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Abstract: Asthma remains a prevalent chronic condition, impacting millions globally and
presenting significant clinical and economic challenges. This study develops a predic-
tive model for asthma outcomes, leveraging automated machine learning (AutoML) and
explainable AI (XAI) to balance high predictive accuracy with interpretability. Using a
comprehensive dataset of demographic, clinical, and respiratory function data, we em-
ployed AutoGluon to automate model selection, optimization, and ensembling, resulting
in a model with 98.99% accuracy and a 0.9996 ROC-AUC score. SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations) were applied
to provide both global and local interpretability, ensuring that clinicians can trust and
understand model predictions. Additionally, counterfactual analysis enabled hypothetical
scenario exploration, supporting personalized asthma management by allowing clinicians
to assess potential interventions for individual patient risk profiles. To facilitate clinical
adoption, a Streamlit v1.41.0 application was developed for real-time access to predictions
and interpretability. This study addresses key gaps in asthma prediction, notably in model
transparency and generalizability, while providing a practical tool for enhancing personal-
ized care. Future research could expand the validation across diverse patient populations
to reinforce the model’s robustness in broader clinical environments.

Keywords: asthma prediction; machine learning; AutoML; explainable AI; SHAP;
LIME; counterfactual analysis; healthcare predictive modeling; personalized medicine;
Streamlit application

1. Introduction
Asthma is a chronic respiratory condition that affects over 262 million people world-

wide and leads to considerable morbidity, recurrent hospitalizations, and substantial
healthcare costs [1]. Managing asthma effectively is challenging due to the variability
in patient responses and the condition’s sensitivity to both clinical and environmental
factors [2]. Consequently, there is an increasing need for advanced tools that can predict
asthma exacerbations and guide personalized treatment interventions [3]. Such predictive
tools could significantly improve patient outcomes by enabling early intervention and
customized management strategies tailored to individual risk profiles [4].

Machine learning (ML) has shown significant promise in predictive modeling for
healthcare, especially for complex conditions like asthma [5]. Recent studies have demon-
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strated that ML models can uncover patterns within multidimensional datasets and identify
at-risk patients more accurately than traditional statistical methods [6]. For instance, pre-
dictive models have successfully utilized diverse clinical and demographic factors, such as
breathing difficulties, allergies, and early-life health indicators, to forecast asthma risk in
pediatric and adult populations [7]. However, most of these models prioritize accuracy
without addressing interpretability, which is critical in clinical settings where transparency
and trust are essential. Models that lack explainability are often regarded as “black boxes”,
making it challenging for clinicians to understand and validate their predictions, thus limit-
ing their clinical acceptance and practical utility [8].

AutoML frameworks have emerged as a powerful solution, democratizing access to
ML by automating model selection, hyperparameter tuning, and optimization tasks [9].
AutoML allows healthcare practitioners with limited ML expertise to develop robust
models with minimal intervention, potentially enabling the broader adoption of predictive
modeling in clinical environments [10]. However, while AutoML has shown substantial
benefits in terms of model development speed and predictive performance, challenges
persist. These include difficulties in handling imbalanced and high-dimensional healthcare
data as well as limitations in the interpretability tools available within some AutoML
platforms. Additionally, models trained on isolated datasets often lack generalizability and
perform inconsistently across diverse patient populations and healthcare settings [11].

XAI offers a means to address interpretability challenges in predictive healthcare
models, enabling clinicians to understand the rationale behind ML model predictions. XAI
techniques such as SHAP and LIME have gained prominence for providing global and local
insights into model decision-making processes [12]. SHAP allows for a comprehensive
assessment of feature importance across a dataset, highlighting how specific clinical and
demographic factors influence asthma predictions [5]. In contrast, LIME focuses on instance-
specific explanations, making it possible to interpret individual predictions, which is
particularly valuable in patient-centered care [12]. Recent developments in hybrid XAI
methods, which combine multiple interpretability techniques, further underscore the
potential of XAI to enhance the transparency of complex AI-driven models [13].

While XAI techniques are becoming more common in ML applications, the use of
counterfactual analysis, a method that allows clinicians to simulate hypothetical “what-if”
scenarios, remains underexplored in asthma prediction [14]. Counterfactual analysis can
be instrumental in personalized medicine by enabling healthcare providers to model how
specific interventions or behavioral changes might influence a patient’s risk profile [15].
This approach can provide valuable insights for preventive care, especially in chronic
diseases like asthma, where small adjustments in medication, lifestyle, or environmental
factors can have a significant impact on patient outcomes. Thus, the integration of counter-
factual analysis with predictive models could offer actionable insights, further enhancing
the clinical utility of AI-driven asthma prediction [16].

Despite advancements in ML and AutoML for healthcare applications, most predictive
models for asthma have been validated within isolated datasets, limiting their generaliz-
ability. Generalizable models are essential to ensure consistent performance across various
populations and clinical settings [17]. For instance, ML models validated exclusively on
pediatric cohorts or in specific healthcare institutions may fail to generalize to broader
populations due to differences in demographic characteristics, environmental factors, or
treatment protocols. Addressing this limitation requires rigorous cross-validation and
external validation across diverse datasets, which can help mitigate bias and improve
model robustness.

This study uniquely integrates AutoML, SHAP, LIME, and counterfactual analysis
to bridge the gap between high predictive accuracy and interpretability. Unlike previous
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studies, which often focused solely on statistical improvements or theoretical aspects, our
approach provides actionable insights into individual patient risk profiles. For instance,
counterfactual scenarios enable clinicians to explore the impact of medication adjustments
on predicted outcomes, thereby fostering tailored asthma management strategies.

By focusing on the dual objectives of predictive power and transparency, this study
aims to deliver a practical, clinician-friendly tool that supports proactive, patient-centered
care. The integration of real-time usability through the Streamlit application further under-
scores the practicality of our model in clinical workflows.

The literature reveals several critical gaps that this study aims to address.

• While predictive accuracy has been the primary focus of many asthma prediction stud-
ies, few have incorporated explainable AI techniques to enhance model transparency.
By integrating SHAP and LIME, this study aims to develop an interpretable model
that allows healthcare providers to understand and trust predictive outputs.

• Existing models have often been validated on isolated datasets, limiting their appli-
cability to diverse patient populations and healthcare systems. This study addresses
this issue by focusing on model validation techniques and exploring ways to enhance
robustness across different demographic and clinical contexts.

• Although counterfactual analysis offers valuable insights for intervention planning,
its application in asthma prediction remains largely unexplored. This study will
incorporate a counterfactual analysis to simulate hypothetical treatment scenarios,
providing clinicians with actionable insights for personalized asthma management.

This study aims to develop an interpretable and generalizable AutoML-based pre-
dictive model for asthma outcomes, focusing on the likelihood of asthma-related hospital
visits. By employing SHAP and LIME, the model will provide transparent predictions
that enhance clinician trust and usability. Counterfactual analysis will enable the explo-
ration of “what-if” scenarios, supporting personalized medicine approaches that align with
patient-specific needs. By addressing these research gaps, this study contributes to the
advancement of predictive modeling in asthma management, setting a foundation for the
deployment of interpretable, actionable, and reliable AI tools in clinical environments.

