X.T.; Li, R. Does the COVID-19 pandemic derail US-China collaboration on carbon neutrality research? A survey. Energy Strategy Rev. 2022, 43, 100937. [Google Scholar] [CrossRef]
- Geng, Y.; Zhu, R.; Maimaituerxun, M. Bibliometric review of carbon neutrality with CiteSpace: Evolution, trends, and framework. Environ. Sci. Pollut. Res. 2022, 29, 76668–76686. [Google Scholar] [CrossRef]
- Wang, D.; Huangfu, Y.; Dong, Z.; Dong, Y. Research hotspots and evolution trends of carbon neutrality—Visual analysis of bibliometrics based on CiteSpace. Sustainability 2022, 14, 1078. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Shi, W.; Deng, C.; Chen, C.; Feng, S. Global evaluation of carbon neutrality and peak carbon dioxide emissions: Current challenges and future outlook. Environ. Sci. Pollut. Res. 2023, 30, 81725–81744. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, G.; Mu, X.; Kong, L. From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. J. Environ. Manag. 2022, 322, 116087. [Google Scholar] [CrossRef]
- Zhong, F.; Cheng, W.; Guo, A.; Song, X.; Cheng, Q.; Ullah, A.; Song, Y. Are Chinese social scientists concerned about climate change? A bibliometric analysis and literature review. Environ. Sci. Pollut. Res. 2022, 29, 12911–12932. [Google Scholar] [CrossRef]
- Xu, B.; Wang, T.; Ma, D.; Song, R.; Zhang, M.; Gao, L.; Li, S.; Zhang, B.; Li, M.; Xie, M. Impacts of regional emission reduction and global climate change on air quality and temperature to attain carbon neutrality in China. Atmos. Res. 2022, 279, 106384. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Xie, E. Top Research Body Cuts Use of China’s Largest Online Academic Database over Steep Fees; South China Morning Post: Hong Kong, China, 2022; Available online: https://www.scmp.com/news/china/science/article/3174687/top-research-body-cuts-use-chinas-largest-online-academic (accessed on 15 April 2023).
- Scopus. Scopus Content; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Page, M.J. PRISMA 2020 and PRISMA-S: Common questions on tracking records and the flow diagram. J. Med. Libr. Assoc. 2022, 110, 253. [Google Scholar] [CrossRef]
- Okubo, Y. Bibliometric Indicators and Analysis of Research Systems: Methods and Examples; Technology and Industry Working Papers—1997/01; OCED Science: Paris, France, 1997. [Google Scholar]
- Donthu, N.; Kumar, S.; Pandey, N.; Pandey, N.; Mishra, A. Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. J. Bus. Res. 2021, 135, 758–773. [Google Scholar] [CrossRef]
- Hu, A.G. China’s goal of achieving carbon peak by 2030 and its main approaches. J. Beijing Univ. Technol. (Soc. Sci. Ed.) 2021, 21, 1–15. [Google Scholar]
- Wang, C.; Zhang, Y.X. Implementation pathway and policy system of carbon neutrality vision. Chin. J. Environ. Manag. 2020, 12, 58–64. [Google Scholar] [CrossRef]
- Zou, C.N.; Xiong, B.; Xue, H.Q.; Zheng, D.W.; Ge, Z.X.; Wang, Y.; Jiang, L.Y.; Pan, S.Q.; Wu, S.T. The role of new energy in carbon neutral. Pet. Explor. Dev. 2021, 48, 480–491. [Google Scholar] [CrossRef]
- Zou, C.N.; He, D.B.; Jia, C.Y.; Xiong, B.; Zhao, Q.; Pan, S.Q. Connotation and pathway of world energy transition and its significance for carbon neutral. Acta Pet. Sin. 2021, 42, 233–247. [Google Scholar]
- Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Moniz, S.J.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.; Jaroniec, M.; Qiao, S.Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649. [Google Scholar] [CrossRef]
- Song, Q.W.; Zhou, Z.H.; He, L.N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 2017, 19, 3707–3728. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H.; Hui, S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- UNFCCC. Climate Neutral Now; United Nations Framework Convention on Climate Change (UNFCCC): Bonn, Germany, 2023; Available online: https://unfccc.int/climate-neutral-now (accessed on 15 April 2023).
