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Abstract: Rapid urbanization in South Asian cities has triggered significant changes in land use
and land cover (LULC), degrading natural biophysical components and intensifying urban heat
islands (UHIs). This study investigated the impact of LULC changes on land surface temperature
(LST) and the role of biophysical indicators in enhancing urban resilience to thermal extremes. We
used Landsat satellite imageries from 1993 to 2023, conducted a comprehensive analysis of LULC
changes, and estimated LST variations at 6-year intervals in the Dhaka, Gazipur, and Narayanganj
districts in Bangladesh. Afterward, we performed statistical analysis upon employing correlation,
regression, and principal component analysis (PCA) techniques to summarize information. The
results reveal that 339.13 km2 worth of urban expansion has occurred in last 30 years, with an average
annual growth rate of 3.5%, accompanied by a substantial reduction in water bodies (−139.17 km2)
and vegetation cover. Consequently, summer temperatures exceeded approximately 36.52 ◦C in
dense urban areas. Also, the results highlighted the strong influence of built-up areas (BSI and SAVI)
on LST, while vegetation (NDVI) and water indices (NDWI) exhibited a negative association. The
findings emphasize the urgency of integrating green infrastructure and deploying sustainable urban
planning policies to mitigate the potential adverse impacts of scattered urbanization in the face of
climate change.

Keywords: surface temperature; biophysical indicators; resilience; remote sensing; sustainable
urban planning

1. Introduction

Over the flow of time, the world has witnessed significant urban development, char-
acterized by shifts in demographics, social dynamics, economic structures, and cultural
norms, fundamentally altering the fabric of human existence [1]. Rapid urban expansion
has triggered significant alterations of LULC, contributing to the rise of LST and reshaping
local climate. Recently, there has been a clear indication of the changing biophysical compo-
sition in urban areas, largely influenced by temperature anomalies resulting from climate
change [2–4]. This trend of shifting LST regimes tangibly impacts the strong connection
between natural environment and urban ecosystem and damaging the biological systems
and critical environmental components [5].
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Interestingly, urbanization is significantly influencing both human livelihoods and
demographic characteristics on a global scale. A recent assessment report from the United
Nations has documented that over half of the world’s population, accounting for approx-
imately 55%, is currently living in urban areas [6]. This implies a notable change in the
natural environment, leading to the transformation of aquatic ecosystems and shrub cov-
ers into resistant surfaces. This phenomenon highlights the significant impact of urban
expansion on the ecological integrity and hydrological dynamics of natural environments
and landscapes [7]. Consequently, this unforeseeable incidence exerts pressure on urban
ecosystems, local climates, and energy flows, underscoring its multifaceted impact on
environmental dynamics and urban sustainability [8]. From recent research [9,10], it has
been clearly documented that rapid urban expansion has a significant impact on local
and regional temperatures, along with the natural ecosystem (e.g., hydrology, vegetation,
rainfall patterns, etc.). Scientists have explored the relationship between LULC and LST by
performing various indices such as the normalized difference vegetation index (NDVI), nor-
malized difference built-up index (NDBI), normalized difference bareness index (NDBAI),
normalized difference water index (NDWI), and modified normalized difference water
index (MNDWI) [11] to quantify the patterns and trends of shifts, and the way they amplify
the impact of thermal islands in cities [11–13].

However, few studies have considered understanding the relationships between the
LULC and biophysical environment in cities across the global south. Thus, it is important
to study the complex relationships among LULC, LST, and biophysical factors concerning
environmental resilience and sustainability for urban development. It should be noted that
the search for the changing biophysical components and its contribution toward LST often
remains overlooked, which is not only affected by the LULC, but also has a significant
contribution in exacerbating the UHI effect, posing serious challenges for ecological sustain-
ability and public health [7]. While existing literature delves into the association between
the LULC and LST, there remains a vital need for addressing the role of natural components
(e.g., NDVI and NDDWI). Therefore, it is imperative to comprehend the interrelationships
between biophysical indices and LST to provide directions in mitigating climatic impacts
and bolster sustainability initiatives locally based on available empirical evidence. The
integration of these biophysical factors into analysis helps gain a comprehensive under-
standing of how urbanization impacts surface temperature and potentially affects the
overall natural environment. Furthermore, this knowledge may support long-term benefits
for resource management while considering urban planning strategies within a natural
environment [14].

Whenever biophysical components come into consideration as environmental compo-
nents, it indicates soil moisture, vegetation coverage, water bodies, and greenery, i.e., those
influencing the LST [8,9]. Also, the relationship between LST and biophysical components
is inherently linked to the spatial distribution of species and vegetation, which plays a
critical role in regulating surface temperatures [15–17]. A significant challenge in ecological
transformations lies in the conversion of vegetation and open spaces into developed sur-
faces, exacerbating environmental concerns and necessitating careful land use planning
policies and conservation strategies [18,19]. Hence, it is crucial to establish a thorough
understanding of the correlations between ecological changes in urban environments and
their impact on LST changes for effective environmental management [18,19]. This study
seeks to elucidate the intricate interplay between biophysical factors and LST, providing
insights into their impacts on urban thermal dynamics [20].

In the context of South Asian cities, the expansion of urban areas and alterations to
surface characteristics may significantly affect LST, resulting in modifications to the thermal
dynamics of the environment [1]. Several research papers have supported the shifting of the
LST regime once urbanization processes happen significantly in and around cities [21,22].
Moreover, scholars have emphasized that LST is a critical parameter for assessing the
ecological equilibrium and fostering environmental sustainability [23–26]. Within the realm
of ecological and environmental monitoring schemas, important indicators such as NDBI,
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NDWI, and NDBAI demonstrate strong correlations with LST. It is worthwhile to note
that the relationship between LST and several sensitive environmental indicators in cities
across the south are important to assess in understanding the vulnerability of ecosystems
and landscapes.

This study was designed to investigate the interplay between LST and environmental
dynamics in Dhaka metropolitan area, along with the adjacent regions such as Gazipur and
Narayangonj. Recently, these areas have been experiencing rapid urbanization and environ-
mental transformation to accommodate the growing number of populations intensifying
ecological challenges. Rapid urban growth in these regions has led to the loss of green
infrastructure and permeable surfaces, increasing surface temperatures and making envi-
ronmental management a pressing concern [27–29]. As a result, findings from this study
may provide valuable insights to explore how biophysical dynamics interact with LST and
how sustainable infrastructure can mitigate UHI effects in a fast-growing metropolitan
region in the global south.

This research employs spatial science methods upon integrating Google Earth En-
gine (GEE) and Geographical Information System (GIS) platforms to process and analyze
long-term satellite data (1993–2023). Analysis reveals that indices associated with LULC
and biophysical measures are directly impacting LST. By leveraging GEE and GIS spatial
analysis tools, this research unravels the importance of biophysical dynamics to combat
extreme LST changes by providing insights into how urban expansion and ecological shifts
influence surface temperature regimes. Afterward, this research paper investigated the
complex relationship between LST and UHI upon considering available indices computed
using tools in spatial science. Consequently, the study attempted to tackle two significant
issues based on quantifiable information in Bangladeshi cities, considering UHI and bio-
physical degradation that directly impact public health and sustainable urban development
policies. The findings highlight the importance of preserving and enhancing urban vegeta-
tion and water bodies to mitigate the negative thermal impacts happening due to rapid
urbanization [30].

The major goal of this research article was to investigate how rapid urbanization
influences the UHI dynamics by damaging natural biophysical components in South
Asian megalopolises, particularly for Dhaka and surrounding areas. Specifically, this
research examines how biophysical factors, such as vegetation, water bodies, and soil
moisture contribute to thermal regulation and urban resilience. Moreover, the purpose
of this research was to assess the efficacy of sustainable infrastructure and ecologically
conscious urban design techniques in reducing the negative effects of urbanization on
natural biophysical components, including water bodies, and reducing LST. Also, it aimed
to uncover the interrelationships among important variables responsible for UHI while
affecting natural environments.