The paper is structured as follows: Section 2 reviews current methods for asthma
prediction and identifies existing gaps and opportunities. Section 3 details the methodology,
including the integration of AutoML and XAI. Section 4 presents the experimental findings,
followed by a discussion in Section 5, which explores the implications, limitations, and
future directions. The paper concludes in Section 6 with key takeaways and suggestions
for advancing interpretable and reliable predictive models for healthcare.

2. Literature Review
This literature review aims to explore key studies and advancements in the field of

predictive modeling for asthma and related respiratory conditions. It highlights the role of
machine learning, AutoML, and explainable AI techniques, such as SHAP, LIME, and coun-
terfactual analysis, in improving asthma prediction models. Additionally, the review iden-
tifies gaps in the current research, including challenges related to model generalizability,
interpretability, and real-world deployment. By examining these areas, this review provides
a comprehensive overview of state-of-the-art methodologies and their implications for
healthcare predictive modeling.

2.1. Predictive Modeling in Asthma and Respiratory Healthcare

Machine learning models have shown promise in predicting asthma outcomes, en-
abling a more accurate assessment of high-risk patients by identifying complex patterns
in patient data. These studies highlight the critical role of ML in early intervention and
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asthma management. Despite significant advances in predictive accuracy, the integration
of explainability remains a challenge. Studies such as [18,19] emphasize the importance
of transparent AI systems in healthcare. These models often fail to address the need for
deployment-ready solutions or the integration of XAI methods, leaving gaps in their us-
ability for clinicians. Table 1 summarizes the key studies that focus on predictive modeling
of asthma, highlighting their major findings and limitations.

Table 1. Key studies on predictive modeling in asthma.

Study Focus Key Findings Limitations

[20] Pediatric asthma
hospitalization prediction

Improved accuracy over traditional
methods using ML

Limited interpretability; lacks
transparency

[21] Childhood asthma
risk factors

Random forest model identified
breathing difficulty and allergies as

key predictors

Emphasis on accuracy, with limited
exploration of explainability

[22]
Ensemble model for
asthma exacerbation

prediction

Ensemble learning showed potential
for individualized asthma treatment

Complex model structure; challenges
in clinical application

[23] Systematic review of
asthma prediction methods

Identified the need for standardized
approaches in asthma prediction

Lack of unified methods limits model
comparability across studies

[24] Early-life non-biological
factors for pediatric asthma

Non-invasive factors like maternal
asthma, atopy, and antibiotic exposure

can predict asthma onset

Limited generalizability; data mainly
from pediatric cohort

[25] Affinity graph-enhanced
classifier using biomarkers

Blood biomarkers showed predictive
potential but struggled with overfitting

due to a small sample size

Limited dataset size and complex
structure increase overfitting risk

2.2. Automated Machine Learning (AutoML) for Clinical Predictions

AutoML frameworks have democratized access to machine learning in healthcare,
allowing clinicians to develop predictive models with minimal expertise. By democratizing
access to machine learning, AutoML frameworks lower barriers for healthcare practition-
ers who lack technical expertise. This ensures that advanced predictive models can be
developed and deployed without the need for in-depth programming or data science
knowledge. For instance, tools like AutoGluon simplify the modeling process, enabling
broader participation in AI-driven healthcare innovations. This democratization not only
promotes inclusivity, but also accelerates the adoption of AI solutions in resource-limited
settings, where technical expertise may be inadequate [9,10]. By automating tasks like
model selection, hyperparameter tuning, and optimization, AutoML reduces the technical
barrier for practitioners, fostering broader adoption of advanced machine learning tools in
clinical environments. However, while AutoML has shown substantial benefits in model
development speed and predictive performance, challenges persist. These include difficul-
ties in handling imbalanced and high-dimensional healthcare data, as well as limitations
in interpretability tools available within some AutoML platforms. Challenges related to
data quality and computational constraints also remain. Table 2 summarizes studies that
explore the role of AutoML in healthcare, with a focus on its efficiency and limitations.

One significant method for addressing the interpretability challenges inherent in Au-
toML frameworks is the use of counterfactual analysis. This technique enables clinicians to
explore hypothetical “what-if” scenarios, providing patient-specific insights that counter-
balance the perceived opacity of AutoML models. For example, counterfactual analysis
allows clinicians to simulate how changes in key variables, such as medication dosage or
pulmonary function test results, might influence a patient’s risk of asthma exacerbation.
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This ability to test interventions virtually offers an actionable understanding of model
outputs, thereby enhancing trust and usability in clinical settings.

Table 2. Key studies on AutoML applications in healthcare.

Study Focus Key Findings Limitations

[26] AutoML’s accessibility in
clinical settings

AutoML can rival traditional ML by
automating complex tasks

Lack of interpretability tools in some
AutoML systems

[10]
AutoML for model

selection and
hyperparameter tuning

AutoML frameworks enhance
efficiency and reduce model

development time

High computational demands for
large datasets

[27] AutoML applications in
healthcare

Demonstrated AutoML’s efficiency in
model development, beneficial for

non-expert clinicians

Limited data processing capabilities;
may require additional data

preprocessing

[28]
AutoML with large,
complex healthcare

datasets

AutoML can manage large datasets but
faces challenges with

high-dimensional data and imbalance

Requires preprocessing steps for data
balancing and dimensionality

reduction

[29]
AutoML for imbalanced

datasets in clinical
predictions

Highlighted the need for proper
preprocessing for balanced datasets

in AutoML

Imbalanced datasets and missing
values can mislead AutoML

performance

[30]
Checklist for selecting
AutoML platforms in

healthcare

Proposed criteria for evaluating
AutoML tools, including

interpretability and data quality

Checklist does not address
deployment limitations in real-time

clinical environments

Counterfactual scenarios provide intuitive explanations that are particularly valuable
in patient-centered care. They help bridge the gap between complex black-box models and
the actionable insights required for personalized treatment planning. Additionally, the
ability to simulate specific interventions aligns with the goals of personalized medicine, in
which treatment strategies are tailored to individual patient profiles. Recent studies have
underscored the importance of counterfactual reasoning in enhancing the interpretability
and clinical applicability of machine learning models, particularly in chronic disease
management scenarios like asthma [14,15].

Another critical challenge in AutoML applications is the potential for bias arising from
isolated datasets. Models trained on such datasets may fail to effectively generalize across
diverse patient populations and healthcare settings. To address this limitation, rigorous
statistical techniques are required.

Stratified sampling ensures that key subgroups within the dataset are proportionally
represented in both the training and validation subsets, mitigating the risk of system-
atic bias. External validation—testing the model on independent datasets from diverse
populations—is another essential step in evaluating robustness. For instance, this study
validated its model using the Childhood Asthma Management Program (CAMP) dataset
alongside the primary Kaggle dataset, ensuring its applicability across pediatric and gen-
eral populations.

Future work should explore additional statistical approaches for bias mitigation, such
as propensity score matching or domain adaptation methods. These techniques can further
enhance the generalizability of AutoML models, ensuring consistent performance across
various clinical environments.