- To, W.M.; Yu, B.T.W. Rise in higher education researchers and academic publications. Emerald Open Res. 2020, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Zhang, Y.; Li, J.; Liu, J. Case analysis of energy neutrality and carbon neutrality for wastewater treatment. China Water Wastewater 2021, 37, 1–8. [Google Scholar]
- Wang, C.; Sun, R.S.; Zhang, J.T. Supportive technologies and roadmap for China’s carbon neutrality. China Econ. 2021, 16, 32–70. [Google Scholar]
- Zhou, Y. Artificial intelligence in renewable systems for transformation towards intelligent buildings. Energy AI 2022, 10, 100182. [Google Scholar] [CrossRef]
- Cheung, M.F.Y.; To, W.M. An extended model of value-attitude-behavior to explain Chinese consumers’ green purchase behavior. J. Retail. Consum. Serv. 2019, 50, 145–153. [Google Scholar] [CrossRef]
- Liu, X.; Guo, C.; Wu, Y.; Huang, C.; Lu, K.; Zhang, Y.; Duan, L.; Cheng, M.; Chai, F.; Mei, F.; et al. Evaluating cost and benefit of air pollution control policies in China: A systematic review. J. Environ. Sci. 2023, 123, 140–155. [Google Scholar] [CrossRef]
- IEA. Transport; The International Energy Agency (IEA): Paris, France, 2023; Available online: https://www.iea.org/topics/transport (accessed on 15 April 2023).
- Bergman, Z.; Bergman, M.M. A case study of the sustainable mobility problem–solution paradox: Motility and access of metrorail commuters in the Western Cape. Sustainability 2019, 11, 2842. [Google Scholar] [CrossRef] [Green Version]
- IEA. Buildings; The International Energy Agency (IEA): Paris, France, 2023; Available online: https://www.iea.org/topics/buildings (accessed on 15 April 2023).
- Jiang, W. Could a less developed city solve its CO2 emission dilemma? Evidence from a low carbon pilot city. Chin. J. Urban Environ. Stud. 2015, 3, 1550007. [Google Scholar] [CrossRef]
- Han, F.; Wang, Y.; Feist, W.; Cao, X.; Yu, Z.; Song, B.; Benli, H.; Dermentzis, G. Exploring solutions to achieve carbon neutrality in China: A comparative study of a large-scale passive House district and a Green building district in Qingdao. Energy Build. 2022, 268, 112224. [Google Scholar] [CrossRef]
- Li, X.; Ning, Z.; Yang, H. A review of the relationship between China’s key forestry ecology projects and carbon market under carbon neutrality. Trees For. People 2022, 9, 100311. [Google Scholar] [CrossRef]
- Piao, S.; Yue, C.; Ding, J.; Guo, Z. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci. China Earth Sci. 2022, 65, 1178–1186. [Google Scholar] [CrossRef]
- Li, K.; Shen, S.; Fan, J.L.; Xu, M.; Zhang, X. The role of carbon capture, utilization and storage in realizing China’s carbon neutrality: A source-sink matching analysis for existing coal-fired power plants. Resour. Conserv. Recycl. 2022, 178, 106070. [Google Scholar] [CrossRef]
- Wang, D.; Yang, J. Carbon neutrality strategies for Chinese international oil company based on the rapid development of global carbon market. Sustainability 2022, 14, 11350. [Google Scholar] [CrossRef]
- Dong, H.; Liu, Y.; Zhao, Z.; Tan, X.; Managi, S. Carbon neutrality commitment for China: From vision to action. Sustain. Sci. 2022, 17, 1741–1755. [Google Scholar] [CrossRef]
- Stoenoiu, C.E. Sustainable development—A path to a better future. Sustainability 2022, 14, 9192. [Google Scholar] [CrossRef]
- Zhang, K.; Qian, J.; Zhang, Z.; Fang, S. The impact of carbon trading pilot policy on carbon neutrality: Empirical evidence from Chinese cities. Int. J. Environ. Res. Public Health 2023, 20, 4537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Feng, T.T. How does the design of personal carbon trading system affect willingness to participate under carbon neutrality goal?—Evidence from a choice experiment. Environ. Sci. Pollut. Res. 2022, 29, 81970–81992. [Google Scholar] [CrossRef]
- Riebeek, H. The Carbon Cycle; NASA—The Earth Observatory: New York, NY, USA, 2011. Available online: https://earthobservatory.nasa.gov/features/CarbonCycle (accessed on 5 July 2023).