Furthermore, the novelty of this research lies in demonstrating the importance of bio-
physical factors in addition to understanding the UHI impacts in urban areas. Prior studies
have mostly illustrated the diverse applications of geophysical factors in environmental
assessments, encompassing everything from air quality monitoring to comprehending
temperature anomalies [28,31]. However, the intellectual significance of this study lies in
its contribution to the ongoing discourse surrounding urban environments by emphasizing
the complex role of biophysical components and uncovering their multifaceted implications
across disciplines. Consequently, the study offers practical guidance for policymakers to
develop sustainable urban planning strategies that can address the challenges posed by
climate change.

2. Materials and Methods
2.1. Study Area

Dhaka, Bangladesh’s capital and its largest city, is a burgeoning metropolis located
at 23◦42′ N, 90◦22′ E (Figure 1), and stressed with demographic pressures and rapid
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urbanization [32]. The city’s growth is characterized by industrial and economic activities
that have led to a rise in surface temperatures, eventually catering to the UHI effect [33].
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This urban growth and expansion are not confined to Dhaka only, but the wave ex-
tends to Gazipur and Narayanganj, eventually contributing to LST changes. Gazipur has
seen a boom in commercial activities, particularly in the textile and garment industries,
contributing to regional economic development [34]. Narayanganj, on the other hand,
is relatively smaller in area (i.e., 113.98 km2) and has experienced significant urban chal-
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lenges [35]. The influx of people seeking employment opportunities in these industrial hubs
has led to resource constraints, highlighting the need for sustainable urban planning [36].

In addition, Gazipur, Narayanganj, and other urban regions are rapidly evolving into
major industrial hubs in Bangladesh [27,37]. Gazipur and Narayanganj, in particular, have
emerged as vital nodes for industrial development, hosting a wide range of manufacturing-,
textile-, and export-oriented industries. The rapid urbanization and industrialization in
these areas have led to a significant expansion of built-up area, putting pressure on the
surrounding environment. Moreover, these districts are highly sensitive to environmental
changes, including issues such as ecological degradation, river pollution, and land sub-
sidence [28]. Considering these factors, this study focused on these districts not only for
understanding their economic and industrial significance, but also assessing their ecological
impacts and the broader implications of urban growth in the natural environment [28,29].

2.2. Datasets

Satellite images, including Landsat 5 TM for 1993, 1999, Landsat 7 ETM+ for 2005, 2011,
and Landsat 8 OLI and TIRS for 2017, and 2023, were collected for LULC classification and
generating multiple indices. The obtained datasets had 30 m spatial resolution with less
than 1% cloud coverage to ensure data quality. Indeed, high-quality data having minimal
cloud interference ensured precise land cover classification and enhanced the accuracy
assessment protocols. GEE facilitated the selection of the training data for classification
and model validation purposes. Further details regarding data acquisition processes are
summarized (Table 1).

Table 1. Description of the datasets used in this study.

Period
(Year)

Timeframe
(Month) Dataset Bands Sensor Spatial

Resolution

1993 11 April Metadata from
Landsat 5, Level two, 1 to 7 Landsat 5 TM 301999 9 April

2005 18 May Metadata from
Landsat 5, Level two, 1 to 7 Landsat 5 TM 302011 12 April

2017 5 May Metadata from
Landsat 8, Level Two, 2 to 7 Landsat 8

OLI
302023 13 May

Additionally, the years 1993, 1999, 2005, 2011, 2017, and 2023 were chosen to obtain
information about land use change in the Dhaka, Narayanganj, and Gazipur districts. These
years were aligned with key milestones of infrastructure development, industrialization,
and population growth in the region [38,39]. For instance, the rapid urban expansion and
growing industrial activities were reflected in the 1990s and 2000s [28,40]. The chosen years
offered a comprehensive view of long-term urbanization trends, ensuring that both gradual
changes and periods of accelerated land use transformation were adequately represented
in the analysis.

2.3. Image Preprocessing and Classification

To avoid any seasonal and temporal variation among the imageries, all Landsat Annual
imageries were gathered. The duration of the period was (April to May) for each year, and
the average radiance was calculated for each pixel. Moreover, cloud coverage pixels were
identified and considered only when less than 1% cloud-contaminated pixels were present.
The imageries were further processed through cloud masking and saturation threshold,
and filtered by boundary area.

Image classification stands as the cornerstone in detecting and quantifying LULC
change through remote sensing methodologies. It involves grouping pixels from satellite
imageries into similar data types, a task crucial for this research [41,42]. Four distinct LULC
classes were considered in this study (see Table 2). Employing the Random Forest (RF)
algorithm in the GEE cloud platform, a supervised machine learning image classification
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technique was employed. Hyperparameter tuning was further applied to enhance accuracy,
ensuring optimal parametric values. Training samples, meticulously gathered from field
data and expert knowledge, spanned the years 1993, 1999, 2005, 2011, 2017, and 2023. On
average, over 500 points were collected per land class, with 70% utilized for training and
30% for testing.

Table 2. Description of the land classes considered in this study.

Land Cover Description

Vegetation Natural and afforested dense forest, grass, or vegetated area

Barren land Open land, field, playground, newly accreted land

Built-up Business, factories, residential, transportation, streets, mixed
downtown, and other developed area

Waterbody River, canal, drainage channels, other active meteorological elements

2.4. Evaluation Metrics

The overall accuracy, user accuracy, and producer accuracy were chosen to assess
classified data and crosscheck individual classes from the entire dataset. The Kappa
coefficient statistics were adopted to evaluate the classified imageries and then compared
with actual data obtained from the field. The ROC (receiver operating characteristic) and
AUC (area under the curve) were selected to evaluate the model’s ability to distinguish
between classes at varying decision thresholds. These metrics were deemed relevant due
to their widespread use in multi-class classification and their robustness in remote sensing
applications [41].

The Kappa values reported for each district signified the reliability of the classifica-
tion results by measuring the agreement between the classified images and ground truth
data, and were eventually adjusted for chance agreement. In general, Kappa values range
from −1 to 1, with higher values indicating stronger agreement [43]. According to widely
accepted thresholds in the literature, Kappa values above 0.80 are considered excellent,
values between 0.60 and 0.80 substantial, and values between 0.40 and 0.60 indicate mod-
erate agreement [43,44]. In this context, higher Kappa values suggest a more reliable
classification, while lower values indicate less consistent performance across districts.

To determine the correctness of the evaluation, the following equations were used
(1)–(4) [45,46]:

Overall precision =
number of accurately categorized images is 100.

Sum of all indicate images
∗ 100 (1)

User precision =
(total correct classified pixels in every class (diagonal)

the sum of all source images in each class (the entire grid)
∗ 100 (2)

Producer precision =
(total correct classified pixels in every class (diagonal)

Maximum number of referencing images in all groups (sum row)
∗ 100 (3)

Kappa Coefficient (T) =
Overall number of Sample ∗ Corrected Sample − ∑(column.tot ∗ row tot)

(The entire of Sample)2 − ∑(column.tot ∗ row tot)
∗ 100 (4)

User and producer accuracy offer a comprehensive evaluation by addressing different
aspects of classification. The UA indicates how accurately a pixel is classified into a specific
category truly belongs to that class from the user’s perspective. In contrast, PA measures
the classifier’s ability to correctly identify the actual pixels in each class, preventing un-
derrepresentation of true land cover [47,48]. The F1-score, which combines precision and
recall is particularly helpful for handling imbalanced classes. Additionally, overall accuracy,
Kappa coefficient, and AUC provide deeper insights into model performance and class
differentiation, ensuring a robust assessment of accuracy.
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The ROC curve, although tricky to read, is critical [49]. Equations (5) and (6) provide
the two types of rate values (TPR and FPR) over the classification criteria. It carefully shows
the relationship across these levels using the two metrics.