The integration of interpretability techniques like counterfactual analysis, combined
with rigorous validation protocols, highlights the potential of AutoML to deliver actionable,
reliable, and generalizable AI tools for clinical decision-making. As AutoML continues
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to evolve, addressing these challenges will be pivotal for translating machine learning
advancements into real-world healthcare applications.

2.3. Explainable AI for Model Transparency

Explainable AI (XAI) addresses the “black-box” nature of many machine learning
models by providing insights into predictions, thereby building trust in AI-driven health-
care applications. Table 3 outlines the significant studies in the area of XAI, particularly its
application in clinical predictions and asthma.

Table 3. Key studies on XAI in healthcare.

Study Focus Key Findings Limitations

[31] Overview of XAI applications XAI provides transparency by explaining AI
decision-making processes

XAI implementation in clinical models
remains limited

[32] XAI for understanding
model behavior

XAI helps predict model strengths, weaknesses,
and future behavior

Emphasis on theoretical aspects with limited
practical applications

[33] Interpretability in clinical
predictions

Interpretability builds trust, enabling clinicians
to validate predictions

Focuses on local interpretability; lacks global
feature insights

[34] Rule-based explanations for
asthma prediction

Rule-based models guide resource allocation in
asthma care

Limited integration of XAI with more complex
ML algorithms

[35] XAI techniques: Saliency maps
and SHAP

Categorizes XAI into interpretable models and
post-hoc explanations for black-box models

Does not address hybrid XAI methods for
deep learning

[36] Hybrid explanation methods
Combining saliency maps, LIME, and SHAP

offers comprehensive insights into
complex models

Hybrid methods are computationally
intensive, limiting their application in

real-time predictions

The integration of XAI techniques like SHAP and LIME has proven to be highly bene-
ficial in elucidating model decisions. For instance, SHAP offers global insights into feature
importance, enabling clinicians to understand the overall influence of specific variables
on model predictions. Conversely, LIME provides instance-level interpretability, helping
explain individual predictions. However, studies such as [37] underscore the computational
challenges associated with these methods, particularly in real-time applications.

Counterfactual analysis, although less commonly employed in asthma prediction,
holds significant potential for personalized medicine. By enabling “what-if” scenario
simulations, counterfactual analysis provides actionable insights that support clinicians in
tailoring interventions to individual patient profiles.

2.4. Counterfactual Analysis in Healthcare Predictions

Counterfactual analysis provides actionable insights by simulating hypothetical sce-
narios, a valuable tool for understanding potential interventions in chronic conditions like
asthma. Table 4 summarizes the studies on counterfactual analysis and its potential for
asthma prediction and personalized medicine.

Table 4. Key studies on counterfactual analysis in healthcare.

Study Focus Key Findings Limitations

[38] Counterfactuals in asthma
prediction

Hypothetical scenarios assist clinicians
in evaluating potential interventions

for reducing asthma risks

Limited data scope for counterfactual
simulations

[39] Counterfactuals in
precision medicine

Allows for personalized treatment by
exploring how changes in features

might impact outcomes

Primarily theoretical; limited
applications in practical healthcare
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2.5. Deployment and Generalizability Challenges

Generalizability remains a challenge, as many ML models in healthcare have been
developed using isolated datasets, which limits their applicability across different popula-
tions. Table 5 presents studies that highlight the challenges related to the generalizability
of healthcare models across different populations and clinical environments.

Table 5. Key studies on generalizability in healthcare.

Study Focus Key Findings Limitations

[40]
Generalizability in

SEER-based analysis for
metastasis prediction

Retrospective data analysis requires
cross-validation for broader applicability

Dependence on imputed values
may introduce bias

[41]
Generalizability challenges

in acute kidney
injury prediction

Highlights the need for diverse datasets to
ensure robustness across

healthcare settings

Retrospective design risks
overfitting and lacks prospective

validation

[42] Early-life respiratory
prediction

Early predictors must be validated across
various demographics to account for

genetic/environmental variations

Limited ethnic diversity in early
prediction studies

[43]
Deployment issues for

respiratory disease
classification

Data security, privacy, and system
integration are essential for deployment in

real-world settings

Deployment readiness hindered
by data security and

integration challenges

[44] Enhancing generalizability
with preprocessing

Proposed methods to improve AutoML
robustness in ICU mortality predictions
through feature selection and SMOTE

Limited focus on
cross-institutional model

validation

AI adoption in clinical settings is often hindered by skepticism from healthcare
providers and infrastructure limitations. Resource constraints, training requirements, and
integration with existing electronic health record systems pose significant challenges.
This study addresses these issues by developing a user-friendly Streamlit application
and incorporating features to ensure its seamless integration into clinical workflows.

2.6. Contribution of the Study

This study surpasses prior work by combining the predictive capabilities of AutoML
with XAI methods like SHAP and counterfactual analysis, providing a transparent and gen-
eralizable model for asthma management. The use of dual datasets—the Kaggle dataset for
its extensive demographic and clinical details and the CAMP dataset for its longitudinal pe-
diatric focus—ensures robustness across diverse populations, enabling the model to address
variations in patient profiles and clinical settings. This comprehensive approach further
enhances the model’s clinical relevance and applicability in real-world healthcare scenarios.

3. Methodology
This study aims to develop an interpretable predictive model for asthma outcomes

using AutoML and XAI techniques. The methodology consists of several steps, including
data collection and preprocessing, model development using AutoML, and evaluation of
model performance. Generalization is performed to ensure that the model can perform
reliably across different patient populations and in real-world clinical settings. The inte-
gration of interpretability techniques further enhances transparency and clinical utility,
while counterfactual analysis supports personalized intervention planning.
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3.1. Data Collection and Preprocessing
3.1.1. Data Source

The dataset used in this study is publicly available on Kaggle (https://www.kaggle.
com/datasets/jassonus122332/budesonide-nedocromil (accessed on 10 October 2024)),
consisting of anonymized patient records related to asthma outcomes. It was selected for
its comprehensive demographic and clinical data, which included a balanced sample of pa-
tients with and without asthma exacerbations. This balance ensures that that the model can
learn from both positive and negative cases, contributina g to a robust prediction capability.

The Kaggle dataset includes several key features relevant to asthma management.

• Demographics: Data on age, gender, ethnicity, and socio-economic status.
• Clinical Measurements: Pulmonary function test results, such as pre-forced vital

capacity (PREFVC), pre-forced expiratory volume (PREFEV), and post-forced peak
flow (POSFP).

• Medication History: Information on dosages and frequencies of medications like
Budesonide and Nedocromil.

• Environmental Factors: Limited data on exposure to allergens and air quality indices.

While the dataset offers valuable insights, it has some limitations.

• Urban Bias: The dataset is primarily derived from urban healthcare systems, which
may not fully represent rural or underserved populations.

• Lack of Longitudinal Data: The absence of longitudinal data limits the ability to
analyze temporal patterns of asthma exacerbations.

• Missing Environmental and Socio-economic Variables: The dataset lacks detailed data
on environmental and socio-economic factors, which could impact the model’s predic-
tions.