- Pearce, F. Fossil-fuel hangover may block ice ages. New Sci. 2007, 195, 16. [Google Scholar] [CrossRef]
- Jiang, C.J.; Hou, Y.; Liu, H.; Wang, L.T.; Zhang, G.R.; Lu, J.X.; Wang, H. CO2 electrocatalytic reduction on Cu nanoparticles loaded on nitrogen-doped carbon. J. Electroanal. Chem. 2022, 915, 116353. [Google Scholar] [CrossRef]
- Liu, S.; Jin, Y.; Bae, J.S.; Chen, Z.; Dong, P.; Zhao, S.; Li, R. CO2 derived nanoporous carbons for carbon capture. Microporous Mesoporous Mat. 2020, 305, 110356. [Google Scholar] [CrossRef]
- Jäntschi, L. Nanoporous carbon, its pharmaceutical applications and metal organic frameworks. J. Incl. Phenom. Macrocycl. Chem. 2023, 1–17. [Google Scholar] [CrossRef]
CNKI | Scopus | ||||||
---|---|---|---|---|---|---|---|
Rank | Author | Affiliation | Articles | Rank | Author | Affiliation | Articles |
1 | X.D. Hao | Beijing University of Civil Engineering and Architecture | 10 | 1 | Y.K. Zhou | Hong Kong University of Science and Technology | 14 |
2 | C Wang 1 | Tsinghua University | 9 | 2 | Y. Geng | Shanghai Jiao Tong University | 12 |
3 | S.Q. Pan | PetroChina Research Institute of Petroleum Exploration and Development | 6 | 2 | B. Lin | Xiamen University | 12 |
4 | C.N. Zou | PetroChina Research Institute of Petroleum Exploration and Development | 5 | 2 | X.P. Sun | University of Electronic Science and Technology of China | 12 |
4 | G.Y. Zhuang | Chinese Academy of Social Sciences | 5 | 2 | D.C.W. Tsang | Hong Kong Polytechnic University | 12 |
4 | L.Y. Su | Chinese Academy of Sciences—Institutes of Science and Development | 5 | 6 | M.D. Ma | Tsinghua University | 10 |
4 | J. Li | Beijing University of Civil Engineering and Architecture | 5 | 6 | C. Wang 1 | Tsinghua University | 10 |
4 | Z. Q. Sun | Tianjin University of Science & Technology | 5 | 8 | W.J. Cai | Tsinghua University | 9 |
4 | R. Zhang | Global Energy Interconnection Co. Ltd. | 5 | 8 | W.G. Cai | Chongqing University | 9 |
CNKI | Scopus | ||||
---|---|---|---|---|---|
Rank | Affiliation | Articles | Rank | Affiliation | Articles |
1 | Tsinghua University | 64 | 1 | Chinese Academy of Sciences | 345 |
2 | University of Chinese Academy of Sciences | 36 | 2 | Tsinghua University | 190 |
3 | Renmin University of China | 24 | 3 | University of Chinese Academy of Sciences | 148 |
4 | Peking University | 21 | 4 | Tianjin University | 104 |
5 | Chinese Academy of Sciences—Institute of Geographic Sciences & Natural Resources Res. | 18 | 5 | Shanghai Jiao Tong University | 94 |
6 | Beijing University of Technology | 17 | 6 | North China Electric Power University | 89 |
7 | University of Chinese Academy of Social Sciences | 15 | 7 | Chongqing University | 88 |
8 | China University of Petroleum, Beijing | 14 | 8 | Xi’an Jiaotong University | 83 |
9 | Chinese Academy of Sciences—Institutes of Science and Development | 13 | 9 | Hong Kong Polytechnic University | 75 |
CNKI | Scopus | ||||
---|---|---|---|---|---|
Rank | Source Title | Articles | Rank | Source Title | Articles |
1 | Natural Gas Industry | 14 | 1 | Sustainability (Switzerland) | 156 |
2 | Journal of China Coal Society | 6 | 2 | Journal of Cleaner Production | 135 |
2 | Proceedings of the CSEE | 6 | 3 | Int. J. of Environ. Res. Public Health | 102 |
4 | China Land Science | 4 | 4 | Energies | 99 |
4 | Automation of Electric Power Systems | 4 | 5 | Frontiers in Environmental Science | 97 |
6 | Science Bulletin | 3 | 6 | Applied Energy | 96 |
6 | Chinese Science Bulletin | 3 | 7 | Environmental Science & Pollution Research | 75 |
6 | Economic Geography | 3 | 8 | Energy | 74 |
6 | Chinese Journal of Applied Ecology | 3 | 9 | Journal of Environmental Management | 67 |
CNKI | Scopus | ||||
---|---|---|---|---|---|
Rank | Funding Agency | Articles | Rank | Funding Agency | Articles |
1 | National Natural Science Foundation | 205 | 1 | National Natural Science Foundation | 1652 |
2 | National Social Science Fund | 137 | 2 | National Key Research and Development Project | 412 |
3 | National Key Research and Development Project | 66 | 3 | Fundamental Research Funds for the Central Universities | 269 |
4 | General Project of MOE (Ministry of Education) Foundation on Humanities and Social Sciences | 23 | 4 | National Office for Philosophy and Social Sciences | 198 |
5 | Fundamental Research Funds for the Central Universities | 17 | 5 | China Postdoctoral Science Foundation | 139 |