TPR =
True Positive

True Positive + False Negative
(5)

FPR =
False Positive

Fasle Positive + True Negative
(6)

AUC =
∫ 1

0
TPRd(FPR) (7)

The ROC curve balances TPR and FPR for classification models to maximize efficacy in
the leftmost position. Equation (7) quantifies the accuracy of models as AUC, with greater
AUCs suggesting superior categorization. Thus, the ROC curve summarizes accuracy in
changing evaluation methods [50].

2.5. Extraction of LST

The estimation of seasonal LST involved the utilization of DN from the thermal bands
of the imageries, specifically Band 6 for Landsat 5 TM, and Bands 10 and 11 for Landsat 8
OLI. Initially, the application of Equations (9) and (10) was executed, leveraging the spectral
radiance (λ) pertinent to the bands of Landsat 5 and Landsat 8 satellite image, consequently.
Subsequently, employing the resultant values denoted as L, λ, the determination of LST
in degrees Celsius was achieved using Equation (14). This meticulous methodological
approach enabled the accurate inference of LST from the DN acquired through the thermal
bands of the respective datasets. Landsat satellites ensured accuracy and reliability in the
estimation process [51].

Lλ(LANDSAT 5 TM) = Lmin ++
Lmax − Lmin

Qcalmax − Qcalmin
× DN (8)

Lλ(LANDSAT 8 OLI) = ML × DN + AL (9)

LST =
T

1 +
(
λ× TB

ρ ∗ ln
(
ε
) − 273.15 (10)

AL (0.1) is additive and ML (0.0003342) nonlinear (altering ratio varied by spectrum).
The imagery dataset file comprised Landsat TM, Lmax, and Lmin. Radiant discharges possess
a 11.5 µm duration [51,52].

ρ =
h × c
σ

= 1.438 × 10 − 2 mk (11)

h is the value of, 6.626 × 1034Js, c is the light velocity, σ is the constant value by Boltzmann
5.67 × 10−8Wm2k−4 = 1.38 × 10−23 JK −1 Equation (11); ε is actually the emissivity value
of land surface, ranging between 0.97 and 0.99.

TB =
K2

In
(

K1
Kλ

+ 1
) (12)

where TB is the brightness temperature of satellite, and K1 and K2 are the constant val-
ues for Landsat 5 (607.7 and 1260.6, respectively) and for Landsat 8 (774.9 and 321.07,
respectively) [52].

2.6. Acquisition of Biophysical Variables

The study employed remote sensing techniques and statistical analyses to explore the
relationship between urban expansion and environmental dynamics, specifically targeting
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LULC changes and their effects on LST. To achieve this, Landsat satellite imageries were
used to detect LULC changes, employing a Random Forest classification algorithm within
the GEE platform. This method was well-suited for providing an accurate classification
of urban, vegetation, and water bodies. LST was calculated using thermal bands from the
same satellite imageries, while indices such as NDVI, NDBI, NDWI, MNDWI, NDBAI, BSI,
SAVI, and MSI helped quantifying changes in vegetation, built-up areas, and water bodies,
respectively. Correlation analysis and PCA were applied to assess the interaction between
urban expansion and biopsychical indices such as NDVI, NDWI, NDBI, NDBSI, MNDWI,
BSI, SAVI, and MSI. These methodologies were appropriately selected based on scientific
literature to delineate the relationships between LST and urban built-up environment [53].
Detailed discussions on these indices are provided in subsequent sections (Table 3).

Table 3. Formulas used for assessing the biophysical indices in this study.

Index Name Index Name and Equation References

Normalized difference vegetation index NDVI = NIR−RED
NIR+RED [54,55]

Normalized difference water index NDWI = GREEN−NIR
GREEN+NIR [56]

Normalized difference built-up index NDBI = SWIR−NIR
SWIR+NIR [57]

Normalized difference bare soil index NDBSI = (RED+SWIR)−(NIR+BLUE)
(RED+SWIR)+(NIR+BLUE)

[58]

Modified normalized difference water index MNDWI = Green−MIR
Green+MIR [59]

Bare soil index BSI = NIR−RED
NIR+RED [60]

Soil-adjusted vegetation index SAVI =
(

NIR−RED
NIR+RED+L

)
∗ (1 + L) [61]

Moisture stress index MSI = NIR−SWIR
NIR+SWIR [62]

After normalizing the parameters utilized in this study, correlation analysis was per-
formed to explore their relationships. The equations employed for parameter normalization
in this research are as follows:

Positive =
A − Amin

Amax − Amin
(13)

Negative =
Amax − A

Amax − Amin
(14)

where A indicates the actual value, and Amax and Amin refer to the highest value and
lowest value.

2.7. Statistical Analysis

In this analysis, we used both descriptive and inferential statistics to recognize how
biophysical characteristics impact LST. Statistical tests were conducted to assess the sig-
nificance of the variations across different years. An ANOVA (analysis of variance) [63]
was applied to determine if the observed differences in precision were statistically signifi-
cant [63]. The results indicated whether there was a significant variation in precision over
time. If the test showed a low p-value (typically less than 0.05), it was suggested that the
differences in precision across years were statistically significant.

2.7.1. Correlation Matrix

The Pearson correlation coefficient (r) has emerged as a tool in unraveling the relation-
ship between LST and various ecological indices. It is widely recognized that geophysical
indices significantly shape LST, with spatial variations in urban thermal environments [64].
Denoted as “r”, Pearson correlation serves as a measure of the extent to which these data
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points deviate from the line of optimal approximation [65]. The correlation matrix among
the biological variables and LST have been calculated along with the scatterplot.

2.7.2. Principal Component Analysis (PCA)

In this study, the PCA (illustrate Figure 2) tool evaluated spatial relationships between
variables. We utilized PCA to investigate the elements that influenced seasonal temperature
anomalies in the study area. This method is typically used to mitigate the discrepancies of
the dataset [66].
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3. Results
3.1. Accuracy Assessment

The evaluation included essential metrics in Table 4, for precision assessment, encom-
passing the years 1993, 1999, 2005, 2011, 2017, and 2023. Evaluations were conducted on
several measures of precision, such as total precision, correctness for producers, consis-
tency for users, and Kappa values. The total precision of the LULC result varied notably
throughout the study period, ranging from 85.20% to 89.93% for Dhaka, 83.89% to 88.27%
for Narayanganj, and 83.89% to 93.84% for Gazipur, respectively. Also, among the decades
that were mentioned, the Kappa dependability varied between 0.852 and 0.912 for Dhaka,
0.859 and 0.962 for Narayanganj, and 0.862 and 0.912 for Gazipur. Around 1993–2023, the
Kappa values spanned 0.882–0.897, 0.86–0.887, and 0.854–0.91.

Table 4. Evaluation of the classified images’ accuracy.