To ensure the generalizability of the model, we complemented the Kaggle dataset
with the Childhood Asthma Management Program (CAMP) dataset for external validation.
The CAMP dataset provides longitudinal data on pediatric patients with asthma, offering
a valuable dimension of diversity. It covers a broader range of demographic and clinical
characteristics, allowing the model to be tested on pediatric cases, which introduces differ-
ent clinical variables compared to the adult population in the Kaggle dataset. Integrating
both datasets improves the model’s reliability and accuracy across diverse patient groups.

While the Kaggle and CAMP datasets provide a solid foundation, expanding the
dataset diversity is crucial. Incorporating additional data sources can enhance the model’s
generalizability and fairness in diverse clinical settings. Potential sources include the following:

• International Repositories: Datasets from regions like Asia, Africa, and South America
to provide a global perspective on asthma outcomes.

• Rural Healthcare Records: Data from rural healthcare systems to address existing
biases and improve the model’s applicability to underserved populations.

• Specialized Cohorts: Datasets with specific populations, such as those with genetic
predispositions or unique environmental exposures, would provide further insights
into how these factors influence asthma outcomes.

Expanding the dataset diversity would allow the model to capture a broader range
of socio-economic, environmental, and genetic factors, ensuring more equitable and accu-
rate predictions. This approach is essential for the model’s widespread clinical adoption,
making it relevant to diverse patient populations and improving its overall fairness and
effectiveness.

https://www.kaggle.com/datasets/jassonus122332/budesonide-nedocromil
https://www.kaggle.com/datasets/jassonus122332/budesonide-nedocromil
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3.1.2. Feature Engineering

Feature engineering plays a critical role in enhancing the predictive performance of a
model by selecting, transforming, and preparing relevant features for training. The process
involves identifying clinically significant variables, addressing issues like class imbalance,
and ensuring compatibility with machine learning algorithms. The following steps were
undertaken to engineer the features of this study:

• Feature Selection: Initial exploratory data analysis was performed to identify clinically
relevant features and exclude non-informative columns, such as unique identifiers,
that do not contribute to the predictive power of the model. This step ensured that
only the relevant variables related to asthma outcomes were included in the model.

• Clinical and Demographic Variables: The features retained for analysis included im-
portant clinical and demographic variables, such as age, gender, pulmonary function
test results (e.g., pre-forced vital capacity [PREFVC] and pre-forced expiratory vol-
ume [PREFEV]), medication type and dosage (with a focus on Budesonide dosage),
and clinical history. These features have been established as significant predictors
in asthma-related studies, contributing to the model’s ability to capture key factors
influencing asthma outcomes.

• Encoding Categorical Variables: To prepare the categorical data for model training, La-
bel Encoding was applied to the Ethnic variable using LabelEncoder from the sklearn
library. This encoding transformed categorical ethnicity data into numerical values,
enabling compatibility with machine learning algorithms. Other categorical variables,
such as medication type, were similarly prepared to ensure seamless integration with
the AutoML framework.

• Synthetic Sample Addition and Balancing the Dataset Using SMOTE: To address class
imbalance in the dataset, we utilized the Synthetic Minority Oversampling Technique
(SMOTE), applied with k_neighbors = 2. SMOTE generates synthetic samples for the
minority class by interpolating between existing data points, preserving variability, and
reducing the risk of overfitting. This method creates a balanced dataset by increasing
the representation of positive asthma outcomes and ensuring even distribution across
classes. The features and target variables were recombined into a balanced dataset for
model training to ensure equitable learning across both classes.

• Scaling and Normalization: Numerical features, particularly those with varying units
and ranges (e.g., lung function measurements and medication dosages), were standard-
ized to improve model convergence and consistency in performance. This standard-
ization process helped ensure that all features contributed equally to model training,
regardless of their original scale.

3.1.3. Data Splitting

An 80-20 split was applied to divide the dataset into training and validation sets. This
decision, grounded in standard machine learning practices, balances training efficiency
with validation integrity. The split was stratified to maintain the proportion of asthma and
non-asthma cases in both sets, ensuring that the model evaluation remained representative
of the entire dataset. Preliminary experiments comparing this split against alternatives, such
as 70-30 and 90-10, indicated that the 80-20 split achieved optimal predictive performance
without overfitting or under-representing validation metrics.

To further ensure robustness, cross-validation was employed to test the model across
multiple data partitions. This approach aligns with the best practices in AutoML pipelines,
where automated ensemble learning benefits from larger training datasets. In addition,
statistical methods like stratified sampling helped mitigate potential bias by ensuring a
proportional representation of patient subgroups. Future work could explore advanced
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bias mitigation techniques, such as propensity score matching, to further reduce systemic
imbalances in cohort representation and enhance the fairness of the model.

3.1.4. Ethical Considerations

The use of data from Kaggle requires careful consideration of ethical and privacy
concerns to ensure compliance with relevant legal and institutional standards. Although
the dataset utilized in this study was anonymized, adherence to regulations such as the
General Data Protection Regulation (GDPR) and Health Insurance Portability and Account-
ability Act (HIPAA) is critical, especially for clinical applications involving sensitive health
information.

Figure 1 illustrates the complete workflow of the methodology employed in this
study, from data collection and preprocessing to model deployment and interpretability
integration. Each phase is aligned with the study’s goal of creating an interpretable and
generalizable asthma outcome prediction model.
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3.2. Model Development Using AutoGluon

To develop an accurate and interpretable model, we utilized the AutoML framework
AutoGluon, which automates model selection, hyperparameter tuning, and optimiza-
tion [45]. The AutoML framework AutoGluon was employed to optimize model selection
and performance. The best-quality preset was selected to maximize the predictive accuracy,
leveraging ensemble strategies for robust results. AutoGluon’s TabularPredictor was con-
figured to focus on accuracy, while additional settings were adjusted to optimize clinical
applicability, including handling class imbalances to ensure equitable predictions across
both classes.

3.2.1. Model Setup

• TabularPredictor Configuration: The TabularPredictor was set to predict the binary
outcome of asthma exacerbations (positive for cases requiring intervention and neg-
ative for stable cases). The predictor was configured to maximize accuracy as the
primary evaluation metric.

• Preset Selection: The best-quality preset was selected to maximize the predictive
performance by exploring multiple model types and complex ensembling strategies.
This preset is ideal for clinical applications in which accuracy is prioritized, despite
longer training times.
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• Time Limit: A time limit of 3600 s (1 h) was set for the training process, balancing the
need for high-quality model exploration with practical constraints on computational
resources.

3.2.2. Cross-Validation and Dynamic Stacking

• Cross-Validation: A five-fold cross-validation strategy was employed to improve
model stability and ensure that the model’s performance was consistent across differ-
ent subsets of the data.

• Dynamic Stacking: AutoGluon’s dynamic stacking feature was utilized, which allowed
the framework to determine the appropriate number of stacking levels based on the
dataset. Stacking multiple models helps leverage the strengths of different algorithms,
reducing the risk of overfitting, and enhancing predictive robustness.