6 | Natural Science Foundation of Beijing | 10 | 6 | Chinese Academy of Sciences | 116 |
6 | Science and Technology Project of State Grid Corporation | 10 | 7 | Ministry of Education | 98 |
Author(s) | Title | Year | Source | Citations | Citations per Year |
---|---|---|---|---|---|
Hu, A.G. [49] | China’s goal of achieving carbon peak by 2030 and its main approaches | 2021 | Journal of Beijing University of Technology—Social Sciences Edition | 520 | 260 |
Tan, D. and Huang, X.J. [23] | Correlation analysis and comparison of the economic development and carbon emissions in the Eastern, Central and Western part of China | 2008 | China Population Resources and Environment | 437 | 29.1 |
Wang, C. and Zhang, Y.X. [50] | Implementation pathway and policy system of carbon neutrality vision | 2020 | Chinese Journal of Environmental Management | 320 | 106.6 |
Zou et al. [51] | The role of new energy in carbon neutral | 2021 | Petroleum Exploration and Development | 199 | 99.5 |
Zou et al. [52] | Connotation and pathway of world energy transition and its significance for carbon neutral | 2021 | Acta Petrolei Sinica | 180 | 90 |
Author(s) | Title | Year | Source | Citations | Citations per Year |
Tu et al. [53] | Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects | 2014 | Advanced Materials | 1137 | 126.3 |
Jiang et al. [54] | Photoelectrochemical devices for solar water splitting–materials and challenges | 2017 | Chemical Society Reviews | 896 | 149.3 |
Ran et al. [55] | Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities | 2018 | Advanced Materials | 787 | 157.4 |
Song et al. [56] | Efficient, selective and sustainable catalysis of carbon dioxide | 2017 | Green Chemistry | 703 | 117.1 |
Niu et al. [57] | Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures | 2016 | Progress in Energy and Combustion Science | 62 | 94.6 |
Cluster | Color | Items | Keywords (in Chinese; Frequency) |
---|---|---|---|
1 | Red | 8 | Carbon neutrality (661); climate change (38); carbon sink (28); wastewater treatment (12); carbon dioxide (11); carbon footprint (9); greenhouse gases (8); carbon sources (8) |
2 | Green | 6 | Energy transformation (38); renewable energy (25); low carbon transformation (14); new energy (12); natural gas (10); new power system (9) |
3 | Blue | 5 | Peak carbon emission (207); carbon emission reduction (27); carbon tax (14); green development (14); carbon market (9) |
4 | Yellow | 4 | Carbon emission (83); low carbon economy (13); high quality development (10); low carbon development (9) |
5 | Purple | 4 | Realization path (10); China (9); technology path (8); energy structure (9) |
6 | Orange | 3 | Hydrogen energy (11); clean energy (10); development path (10) |
7 | Light blue | 3 | Green finance (24); sustainable development (14); green transformation (9) |
Cluster 1 (Red) | Cluster 2 (Green) | Cluster 3 (Blue) | |||
---|---|---|---|---|---|
Keyword | Frequency | Keyword | Frequency | Keyword | Frequency |
carbon | 1169 | carbon dioxide | 895 | China | 770 |
carbon neutralities | 683 | carbon neutrals | 275 | carbon neutrality | 565 |
emission control | 458 | biomass | 158 | carbon emission | 555 |
carbon emissions | 300 | electrocatalysts | 155 | climate change | 288 |
energy utilization | 245 | controlled study | 118 | sustainable development | 231 |
energy efficiency | 202 | fossil fuels | 113 | economic development | 203 |
global warming | 176 | electrolytic reduction | 111 | carbon sequestration | 134 |
greenhouse gases | 163 | hydrogen | 100 | carbon footprint | 129 |
renewable energy | 147 | J+ catalyst | 98 | environmental economics | 114 |
alternative energy | 138 | efficiency | 97 | energy consumption | 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
To, W.M.; Chung, A.W.L. Carbon-Neutrality Research in China—Trends and Emerging Themes. World 2023, 4, 490-508. https://doi.org/10.3390/world4030031
To WM, Chung AWL. Carbon-Neutrality Research in China—Trends and Emerging Themes. World. 2023; 4(3):490-508. https://doi.org/10.3390/world4030031
Chicago/Turabian StyleTo, Wai Ming, and Andy W. L. Chung. 2023. "Carbon-Neutrality Research in China—Trends and Emerging Themes" World 4, no. 3: 490-508. https://doi.org/10.3390/world4030031
APA StyleTo, W. M., & Chung, A. W. L. (2023). Carbon-Neutrality Research in China—Trends and Emerging Themes. World, 4(3), 490-508. https://doi.org/10.3390/world4030031