User Accuracy (%) Manufacturer Precision (%)

Year Built-Up Waterbody Barren
Land Vegetation Built-Up Waterbody Barren

Land Vegetation Total
Precision

Kappa
Statistics

D
ha

ka

1993 0.85 0.89 0.83 0.90 0.90 0.86 0.76 0.86 89.93% 0.893
1999 0.85 0.89 0.76 0.93 0.85 0.86 0.76 0.94 86.49% 0.909
2005 0.92 0.89 0.82 0.89 0.95 0.96 0.75 0.87 85.20% 0.901
2011 0.85 0.89 0.90 0.89 0.96 0.87 0.81 0.91 88.98% 0.940
2017 0.88 0.89 0.77 0.84 0.97 0.93 0.68 0.84 86.09% 0.876
2023 0.94 0.89 0.83 0.74 0.93 0.91 0.68 0.84 83.09% 0.846

N
ar

ay
an

ga
nj 1993 0.88 0.88 0.89 0.96 0.88 0.89 0.98 0.95 86.79% 0.883

1999 0.89 0.88 0.86 0.81 0.90 0.93 0.96 0.93 86.04% 0.863
2005 0.88 0.88 0.84 0.90 0.94 0.86 0.91 0.90 85.74% 0.872
2011 0.87 0.87 0.84 0.88 0.92 0.95 0.86 0.91 88.27% 0.923
2017 0.88 0.86 0.87 0.85 0.93 0.84 0.95 0.83 83.89% 0.882
2023 0.91 0.87 0.73 0.80 0.93 0.88 0.73 0.76 85.63% 0.859

G
az

ip
ur

1993 0.73 0.89 0.81 0.88 0.87 0.88 0.81 0.98 83.89% 0.878
1999 0.81 0.88 0.84 0.89 0.81 0.89 0.84 0.85 85.01% 0.887
2005 0.90 0.89 0.82 0.93 0.88 0.88 0.89 0.95 86.69% 0.887
2011 0.90 0.87 0.84 0.89 0.96 0.89 0.78 0.85 93.84% 0.869
2017 0.85 0.87 0.84 0.82 0.92 0.87 0.75 0.91 88.56% 0.878
2023 0.89 0.87 0.68 0.78 0.93 0.88 0.84 0.87 87.05% 0.922

Furthermore, from 1993 to 2023, the “Interactive” group shone out with a F1score that
spans 0.899–0.851, recall metrics encompassing 0.869–0.897, and accuracy scores varying
from 0.952 to 0.919 (refer to Appendix A, Table A1).

3.2. LULC Dynamics

The selection of specific time intervals, 6 years apart from 1993 to 2023 was made to
reflect the gradual nature of LULC changes (Table 5 and Figure 3) which typically occurred
over extended periods rather than in rapid succession. Urban expansion and environmental
dynamics often unfolded slowly due to factors like urban planning, regulatory processes,
and the time required for natural ecosystems to respond to anthropogenic influences.
Thus, a longer interval allowed for a more accurate representation of substantial shifts in
land use.

Table 5. Area (sq km.) and LULC change from 1993 to 2023.

D
is

tr
ic

t

Year
LULC 1993 1999 2005 2011 2017 2022 1993–1999 1999–2005 2005–2011 2011–2017 2017–2023

D
ha

ka

Built-up 94.95 208.12 240.79 221.62 275.09 434.08 113.17 32.66 −19.17 53.47 158.99

Water body 566.9 657.1 473.82 465.46 634.95 427.73 90.2 −183.27 −8.37 169.5 −207.22

Barren land 258.74 86.31 97.31 97.46 46.97 27.06 −172.42 11 0.16 −50.48 −19.91

Vegetation 537.85 506.89 646.5 673.88 501.4 569.55 −30.95 139.61 27.38 −172.48 68.14
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D
is

tr
ic

t

Year
LULC 1993 1999 2005 2011 2017 2022 1993–1999 1999–2005 2005–2011 2011–2017 2017–2023

G
az

ip
ur

Built-up 51.81 90.39 85.05 131.38 122.56 242.84 −152.45 −5.34 46.32 −8.81 120.28

Water body 341.32 399.92 370.23 415.1 358.66 380.53 19.39 −29.69 44.87 −56.45 21.88

Barren land 275.62 217.18 220.49 238.47 184.22 46.85 170.33 3.33 17.98 −54.26 −137.37

Vegetation 1082.54 1043.8 1075.51 966.33 1085.85 1081.08 −37.27 31.7 −109.18 119.52 −4.78

N
ar

ay
an

ga
nj Built-up 78.38 93.43 214.35 216.74 215.83 243.53 15.05 120.93 2.4 −0.92 27.7

Water body 178.04 156.74 174.81 161.96 119.44 106.13 −21.29 18.07 −12.85 −42.53 −13.3

Barren land 192.36 161.67 140.81 124.75 127.92 52 −30.7 −20.86 −16.06 3.19 −75.93

Vegetation 231.55 268.5 150.37 181.38 217.15 278.67 36.95 −118.14 31.03 35.76 61.52
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Figure 3. LUCCC in the Dhaka, Narayanganj, and Gazipur districts: (a) 1993–1999, (b) 1999–2005,
(c) 2005–2011, (d) 2011–2017, and (e) 2017–2023.

While more frequent temporal resolutions could potentially offer insights into short-
term fluctuations, they might not capture the broader, more significant trends that defined
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LULC changes. Short intervals might lead to an oversimplification of complex processes,
making it challenging to discern meaningful patterns in the data. The chosen intervals
offered a balance, emphasizing the importance of long-term trends in urban expansion,
while acknowledging that LULC transformations require time to manifest fully.

Dhaka’s urbanization led to a substantial decrease in water bodies and barren land,
primarily due to the influx of migration. This rapid urbanization led to a 57% decline
in water bodies and a 91% reduction in barren land. The alteration of Dhaka’s LULC
highlighted the region’s dynamism and adaptability, but also underscored the need for
balance between development and ecological preservation.

The Gazipur district experienced significant urban expansion (Figures 4 and 5; Table 5)
from 1993 to 2023, with an 83% increase in built-up area. This growth was driven by urban
population and demands for infrastructural needs. Despite this, water bodies increased
by 8%, indicating expanding city boundaries in the nearby hinterland and protecting their
natural resources. The city’s industrial status attracted migrants, further exacerbating
the urbanization process. However, this rapid urbanization trajectory had consequences,
as evident by the significant 30% reduction in vegetation cover during the same period.
Failure to protect the green spaces not only disrupted the difficult ecological equilibrium,
but also brought adverse implications for biodiversity and triggered the LST across urban
and rural landscapes. The evolution of the Gazipur district displayed the intricate interplay
between urbanization, industrialization, and environmental sustainability. As the region
continued to chart its developmental course, striking balance between urban expansion
and ecological preservation remained imperative to ensure the long-term resilience.
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(c) 2005, (d) 2011, (e) 2017, and (f) 2023.

The findings of the study show a staggering surge of over 199% in Narayanganj’s total
built-up area. Concurrently, the urban landscape of Narayanganj witnesses a huge decline
of water bodies (i.e., around 43%). Moreover, there is a trend of decreasing vegetated
surfaces across Narayanganj, which is around 23%. Gazipur and Narayanganj stand as a
fundamental industrial hub that trigger the rapid urbanization. This urban transforma-
tion has facilitated the increase of vibrant commercial zones. Shifting LULC dynamics
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were observed in the Dhaka, Gazipur, and Narayangonj districts, and underscored rapid
urbanization, characterized by notable expansions in built-up areas.

One of the key differences observed was the rate of urban expansion. We recorded
a significant urban expansion of 339.13 km2 in the last 30 years, with an average annual
growth rate of 3.5%. This rate of change was notably higher than what was observed in
many developed regions, where urban growth tends to be more regulated and gradual. This
rapid urbanization in South Asian cities led to a more pronounced UHI effect, highlighting
the critical need for localized and adaptable LULC classification strategies.

The findings from Dhaka, Narayanganj, and Gazipur can be generalized to other
rapidly urbanizing regions facing similar environmental challenges. Many developing
countries experience LULC changes due to urban expansion, impacting local climates and
increasing LST. Like these districts, other areas may confront issues such as deforestation,
vegetation loss, and rising built-up zones, contributing to the UHI effect. This study offered
a framework for analyzing LULC changes and their climatic impacts (i.e., LST in particular)
in regions with comparable socio-economic conditions. By utilizing satellite imagery and
remote sensing techniques, similar evaluations can be conducted elsewhere to explore the
relationship between urban growth and environmental shifts.