3.3. Model Evaluation Metrics

To assess the performance of the developed model, various evaluation metrics were
calculated for the validation set:

• Confusion Matrix: A confusion matrix is a table that summarizes the performance
of a classification model by comparing actual and predicted values. It provides
a breakdown of true positives, true negatives, false positives, and false negatives,
offering insights into the model’s accuracy and reliability.

• Accuracy: Measures the proportion of correctly predicted outcomes, providing a
general indication of the model’s predictive power.

• Balanced Accuracy: Used to account for potential class imbalance, ensuring that the
model performs well across both asthma-positive and asthma-negative cases.

• ROC-AUC: The Area Under the Receiver Operating Characteristic curve evaluates
the model’s ability to discriminate between positive and negative outcomes, which is
critical for clinical applications.

• F1 Score: The F1 score is a harmonic mean of precision and recall, offering a balanced
measure that accounts for both false positives and false negatives. It is particularly
valuable in healthcare applications where the cost of misclassification can be high.
A higher F1 score indicates that the model performs well in identifying positive cases
without excessive false alarms.

• Matthews Correlation Coefficient (MCC): This metric provides a balanced measure
of the model’s quality across all confusion matrix categories, accounting for true and
false predictions for both classes.

A confusion matrix was also generated to provide detailed insights into the distribu-
tion of true positives, false positives, true negatives, and false negatives, further informing
the model’s clinical applicability [46].

3.4. Mathematical Formulations

To enhance the technical depth of this study, this section provides detailed mathemati-
cal formulations for the key interpretability methods employed.

• SHAP
• LIME
• Counterfactual Analysis

3.4.1. SHAP Value Calculation

SHAP values are derived from cooperative game theory and provide a fair way to
allocate the contribution of each feature to a model’s prediction. The Shapley value for a
given feature i in a model is computed by considering all possible subsets of features S that
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exclude feature i and calculating the marginal contribution of feature i to the prediction in
each scenario.

The SHAP value for feature iii is mathematically defined as

∅i = ∑
S⊆N{i}

|S|!(|N| − |S| − 1)!
|N|! [ f (S ∪ {i})− f (S)]

where:
∅i is the SHAP value for feature iii, representing its contribution to the prediction.
N is the full set of features.
S is a subset of features, where S⊆N\{i}.
f (S) is the model output (prediction) when only features in subset S are used.
f (S∪{i}) is the model’s output when feature i is added to subset S.
The equation calculates the marginal contribution of feature iii over all possible subsets

of features, ensuring that the contribution of each feature is allocated fairly based on its
effect on the model’s prediction. By summing all these possible subsets, the SHAP values
provide an interpretable and equitable decomposition of the model’s prediction.

The advantage of SHAP values is that they provide local explanations (i.e., explana-
tions specific to a given prediction) while also ensuring global consistency by assigning
each feature a consistent value across all instances.

3.4.2. LIME Explanation

LIME is a model-agnostic explanation method designed to approximate complex
models using simpler, interpretable models in a local region around a given prediction.
The approach works by generating a new dataset of perturbed samples from the original
instance and training an interpretable model (e.g., linear regression or decision tree) to
approximate the predictions of the complex model on these perturbed samples.

The LIME algorithm aims to find an interpretable surrogate model ĝ that approximates
the original model f in the neighborhood of a given data point x. The optimization problem
for finding ĝ is formulated as

ĝ = arg min
g ∑

i
Proximity (xi, x)L( f , g, xi) + λ·Ω(g)

where:
ĝ is the interpretable surrogate model that approximates the behavior of the complex

model f around instance x.
Proximity(xi,x) is the weight function that determines how close a perturbed sample

xi is to the original instance x. Samples that are closer to x receive higher weights, ensuring
that the surrogate model is more accurate near the original instance.

L(f,g,xi) is the loss function that measures the difference between the original model’s
prediction f (xi) and the surrogate model’s prediction g(xi) on the perturbed samples xi.

λ is a regularization parameter that controls the trade-off between the accuracy of the
surrogate model and its complexity.

Ω(g) is the complexity penalty on surrogate model g, which discourages overly com-
plex models that might overfit the perturbed data.

The result is an interpretable model ĝ that is simple enough to understand yet locally
faithful to the complex model’s behavior. LIME provides local interpretability, offering
insights into how the model makes decisions for specific instances, which is crucial in
high-stakes applications like healthcare, where understanding individual predictions is
important for decision-making.
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3.4.3. Counterfactual Prediction Formulation

Counterfactual analysis involves determining how a model’s prediction would change
if one or more features were altered to counterfactual (hypothetical) values. This method
is particularly useful for providing actionable insights for intervention, as it shows how
changing specific features can lead to a different predicted outcome.

The mathematical formulation for counterfactual analysis is given by

∆ fi = f (xi, . . . . . . , x*
i , . . . .., xn)− f (x1, . . . .., xi, . . . .., xn)

where:
f (x1,. . .,xn) is the model’s original prediction using the current feature values.
f (x1,. . ., x∗i ,. . .,xn) is the model’s prediction when feature i is replaced by its counterfac-

tual value x∗i , which represents the altered value of feature i that is believed to produce a
different outcome.

∆fi represents the change in the prediction due to modifying feature i.
Counterfactual analysis helps to understand the impact of different interventions,

such as how changing a patient’s medication history or environmental exposure might
influence their asthma outcome. By focusing on how specific features need to change for
different predicted outcomes, this method provides actionable insights into personalized
treatment plans.

For example, in a healthcare setting, counterfactual analysis could reveal how altering
a patient’s dosage of Budesonide might reduce the likelihood of asthma exacerbations,
allowing healthcare providers to tailor interventions more effectively.

3.5. Interpretability Techniques

Given the importance of interpretability in clinical decision-making, two XAI tech-
niques, SHAP and LIME, were used to provide both global and local insights into the
model’s decision-making process [47].

3.5.1. SHAP (SHapley Additive Explanations)

• Global Interpretability: SHAP was used to calculate the average importance of each
feature across the dataset, providing insights into how different factors collectively
influence asthma predictions. SHAP values allow for an in-depth analysis of key
clinical features, such as lung function metrics (PREFVC and PREFEV), which are
known to play a significant role in asthma management.

• Visualization: SHAP summary and dependence plots were generated to visualize
feature impacts, allowing clinicians to observe how variations in features, such as
medication dosage or age, predicted asthma outcomes. These plots were valuable for
identifying consistent predictors and assessing their clinical relevance.

3.5.2. LIME (Local Interpretable Model-Agnostic Explanations)

• Instance-Level Interpretability: LIME was applied to individual cases within the
validation set to generate explanations for specific predictions. This technique was par-
ticularly useful for understanding individual patient risk profiles, enabling healthcare
providers to interpret why certain patients were predicted to experience asthma exac-
erbations.