However, generalizing these results to other regions may pose challenges due to
varying urbanization patterns, socio-economic contexts, regulatory measures, and envi-
ronmental factors. The methodology, reliant on Landsat data and summer month images,
may not be suitable for other regions with a different context. Additionally, limitations in
spatial resolution and regional specificity of data requirements may not capture local urban
dynamics. Broader application may require comparative studies across diverse regions to
validate the model.

3.3. Spatial Distribution Pattern of LST

Comparing different years using remote sensing imageries can still be appropriate
despite temperature anomalies as the analysis accounts for these variations. By selecting
imageries from the same season across different years, it helps control data skewness.
While inter-annual fluctuations in temperature exist, the comparison of LST between years
provides valuable insights into the long-term effects of urbanization and land use changes.
Throughout 1993 and 1999, during a period of tremendous urban growth, 39.21% of the
urban area’s water body transformed to NDBI, and the city’s regions showed maximum
temperature at 31.087 ◦C (Figures 6 and 7).
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Lowest temperature point of 19.92 ◦C and a transition of 10.17% from bare SVI to
NDVI occurred between 1999 and 2005. This suggests that farming and ecological progress
were slower at that time. On the other hand, the fastest rate of change occurred between
2017 and 2023, when the highest temperature was 36.52 ◦C. This pointed to a change in
land use, either toward larger-scale expansion or toward the existence of empty space. The
Gazipur and Narayanganj districts demonstrate the most notable change in LST from 2011
to 2017, which is approximately 33.51 ◦C. Also, the Narayanganj district shows the highest
rate of temperature increase from 2017 to 2023, which significantly has risen to 31.44 ◦C. In
2017–2023, the Gazipur district has demonstrated upward trajectories and risen to 31.38 ◦C
by 2023. Interestingly, this study ruminates that industrialization has been on the rise,
particularly in the past decade. The increase in LST in urban environments appears to
be caused by several causes, namely uncontrolled growth in urban areas, climate change,
and the disappearance of geophysical indicators and surface water sources in the study
area [67].

3.4. Pattern of the Biophysical Indices in Dhaka, Gazipur, and Narayangonj

This study addressed the potentials of confounding variables that may influence the
relationships between LST and various biophysical parameters by employing Spearman’s
correlation method. This approach goes beyond mere numerical values, allowing for a deeper
exploration of the complex interactions between LST dynamics and ecological parameters.
By analyzing the coefficients of different independent variables, such as NDBI, NDBAI, BSI,
SAVI, NDVI, MSI, NDWI, and MNDWI, this study carefully examined their individual and
combined effects on LST, thus reducing the impact of potential confounding variables.

Moreover, this study considers multiple environmental factors influencing LST, pro-
viding a more nuanced understanding of influential relationships. This multi-dimensional
examination enabled the study to identify both positive and negative correlations, highlight-
ing the intricate interplay among variables and mitigating the risk of drawing misleading
conclusions due to confounding influences.

The Dhaka, Gazipur, and Narayangonj districts are evolving with a significant shift in
NDBI, NDBSI, MNDWI, SAVI, and MSI values. Detailed information is summarized above
(Figures 8–10 and Table 6). The fluctuations in NDBI and NDBSI across the Dhaka district
offers insightful variations observed over the study period. Notably, the maximal value of
NDBI displays a gradual decline.
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Conversely, both NDBI and NDBSI decline to −0.773, while MNDWI, SAVI, and MSI
also hit their lowest points at −0.710. Particularly, SAVI and MSI surge to their highest
points at 0.726 and 0.552, respectively, shedding light on the intricate dynamics of vegetative
health and surface moisture content. These observations underscore the urgency for a
comprehensive policy framework aligned with these findings.

In Dhaka (Figure 8), the lowest values of NDVI, NDWI, and NDBAI were −0.335097,
−0.795, and −1.000, respectively. The eastern, southern, and middle western parts of
the city exhibited the lowest NDWI and bare impervious surfaces. Urgent integration of
sustainable environmental strategies and green infrastructure into planning policies would
require in this area. Noteworthy, fluctuations in NDWI were observed in the northern part,
ranging from −0.795 to 0.438. Over twenty years, the maximum NDVI decreased from
−0.335 to −0.833, and the minimum BSI declined from −0.207 to −0.471. Strategic planning
and policy interventions would be critical for promoting sustainable urban development,
aligning with environmental conservation goals.

Noteworthy (Figure 9), fluctuations in NDWI were observed in the northern part,
ranging from −0.795 to 0.438. Over twenty years, the maximum NDVI decreased from
−0.335 to −0.833, and the minimum BSI declined from −0.207 to −0.471. One of the main
takeaways of this study was that predominant direction of change in NDWI and NDVI
reduction within the Dhaka district, primarily attributed to the conversion of such areas
into a commercial zone. Specifically, a wide area (i.e., 89.87 km2) underwent conversion
into the use of residential purposes, constituting 32.4% of the total changes of barren land
were observed in the urban areas of Dhaka. This transformation was intricately linked to
the central urban growth of Dhaka, leading to expansion of the city. Consequently, there
arose a critical need to balance developmental demands with environmental conservation
efforts considering these evolving trends. Furthermore, an anticipated consequence of
the ecological alterations would be a notable shift in temperature dynamics, leading to
an unexpectedly warmer and shorter winter season compared to historical patterns, as
suggested by climate scientists [68].
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Table 6. Descriptive statistics of the spatial indices considered in this study.

Ye
ar

District Dhaka Gazipur Narayanganj

Biophysical Indices Max. Min. Mean Max. Min. Mean Max. Min. Mean

19
93

NDVI 0.597 −0.377 0.109 0.574 −0.241 0.166 0.578 −0.285 0.146

NDWI 0.451 −0.510 −0.029 0.315 −0.475 −0.079 0.397 −0.485 −0.044

NDBI 0.276 −0.733 −0.228 0.277 −0.795 −0.259 0.261 −0.683 −0.210

MNDWI 0.858 −0.418 0.220 0.847 −0.422 0.212 0.830 −0.424 0.203

SAVI 0.408 −0.178 0.115 0.396 −0.146 0.124 0.380 −0.134 0.122

MSI 0.732 −0.276 0.228 0.795 −0.277 0.259 0.683 −0.261 0.210

NDBAI −0.99 −0.999 −0.998 −0.997 −0.999 −0.998 −0.996 −0.999 −0.998

BSI 0.173 −0.383 −0.105 0.163 −0.377 −0.107 0.181 −0.395 −0.107

20
03

NDVI 0.617 −0.288 0.164 0.633 −0.224 0.204 0.604 −0.231 0.186

NDWI 0.426 −0.507 −0.040 0.323 −0.515 −0.095 0.377 −0.498 −0.060

NDBI 0.381 −0.665 −0.141 0.328 −0.752 −0.212 0.266 −0.646 −0.189

MNDWI 0.775 −0.480 0.147 0.791 −0.555 0.118 0.751 −0.468 0.141

SAVI 0.409 −0.109 0.149 0.397 −0.123 0.136 0.398 −0.073 0.162

MSI 0.665 −0.381 0.141 0.752 −0.328 0.212 0.646 −0.266 0.189

NDBAI −0.997 −0.999 −0.998 −0.996 −0.999 −0.998 −0.997 −0.999 −0.998

BSI 0.222 −0.403 −0.090 0.257 −0.393 −0.067 0.191 −0.405 −0.107
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Table 6. Cont.

Ye
ar

District Dhaka Gazipur Narayanganj

Biophysical Indices Max. Min. Mean Max. Min. Mean Max. Min. Mean

20
13

NDVI 0.638 −0.328 0.155 0.660 −0.234 0.212 0.611 −0.259 0.175

NDWI 0.447 −0.545 −0.049 0.335 −0.552 −0.108 0.406 −0.492 −0.042

NDBI 0.344 −0.735 −0.195 0.372 −0.793 −0.210 0.321 −0.663 −0.172

MNDWI 0.872 −0.518 0.177 0.787 −0.558 0.114 0.802 −0.506 0.147

SAVI 0.443 −0.114 0.164 0.459 −0.091 0.184 0.401 −0.086 0.157

MSI 0.735 −0.344 0.195 0.793 −0.372 0.210 0.663 −0.321 0.171

NDBAI −0.997 −0.999 −0.998 −0.996 −0.999 −0.998 −0.997 −0.999 −0.998

BSI 0.232 −0.415 −0.0917 0.234 −0.416 −0.091 0.233 −0.412 −0.089

20
23

NDVI 0.605 −0.263 0.171 0.599 −0.187 0.205 0.609 −0.195 0.207

NDWI 0.360 −0.505 −0.072 0.252 −0.510 −0.129 0.315 −0.504 −0.094

NDBI 0.310 −0.662 −0.175 0.324 −0.654 −0.164 0.300 −0.541 −0.120

MNDWI 0.714 −0.494 0.109 0.691 −0.508 0.091 0.658 −0.578 0.0399

SAVI 0.449 −0.117 0.165 0.456 −0.098 0.179 0.455 −0.067 0.193

MSI 0.662 −0.310 0.175 0.654 −0.324 0.164 0.541 −0.300 0.120

NDBAI −0.996 −0.999 −0.997 −0.996 −0.999 −0.997 −0.996 −0.999 −0.997

BSI 0.176 −0.399 −0.111 0.165 −0.396 −0.115 0.256 −0.422 −0.083

3.5. The Effect of Geophysical Characteristics on LST

The findings of this study underscore the considerable impacts of biophysiological
indices on LST, corroborating previous research [69]. The correlation matrix output (pre-
sented in (Figures 11 and 12) reveals the coefficients of different independent variables, or
driving factors, in predicting transition areas in LST. A positive and statistically significant
correlation was observed between the transition area from NDBI, NDBAI, BSI, and SAVI to
LST, indicating a link between urbanization, NDVI, MSI, NDWI, MNDWI, and LST changes.
Conversely, this research identified a negative correlation with LST, signifying the inverse
relationship among the LST and the geophysical indicators under consideration. There
is a complex interplay between LST dynamics and the complex dimensions of physical
parameters. By employing Spearman’s correlation, this study transcended mere statistical
analysis, delving into the intricate nuances of environmental interactions, as detailed in
Table 7.

A better comprehension of that complex relationship is enhanced by such result be-
tween ecological parameters and LST dynamics, having consequences for the development
of land use and the implementation of environmental ways of managing. The correlation
analysis unveiled complex associations between LST and various geophysical indices, shed-
ding light on the intricate dynamics governing thermal patterns. Notably, LST showed a
favorable correlation with (BSI) (r = 0.417) and SAVI (r = 0.571), underscoring their influence
on temperature dynamics.

Furthermore, a lower but evident significant connection was found between LST
and NDBI (r = 0.235), as well as NDBAI (r = 0.388). Conversely, MNDWI, NDVI, SAVI,
and NDWI displayed negative correlations with LST. These findings elucidate the com-
plex relationships between LST and geophysical parameters, providing valuable insights
into the complex interplay shaping thermal environments. To cope with the rapid tem-
perature of the influence exerted by ecological parameters on LST within the broader
scope of environmental research, particularly within the realms of ecological analyses,
this research highlighted the importance of evaluation and profound understanding of
dynamic processes. By directing attention to rapidly expanding regions, the formulation of
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well-informed policies within the area facilitated progress toward the adoption of more
sustainable environmental practices.
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Figure 11. Scatter plot of the correlation between LST and the spatial indices (red color: NDVI vs.
LST, green color: NDWI vs. LST, blue color: MNDWI vs. LST, magenta color: NDBI vs. LST).

Table 7. Correlation between the spatial indices and LST.

Biophysical
Index LST NDVI NDWI NDBI MNDWI SAVI MSI NDBAI BSI

LST 1 0.671 * −0.288 0.538 −0.517 0.572 −0.198 0.288 0.474

NDVI 0.671 * 1 0.072 0.786 ** −0.032 0.544 0.293 0.193 0.808 **

NDWI −0.288 0.072 1 −0.009 0.598 −0.295 −0.117 −0.600 0.223

NDBI 0.538 0.786 ** −0.009 1 −0.181 0.564 0.126 0.256 0.652 *

MNDWI −0.517 −0.032 0.598 −0.181 1 −0.422 0.587 −0.722 * 0.178

SAVI 0.572 0.544 −0.295 0.564 −0.422 1 0.063 0.595 0.022

MSI −0.198 0.293 −0.117 0.126 0.587 0.063 1 −0.177 0.215

NDBAI 0.288 0.193 −0.600 0.256 −0.722 * 0.595 −0.177 1 −0.077

BSI 0.474 0.808 ** 0.223 0.652 * 0.178 0.022 0.215 −0.077 1

* Correlation is statistically significant at the 0.05 level (two-tailed). ** The Pearson correlation is significant at the
0.01 level (two-tailed).
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3.6. Variables That Impact LST

This study also utilized the PCA technique to investigate the underlying factors in-
fluencing LST variations across the Dhaka, Gazipur, and Narayangonj districts (Table 8).
The results revealed that Factor 1, which accounted for 60.82% of the total variance, were
characterized by the interaction of NDWI and NDVI, reflecting water resources and veg-
etation cover. These factors emerged as crucial drivers of LST dynamics within urban
settings. Previous studies consistently emphasized the inverse connection within the
amount of greenery and LST, underlining the importance of vegetation areas and surface
water sources in mitigating the heat of urban areas. Additionally, Factor 2, explaining
20.49% of the variance and dominated by SAVI and MSI associated with decreasing water
body areas, highlighted the impact of human activities on LST. The existing literature af-
firmed that areas with extensive impervious surfaces tend to experience higher LST levels,
which was explained 10.84% by Factor 3 containing NDBI and NDBAI. Together, these
six factors elucidated over 80% of the total variance, providing valuable insights into the
complex drivers of LST dynamics across the study area.

This study offers valuable insights into how the ecological development of three districts
aligns with the principles of sustainable cities and communities. Also, the environmental
susceptibility to potential consequences was actively quantified, which is caused by the changing
patterns of LULC and environmental parameters over the Dhaka, Gazipur, and Narayangonj
districts, spanning 1993 to 2023. The findings underscore a substantial linkage between the
identified phenomena of the geophysical factors affecting LST and environmental sustainability.
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Table 8. Principal component analysis of the factors.

Spatial Index
Principal Component

1 2 3 4 5

NDVI 0.442 −0.208 0.359 −0.501 −0.476
NDWI 0.377 −0.283 −0.175 −0.273 0.275
NDBI −0.342 0.144 0.440 −0.283 0.200
MNDWI 0.262 −0.268 −0.370 0.206 0.396
SAVI 0.426 0.604 0.074 0.350 0.004
MSI 0.344 0.347 0.215 0.126 −0.040
NDBAI 0.262 −0.493 0.531 0.497 0.188
BSI 0.179 −0.235 −0.503 0.408 −0.681
Eigen Value 0.0082 0.0027 0.0014 0.0007 0.0002
Variance explained (%) 60.82 20.49 10.84 5.76 2.09
Cumulative (%) 60.82 81.31 92.15 97.91 100

4. Discussion

This study considered a detail investigation in exploring the relationship between
urban expansion and environmental dynamics, focusing on the effect of ecological changes
in rapidly growing urban areas. We found a direct relationship between LST and a declining
trend of green spaces in the last 30 years in the study area. This was accompanied by a
number of growing built-up areas and declining farmlands and water bodies. These
changes had a profound impact on local climate, particularly deteriorating the urban
temperature. Previous research showed that the loss of urban green spaces could lead to a
2–5 ◦C increase in LST due to reduced shading and evapotranspiration, while the absence
of water bodies exacerbated this effect by diminishing evaporative cooling, resulting in
up to 3 ◦C higher temperatures in surrounding areas [70]. Notably, our findings revealed
that the 2.6 ◦C increase in LST in Dhaka, Gazipur, and Narayanganj over the past 30 years
corresponded to a significant reduction in vegetation and water bodies.