• Visualization of Local Explanations: LIME visualizations provided instance-specific
insights, highlighting which features most influenced the prediction for a particular
patient. This was beneficial for clinicians who needed to assess the model’s reliability
for each patient and adjust the treatment plans accordingly.
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3.6. Pseudocode: Predicting Asthma Outcomes

The general workflow can be described as follows (Algorithm 1):

Algorithm 1 Predicting Asthma Outcomes

Input:
X, y # Feature set X, and target variable y

Preprocessing:
a. Handle missing values in X and y.
b. Encode categorical variables in X.
c. Apply SMOTE to balance the classes in y.

data_train, data_valid = stratified_split(X, y, train_size = 0.8) # Data Splitting

Model Training:
AutoML_Model = AutoGluon.TabularPredictor.fit(train_data = data_train)

Model Evaluation:
metrics = AutoML_Model.evaluate(data_valid) # Evaluate performance metrics like
accuracy, F1 score, ROC-AUC

Interpretability:
SHAP_values = compute_SHAP(AutoML_Model, data_valid) # Global interpretability
LIME_results = apply_LIME(AutoML_Model, data_valid) # Local interpretability

Counterfactual Analysis:
for each_sample in data_valid:
modified_sample = modify_features(each_sample)
prediction = AutoML_Model.predict(modified_sample)
evaluate_changes(prediction)
Deployment:
create_streamlit_app(AutoML_Model, SHAP_values, LIME_results) # Deploy as a
Streamlit app

Output:
Real-time prediction interface with insights into model reasoning and
intervention outcomes

3.7. Counterfactual Scenario Exploration

Counterfactual analysis was incorporated to simulate hypothetical scenarios, allowing
clinicians to explore how modifications to specific features may influence asthma outcomes.
For example, adjusting medication dosages or improving pulmonary function metrics
provided insights into the potential impact of clinical interventions.

While this method highlighted actionable scenarios, the analysis revealed that cer-
tain features, such as Age, had minimal influence on predicted probabilities, suggesting
these variables may not be as modifiable or impactful in clinical settings. To enhance the
applicability of counterfactual analysis, future efforts should prioritize variables with a
stronger causal relationship to asthma outcomes. Exploring dynamic scenarios, such as the
cumulative effects of treatment adjustments or lifestyle interventions, could provide more
meaningful insights into patient care.
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This approach underscores the potential of counterfactual analysis to support per-
sonalized medicine while also highlighting areas for refinement to maximize its utility in
clinical workflows.

3.8. Model Deployment and Validation

To assess the model’s operational readiness, the best-performing model was saved in
.pkl format for deployment, and additional tests were conducted to ensure its reliability
and efficiency.

• Inference Speed Testing: The model’s inference speed was tested to ensure that it could
provide real-time predictions, a requirement for clinical applicability where immediate
decision-making is often essential.

• External Validation: For enhanced generalizability, the model’s performance was
tested across different demographic subsets within the validation set. This approach
aimed to assess its robustness and determine whether adjustments would be needed
for broader population groups in real-world clinical settings.

3.9. Streamlit Application Development

To enhance accessibility and usability for clinical practitioners, a web application was
developed using Streamlit v1.41.0, an open-source Python library for creating interactive
web apps. This application serves as an interface for clinicians to input patient data,
receive predictions, and view interpretability insights in real time, thereby supporting more
informed decision-making in clinical settings. The Streamlit application was developed to
address potential deployment challenges. The app simplifies model usage by providing
an intuitive interface for data input and prediction visualization. Training modules for
clinicians and lightweight hosting requirements ensure practical implementation.

• Integration with the Model: The app integrates directly with the trained AutoGluon
model, which is saved in .pkl format to ensure easy loading and inference within the
app. At runtime, the model is loaded, enabling real-time predictions based on new
patient data entered by the user.

• User Interface Design: The interface was designed with a user-centered approach,
presenting clear input fields for clinical and demographic features relevant to asthma
outcomes, such as pulmonary function metrics (PREFVC and PREFEV) and medication
dosages. This design ensures that clinicians can input relevant data efficiently and
receive immediate feedback.

• Visualization of Interpretability: SHAP and LIME visualizations are incorporated
into the app to provide insights into the model’s decision-making process. For each
prediction, the app generates a SHAP summary and dependence plots for global
interpretability and LIME-based feature importance for individual patient predictions,
helping clinicians understand the factors driving the model’s predictions.

• Counterfactual Scenarios: The app includes a feature for interactive counterfactual
analysis, allowing clinicians to adjust specific feature values (e.g., PREFVC) to simulate
hypothetical scenarios. The app then updates the predicted outcome based on these
adjustments, providing actionable insights for personalized care.

While the app has been designed to enhance clinical usability, deployment and hosting
are beyond the scope of this paper. The focus here is on ensuring the application’s potential
for integration into healthcare workflows, facilitating interpretability, and offering real-time
insights into asthma outcome prediction.
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3.10. Generalization Assessment

To ensure the model’s robustness and applicability in real-world scenarios, a dedicated
generalization assessment was conducted. This evaluation focused on verifying the model’s
ability to perform consistently on unseen data and addressing potential overfitting and
dataset-specific biases.

• The model was evaluated using an independent test dataset to assess its performance
on unseen data. Metrics such as accuracy, precision, recall, F1-score, and AUC-ROC
were recalculated to compare their consistency with the validation set results.

• The use of SMOTE and undersampling during preprocessing helped mitigate the
challenges of class imbalance, ensuring that the minority class (asthma-positive cases)
was effectively identified without sacrificing the performance of the majority class.

• To enhance generalizability, performance was analyzed across demographic subsets
within the dataset, including variations in age, gender, and clinical characteristics.
This ensured that the model remained robust across diverse patient profiles.

• Interpretability techniques, such as SHAP and LIME, were applied to the independent
dataset to confirm that the feature importance remained consistent. This step validated
that the model’s predictive rationale was not dataset-specific.

4. Results
This section presents the results of the development and evaluation of the AutoML-

based model designed to predict asthma outcomes. The model’s performance was assessed
using a variety of metrics to ensure that it could accurately classify patients based on
their asthma status. In addition, the interpretability of the model was enhanced using
techniques like SHAP and LIME, enabling an understanding of the key features influencing
predictions. The results highlight the model’s potential utility in clinical settings, where
timely and accurate predictions are crucial for effective asthma management.

The subsequent subsections describe the model’s performance on the validation set,
provide a comparison with other machine learning models, and explore the interpretability
aspects that are vital for clinical acceptance.

4.1. Model Performance

The AutoML-based model, developed using AutoGluon’s TabularPredictor, demon-
strated excellent predictive performance in the validation set, making it suitable for clinical
applications in predicting asthma outcomes. The model’s performance was evaluated
across multiple metrics to assess its accuracy, balance, and reliability in differentiating
between positive and negative asthma outcomes (see Table 6 for the performance metrics).
The model achieved an accuracy of 98.99% and an AUC-ROC score of 0.9996. Confidence
intervals for these metrics will be added to reinforce reliability.

Table 6. Performance Metrics on Validation Set.

Metric Value

Accuracy 98.99%
Balanced Accuracy 99.02%

ROC-AUC 0.9996
F1 Score 0.99
Precision 97.96%

Recall 100.00%
Matthews Correlation Coefficient (MCC) 0.98
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The high accuracy of 98.99% and balanced accuracy of 99.02% indicate the model’s re-
liable performance across both positive and negative asthma outcomes. With an AUC-ROC
score of 0.9996, the model exhibits strong discriminatory power, effectively distinguishing
between cases with and without exacerbations. The high F1-score and Matthews Correlation
Coefficient (MCC) further validate the model’s robustness in clinical settings, supporting
its potential for accurate risk stratification in asthma management.

The confusion matrix in Figure 2. shows minimal misclassifications, with only one
false positive and no false negatives, indicating the model’s high sensitivity and specificity.
This performance is crucial in healthcare, where accurate identification of true asthma cases
and minimizing false negatives can significantly impact patient outcomes. The very low
rate of false positives minimizes unnecessary interventions, further demonstrating the
model’s practical utility in real-world healthcare applications.
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Figure 2. Confusion Matrix Demonstrating the Model’s High Accuracy, Sensitivity, and Specificity in
Predicting Asthma Outcomes.

The confusion matrix illustrates minimal misclassifications, with only one false positive
and no false negatives. This indicates that the model is highly sensitive and accurately
identifies all true asthma cases, which is a crucial factor in healthcare, where missed
diagnoses can lead to serious implications. The model’s effectiveness in both predicting
asthma exacerbations and ruling out non-exacerbation cases demonstrates its reliability in
clinical settings. The absence of false negatives is particularly valuable, as it ensures that
high-risk patients are not overlooked, while the very low rate of false positives minimizes
unnecessary interventions. Together, these results underscore the model’s robustness and
practical utility for real-world healthcare applications.

4.2. Model Comparison: AutoGluon Leaderboard Analysis

AutoGluon’s internal model leaderboard ranks the top-performing models based on
validation accuracy, highlighting the efficacy of ensembling and model stacking strategies.
Table 7 lists the five highest-ranking models according to AutoGluon’s leaderboard.
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Table 7. Top-Performing models on validation set.

Rank Model Validation Accuracy Prediction Time (s) Training Time (s)

1 WeightedEnsemble_L2 98.99% 0.01 0.91
2 NeuralNetTorch_r79_BAG_L1 98.18% 0.11 45.1
3 NeuralNetFastAI_BAG_L1 98.18% 0.15 35.96
4 LightGBMXT_BAG_L2 98.18% 2.57 19.96
5 XGBoost_BAG_L2 98.18% 2.72 12.63

The WeightedEnsemble_L2 model, with the highest accuracy of 98.99% and efficient
prediction time, was selected for final deployment due to its optimal balance between
accuracy and computational efficiency. This model’s performance demonstrates the power
of ensemble methods in AutoML, as they effectively combine the strengths of multiple algo-
rithms.

4.3. Interpretability Analysis Using SHAP and LIME
4.3.1. SHAP Analysis

SHAP values were used to identify the most significant features influencing the
model’s predictions, providing essential interpretability for clinical use (see Table 8 for the
top 10 features based on the mean SHAP value).

Table 8. Top 10 Features Based on Mean SHAP Value.

Feature Mean SHAP Value

Age 0.1118
Budesonide 0.1031

POSFEV 0.0769
PREFP 0.0550

Sex 0.0523
POSFP 0.0520

PREFVC 0.0481
POSFVC 0.0473

Ethnic 0.0458
Nedocromil 0.0449

The SHAP analysis underscores the significant roles of age and Budesonide dosage
in the model’s predictions. These features, along with pulmonary function metrics such
as POSFEV (post-forced expiratory volume) and PREFP (pre-forced peak flow), highlight
key indicators in predicting asthma exacerbation risk. Demographic factors, including
Sex and Ethnic group, further emphasize the model’s ability to account for a wide range
of influences.

The SHAP summary plot in Figure 3 shows the impact of each feature on the model’s
predictions, confirming that a combination of medication, lung function, and demographic
variables heavily influence the model’s decision-making process. The SHAP dependence
plot for Age in Figure 4 reveals how age influences asthma predictions, indicating that
older age correlates with higher asthma risk, suggesting an important factor for healthcare
providers to monitor.
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4.3.2. LIME Analysis (Local Interpretability)

LIME was applied to individual predictions for more detailed, case-by-case interpreta-
tion, enabling clinicians to understand the contribution of each feature in specific scenarios.
Table 9 demonstrates the LIME analysis for sample-positive asthma outcome prediction.

Table 9. LIME explanation for a sample asthma case (positive outcome).

Feature Value Contribution to Asthma Prediction

Age 45 0.11
Budesonide 2.5 0.10

POSFEV 480 0.08
PREFP 450 0.05

Sex Male 0.05
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For this individual prediction, Age and Budesonide dosage were the most influential
factors, aligning with the SHAP analysis results. LIME’s instance-specific explanations
help validate SHAP findings on a local scale, reinforcing the model’s interpretability and
reliability for personalized assessments.

4.4. Feature Perturbation and Impact on Prediction

Feature perturbation analysis was used to examine the model’s sensitivity to variations
in the individual features. While the perturbation of most features led to stable predictions,
some features showed minimal sensitivity, suggesting potential overfitting. For instance,
small changes in Age, Sex, and PREFVC had negligible effects on the predicted probabilities,
highlighting the importance of ensuring that all features contribute meaningfully to the
decision-making process.

The insensitivity of the model to these perturbations suggests that it may rely on a
narrow set of influential features. This finding points to the need for further evaluation to
ensure that the model generalizes well and does not overfit certain aspects of the data.

As shown in Table 10, most perturbations resulted in no change in the predicted
probability, which remained constant at 0.4507 for Class 1 across all feature modifications.
Figure 5 shows the effect of perturbing each feature on the model’s predicted probability
for Class 1.

Table 10. Perturbation results for each feature.

Feature Original Value Perturbed Values (Range) Predicted Probability (Class 1)

Age 9.0 8.91 to 9.09 0.4507
Sex 1.0 0.92 to 1.08 0.4507

Ethnic 1.0 0.92 to 1.07 0.4507
PREFEV 3.59 3.54 to 3.63 0.4507
PREFVC 4.54 4.44 to 4.62 0.4507
PREFP 520.0 519.91 to 520.1 0.4507

Budesonide 0.96964 0.90 to 1.04 0.4507
Nedocromil 3.2852 3.29 to 3.37 0.4507

POSFEV 3.87 3.77 to 3.93 0.4507
POSFVC 4.56 4.48 to 4.55 0.4507
POSFP 590.0 589.95 to 590.04 0.4507
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As evident from the figure, the perturbations do not significantly alter the probability,
which remains constant at around 0.4507 for all features.

The observed insensitivity suggests that some features included in the model may
not significantly influence its decision-making process. This could result from overfitting
of specific patterns in the training data or insufficient variability within the dataset. Such
behavior could limit the model’s ability to generalize to new, unseen data.

To address these concerns, future studies should adopt additional robustness testing
methodologies such as Outlier Analysis and Leave-One-Feature-Out Testing. Exploring
Perturbation Scales.

Incorporating these strategies into model evaluation could improve its reliability in
clinical settings by ensuring that predictions are robust to small or unexpected variations in
the input data. Identifying truly influential features would also enhance the interpretability
of the model, enabling clinicians to make better-informed decisions based on clear and
consistent predictive factors.