A complex link between LST and several biophysical parameters has also been identi-
fied with a significantly strong association between LST and built-up areas (represented by
BSI and SAVI), highlighting the significance of urban material in capturing and releasing
the heat in raising the local temperature. Conversely, the negative relationship between LST
and land covers (represented by NDVI and NDWI) indicates a reduction in heat absorption
capacity through the natural cooling process. This strongly suggests the requirements of
green urban infrastructures such as urban parks, green roofs, and water bodies, which can
serve as effective mitigation strategies of adverse impacts of urbanization on local climate.
This has been echoed in Bangladesh’s National Urban Sector Policy and Dhaka Structure
Plan 2016–2035 [71–73], which emphasizes that sustainable infrastructure and green urban
spaces are critical. Furthermore, the connection between LST and physiological indices
provides information to urban planners and policymakers for adopting environmentally
friendly land use practices in the long run, which can significantly alleviate UHI effects,
thereby improving urban environmental quality and residents’ well-being.

Addressing the issues of ecological attributes with growing urbanization and climate
change requires comprehensive analysis that includes adaptive ecological sustainability
and environmental resiliency. This study underscores the importance of leveraging remote
sensing and GIS technologies for monitoring urban environmental changes for ensuring a
balance between development and ecology.

• The research reveals a strong association between alterations in vegetation cover
and the dynamics of climate change within the study regions. A notable correlation
between air temperature and the temporal shifts, suggesting a consistent trend toward
rising temperatures [74], highlighting the anticipated changes in climatic conditions
and ecological stability in the future.
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• By exploring the degree of interplay between biophysical factors, a clear understanding of the
evolving dynamics of region’s ecosystem has been established. This in-depth examination
provides a foundation for forecasting potential future urban development strategies.

• Throughout the period from 1993 to 2023, parameters, including NDVI, MSI, NDWI,
and MNDWI, exhibited significant fluctuations, predominantly demonstrating an
overall upward trend. Similarly, vegetation cover, as measured by the NDVI and
SAVI indices, experienced fluctuations, particularly notable at the onset of the study
period, with a slight inclination towards increase over time. Moreover, the statistical
association between NDWI and MNDWI with climatic parameters surpassed that of
NDBI, albeit marginally. This means that the study area underwent significant changes
and might require immediate attention to retain sustainability.

• The findings reveal a noteworthy and statistically significant connection between the
shift of various indices like NDBI, NDBAI, BSI, and SAVI to LST, which are closely
related to the air and soil temperatures [75]. This will indicate the issues related to
ground water retention, and changing the cropping patters in the study area.

• The study highlights the critical need for meticulous monitoring and understanding
the complex interplay between climate change and the dynamics of ecological systems.
Gaining the insights of these complex relationships is essential for effectively guid-
ing sustainable environmental management strategies and informing policymaking
initiatives within the region harmonized with government documents [76].

• The observations from this study reveal a potential divergence in the developmental
trajectories of the Dhaka and Gazipur regions, characterized by an increase in built-up
areas. These findings prompt further discussion on the potential ecological consequences
and implications for biodiversity conservation and urban planning strategies in these areas.

Note that scientific evidence suggests that there are options for an adaptive urban solution
tailored to local ecological dynamics [77]. Additionally, studies should investigate the long-
term urban expansion on LST while incorporating climate modeling techniques. By aligning
urban development with ecological sustainability, these efforts will contribute to the creation
of a temperature friendly and more livable urban environment. In South Asia, integrating
NBSs (nature-based solutions) with tools like GIS and GEE can help prioritize ecologically
sensitive areas. By combining green infrastructure with digital planning technologies, cities
can align urban growth to achieve environmental sustainability goals [78].

Furthermore, the ANOVA result revealed a F-statistic of 1.8549 and a p-value of 0.1906,
indicating no significant differences in precision among the years. The F-statistic, reflecting
the ratio of between-group variance to within-group variance, suggested that while varia-
tions exist, they were not statistically significant. The p-value exceeded the conventional
significance threshold of 0.05, leading to the acceptance of the null hypothesis, which
posited no significant differences in precision values over time. These findings implied
consistent performance of the classification model, indicating reliability in LULC assess-
ments across the years. The findings of this study highlight the significant influence of
urbanization and ecological parameters on LST in the Dhaka, Gazipur, and Narayangonj
districts. The correlations with biophysical indices, such as NDVI, SAVI, and BSI, indi-
cated that reduced vegetation and increased impervious surfaces contributed to elevated
temperatures in urban areas. To enhance the interpretation of these LST patterns, the
integration of urban thermal comfort models, such as PALM, SOLWEIG, MITRAS, Rayman,
and ENVI-met would be crucial.

For instance, ENVI-met [79] and PALM [80,81] could model microclimate dynamics
within the identified UHI zones, illustrating how LST variations impacted human thermal
comfort at a local level by accounting for factors like solar radiation and shading. These
models would complement our findings by linking LST data with human-perceived temper-
atures, providing a more comprehensive understanding of thermal discomfort. Moreover,
MITRAS model [82] could be applied to evaluate thermal stress in high-LST areas by
simulating individual exposure to solar radiation and air temperature. The correlations
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observed between LST and indices such as SAVI or BSI could be further interpreted through
Rayman to assess how surface temperature increases exacerbate heat stress [83–85].

Finally, larger-scale models like COSMO [86] could integrate meteorological factors
such as wind, humidity, and rainfall into the analysis, offering insights into how broader
climatic conditions contributed to LST variability. While this study primarily focused on
geophysical factors, incorporating thermal comfort models would provide a more holistic
view of the interaction between LST and human thermal experiences, reinforcing the
relevance of these findings for urban planning and sustainable development strategies.

Limitation and Future Research

This study highlighted the relationship between urbanization, environmental degrada-
tion, and the UHI effect, but several limitations must be acknowledged in future research.
The primary challenge was the reliance on cloud-free satellite data, which limited the dataset,
particularly in a tropical region like Bangladesh. While cloud masking techniques were
applied, the data quality could still impact the accuracy of land use and land cover LULC
classifications. Additionally, manual interpretation of satellite imagery introduced potential
for human error, especially when distinguishing between similar land cover types such as
vegetation and built-up areas. The 30 m spatial resolution of Landsat imagery also restricted
the precision of the analysis, particularly in densely urbanized or heterogeneous areas. Future
research could address these limitations by incorporating higher-resolution satellite data,
such as Sentinel-2 or commercial platforms, which provided finer spatial details. Automated
machine learning methods, such as convolutional neural networks (CNNs), could further
improve classification accuracy by reducing manual errors and better capturing land-cover
changes. Beyond surface temperature and LULC, future research should consider integrating
additional environmental variables, such as air quality, humidity, and real-time ground-based
sensor data. This would offer a more comprehensive view of urban environmental dynamics.
Furthermore, exploring the socio-economic impacts of UHI and assessing mitigation strategies
like green infrastructure could inform more sustainable urban planning practices.

5. Conclusions

Employing a combination of GIS and remotely sensed data tools, this research exam-
ined ecological trends, alterations to the landscape, and fluctuations in ground temperature
in the Dhaka, Gazipur, and Narayanganj regions spanning 1993 to 2023. Through the
analysis of multi-stage remote sensing data and spatial metrics, we delineated the complex
interplay between urban expansion, environmental transformations, and their consequent
effects on local climate. Consequently, we explored the influence of urban development
(i.e., urban built-up areas) and water body reductions in LST changes during peak summer
season. The results demonstrated that the temperature (i.e., LST) surpassed 36.52 ◦C in
some heavily built-up areas.

Our findings revealed a prominent correlation between LST and biophysical indicators
such as the BSI and SAVI, whereas weak relationships were observed with the NDBI and
NDBAI. Conversely, MNDWI, MSI, NDVI, SAVI, and NDWI exhibited negative associations
with LST. This underscored the intricate linkage between urbanization, ecological changes,
and escalating surface temperatures, marking a trend toward rising urban heat. Moreover, the
association of LST with NDVI and NDBI was found to be slightly positive, which demonstrated
the influence of water bodies and natural resources on the positive trend of LST changes.

This research paper emphasizes the necessity of incorporating sustainable urban devel-
opment and green infrastructure into urban planning. Our findings strongly emphasize the
need to prioritize urban parks, green roofs, and water-sensitive urban designs to mitigate
LST effectively. Additionally, restoring water bodies, enforcing sustainable zoning laws,
and fostering public–private partnerships are essential to enhance green infrastructure.
Aligning these strategies with national policies would not only mitigate UHI impacts, but
also improve the quality of urban life and ensure long-term ecological resilience. The in-
sights derived from this research might offer valuable guidance in order to promote secure
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and habitable cityscapes in the areas with similar urban characteristics. By embracing these
sustainable practices, cities could better adapt to the potential impacts of climate change.
Of note, we recommend that researchers collect reliable datasets prior to adopting the
methods applied in this research at other geographical locations.
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Appendix A

Table A1. Measurements for evaluating the models of the categorized data.

D
is

tr
ic

t

Ye
ar Parameter Built-Up Waterbody Barren

Land Vegetation Accuracy Macro
Avg.

Weighted
Avg.

D
ha

ka

19
93

Accuracy 0.885 0.887 0.833 0.897 0.899 0.871 0.890
Recall 0.893 0.869 0.759 0.865 0.899 0.873 0.809

F1-score 0.949 0.893 0.795 0.881 0.899 0.891 0.898
AUC 0.881 0.909 0.867 0.920

19
99

Accuracy 0.867 0.865 0.965 0.967 0.868 0.894 0.868
Recall 0.700 0.712 0.912 0.989 0.868 0.921 0.867

F1-score 0.827 0.838 0.938 0.978 0.868 0.846 0.867
AUC 0.883 0.852 0.952 0.990

20
05

Accuracy 0.817 0.787 0.818 0.887 0.852 0.864 0.921
Recall 0.752 0.869 0.750 0.869 0.852 0.863 0.922

F1-score 0.835 0.793 0.783 0.878 0.852 0.868 0.921
AUC 0.566 0.909 0.865 0.922

20
11

Accuracy 0.548 0.864 0.905 0.893 0.893 0.927 0.840
Recall 0.760 0.863 0.809 0.809 0.893 0.911 0.840

F1-score 0.854 0.868 0.854 0.801 0.893 0.918 0.839
AUC 0.870 0.868 0.900 0.840

20
17

Accuracy 0.848 0.875 0.773 0.844 0.851 0.875 0.880
Recall 0.803 0.854 0.680 0.835 0.851 0.854 0.871

F1-score 0.860 0.874 0.723 0.840 0.851 0.864 0.860
AUC 0.971 0.936 0.835 0.904

20
23

Accuracy 0.844 0.929 0.833 0.739 0.891 0.861 0.904
Recall 0.827 0.875 0.682 0.837 0.891 0.840 0.901

F1-score 0.835 0.854 0.750 0.785 0.891 0.848 0.902
AUC 0.842 0.864 0.838 0.892
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Table A1. Cont.

D
is

tr
ic

t

Ye
ar Parameter Built-Up Waterbody Barren

Land Vegetation Accuracy Macro
Avg.

Weighted
Avg.

N
ar

ay
an

ga
nj

19
93

Accuracy 0.875 0.884 0.837 0.864 0.857 0.853 0.877
Recall 0.875 0.892 0.785 0.853 0.857 0.849 0.877

F1-score 0.875 0.888 0.892 0.859 0.857 0.851 0.877
AUC 0.935 0.885 0.887 0.872

19
99

Accuracy 0.911 0.882 0.857 0.813 0.860 0.916 0.884
Recall 0.898 0.833 0.837 0.925 0.860 0.898 0.880

F1-score 0.905 0.857 0.785 0.865 0.860 0.891 0.897
AUC 0.941 0.858 0.892 0.936

20
05

Accuracy 0.883 0.833 0.844 0.897 0.907 0.926 0.938
Recall 0.838 0.682 0.887 0.897 0.907 0.925 0.937

F1-score 0.909 0.750 0.795 0.897 0.907 0.925 0.937
AUC 0.848 0.838 0.842 0.939

20
11

Accuracy 0.870 0.869 0.941 0.887 0.912 0.915 0.894
Recall 0.920 0.848 0.864 0.907 0.912 0.910 0.892

F1-score 0.895 0.858 0.901 0.893 0.912 0.912 0.892
AUC 0.936 0.862 0.928 0.940

20
17

Accuracy 0.920 0.833 0.868 0.845 0.848 0.898 0.909
Recall 0.932 0.682 0.846 0.825 0.848 0.874 0.908

F1-score 0.92 0.750 0.905 0.835 0.848 0.884 0.898
AUC 0.948 0.838 0.864 0.898

20
23

Accuracy 0.915 0.833 0.729 0.797 0.896 0.852 0.905
Recall 0.928 0.882 0.729 0.763 0.896 0.847 0.906

F1-score 0.891 0.850 0.729 0.780 0.896 0.850 0.905
AUC 0.884 0.838 0.854 0.866

G
az

ip
ur

19
93

Accuracy 0.727 0.788 0.809 0.833 0.919 0.851 0.849
Recall 0.571 0.879 0.809 0.882 0.919 0.835 0.849

F1-score 0.640 0.884 0.809 0.850 0.919 0.840 0.848
AUC 0.782 0.872 0.893 0.838

19
99

Accuracy 0.811 0.877 0.837 0.857 0.878 0.896 0.850
Recall 0.811 0.894 0.837 0.846 0.878 0.872 0.850

F1-score 0.811 0.886 0.837 0.898 0.878 0.883 0.850
AUC 0.897 0.866 0.910 0.920

20
05

Accuracy 0.902 0.833 0.816 0.825 0.877 0.869 0.858
Recall 0.881 0.782 0.889 0.854 0.877 0.865 0.857

F1-score 0.892 0.850 0.851 0.839 0.877 0.866 0.857
AUC 0.935 0.838 0.934 0.870

20
11

Accuracy 0.905 0.973 0.837 0.950 0.858 0.916 0.848
Recall 0.962 0.888 0.783 0.851 0.858 0.896 0.848

F1-score 0.933 0.881 0.809 0.898 0.858 0.905 0.848
AUC 0.872 0.870 0.883 0.922

20
17

Accuracy 0.871 0.873 0.840 0.819 0.839 0.888 0.929
Recall 0.921 0.869 0.750 0.908 0.839 0.887 0.929

F1-score 0.821 0.871 0.792 0.861 0.839 0.886 0.928
AUC 0.953 0.864 0.865 0.938

20
23

Accuracy 0.905 0.867 0.682 0.776 0.873 0.832 0.908
Recall 0.934 0.882 0.341 0.868 0.873 0.781 0.913

F1-score 0.899 0.874 0.455 0.819 0.873 0.792 0.907
AUC 0.836 0.876 0.665 0.920
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