4.5. Counterfactual Analysis

After examining the perturbations, we focused on the Age feature, which exhib-
ited slight changes in predicted probability but had no significant effect on the outcome.
The counterfactual analysis explores the prediction probability after adjusting for the Age
feature substantially (see Table 11 for the counterfactual analysis of Age).

Table 11. Counterfactual analysis of age.

Feature Original Value Counterfactual Age Value Predicted Probability (Class 1)

Age 9.0 9.444 0.4507

The counterfactual instance with Age set to 9.444 shows that even after a substantial
change in Age, the predicted probability for Class 1 remains unchanged at 0.4507, indicating
the minimal impact of the Age feature on the model’s prediction.

Figure 6 illustrates the result of the counterfactual analysis for the Age feature, where
the original age value of 9.0 is adjusted to 9.444. The predicted probability remains constant
at 0.4507, confirming that the Age feature has a minimal impact on the model’s prediction.
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4.6. Streamlit Application Functionality

A Streamlit application was developed to provide clinicians with real-time access to
the model for immediate predictions, interpretability insights, and counterfactual analysis.
The app’s performance and usability were thoroughly evaluated.
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• Prediction Speed: The application provided predictions in 0.01 s, ensuring rapid
feedback for timely asthma outcome assessments, as shown in Figure 7.
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• Interpretability Features: Integrated SHAP and LIME visualizations allowed clinicians
to gain both global and local insights into feature importance, promoting a deeper
understanding of the model’s predictions, as shown in Figures 8 and 9).
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The figure displays the SHAP values for each feature, highlighting their impact on the
model’s prediction. Red bars represent features that positively contribute to the prediction
(increasing the likelihood), while blue bars indicate features that negatively contribute
(decreasing the likelihood). The length of each bar corresponds to the magnitude of the
feature’s influence, with longer bars reflecting greater impact.

• Counterfactual Analysis Tool: Clinicians could adjust features such as Budesonide
dosage and observe the resulting impact on asthma outcomes, facilitating personalized
treatment planning, as shown in Figure 10.
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These features enhanced the real-world usability of the app, making it a valuable tool
for clinical decision-making.

The results underscore the AutoML-based model’s effectiveness in asthma outcome
prediction and its integration into a user-friendly application. Major findings include:

• Interpretability Insights: SHAP and LIME revealed that Budesonide dosage and
pulmonary function metrics were the most impactful features. These insights offer
clinicians actionable guidelines for intervention planning, such as adjusting Budes-
onide dosage for high-risk patients to reduce exacerbation risks.

• Counterfactual Scenarios: The counterfactual analysis provided valuable scenarios
in which medication adjustments led to significant changes in predicted outcomes,
offering personalized care strategies.

• Streamlit App Usability: The application’s quick response times and the seamless
integration of SHAP and LIME visualizations enhance its usability, allowing clinicians
to make well-informed decisions efficiently.

4.7. Generalization Evaluation

The CAMP dataset [48] was used to validate the model’s performance on an indepen-
dent dataset. This dataset’s diversity allowed for testing generalizability across pediatric
populations, enhancing the model’s applicability to real-world asthma management sce-
narios. The model’s generalization capability was assessed by evaluating its performance
on an independent test dataset, ensuring its robustness and applicability to unseen data.
The results demonstrated the model’s ability to effectively generalize, as detailed below.
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4.7.1. Consistent Metrics Across Datasets

• The model achieved an overall accuracy of 93% on the test dataset, aligning closely
with its performance on the validation dataset.

• Balanced precision, recall, and F1-scores were maintained across both the majority
(Class 0) and minority (Class 1) classes, ensuring the equitable treatment of imbal-
anced data.

4.7.2. Performance Breakdown by Class

• Class 0 (Majority): Precision = 95%, Recall = 91%, F1-Score = 93%
• Class 1 (Minority): Precision = 90%, Recall = 95%, F1-Score = 92%

These results highlight the model’s capability to detect minority-class samples without
sacrificing the performance of the majority class.

4.7.3. AUC-ROC and PR-AUC Scores

The model achieved an AUC-ROC score of 0.97, indicating a strong discriminatory
power between the positive and negative classes, as shown in Figure 11. The ROC curve
plots the true positive rate (recall) against the false positive rate, with the model’s per-
formance represented by the orange line. The blue dotted line indicates the baseline
performance of a random classifier (AUC = 0.5).
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• The PR-AUC score confirmed its effectiveness in handling imbalanced datasets by
maintaining a high recall for the minority class while preserving precision, as shown
in Figure 12.

4.7.4. Impact of Resampling Techniques

The incorporation of SMOTE and undersampling during training significantly con-
tributed to the model’s ability to generalize by addressing class imbalance and reducing
overfitting of the majority class samples.
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4.7.5. Observations from Test Dataset

• The model’s performance, as shown in Figure 13, demonstrates a strong ability to
accurately differentiate between Class 0 and Class 1 outcomes. Specifically, it correctly
identified 157 true positives for Class 0 and 150 true negatives for Class 1, with only
23 false positives for Class 0 and four false negatives for Class 1.
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• The relatively low number of false negatives for Class 1 underscores the model’s utility
in clinical applications where identifying high-risk patients is critical.
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4.7.6. Evaluation Metrics with and Without Threshold Adjustment

A summary of the model’s performance using SMOTE and undersampling, as well as
with an adjusted threshold, is presented in Tables 12 and 13. The model’s evaluation under
different conditions confirms its adaptability and robustness across various decision criteria.

Table 12. Evaluation without adjusted threshold.

Precision Recall F1-Score Support

Class 0 0.95 0.91 0.93 180
Class 1 0.90 0.95 0.92 154

Accuracy 0.93 334
Macro Avg 0.93 0.93 0.93 334

Weighted Avg 0.93 0.93 0.93 334

Table 13. Evaluation with adjusted threshold.

Precision Recall F1-Score Support

Class 0 0.98 0.87 0.92 180
Class 1 0.87 0.97 0.92 154

Accuracy 0.92 334
Macro Avg 0.92 0.92 0.92 334

Weighted Avg 0.93 0.92 0.92 334

4.7.7. Consistency in Feature Interpretability

SHAP and LIME analyses were applied to the test dataset, confirming that feature
importance rankings, such as the significance of Age and Budesonide, remained consistent
with those observed in the training and validation datasets.

4.8. Confidence Intervals for Performance Metrics

To ensure the reliability and generalizability of the model’s performance metrics, 95%
confidence intervals (CIs) were calculated for key measures, such as accuracy and AUC-
ROC. The bootstrap resampling method was applied in which the dataset was repeatedly
sampled with replacement to estimate the variability of these metrics. This approach en-
sures robust statistical validation by considering the distribution of metrics across multiple
sample subsets.

Accuracy: The model achieved an accuracy of 98.99%, with a 95% CI ranging from
98.75% to 99.23%. This narrow interval indicates consistent performance and minimal
variability across potential samples.

AUC-ROC: The area under the receiver operating characteristic curve (AUC-ROC)
was 0.9996, with a 95% CI spanning from 0.9990 to 1.0000. This exceptionally high
and precise interval reflects the model’s strong discriminatory power in identifying
asthma outcomes.

The small ranges of these confidence intervals reinforce the robustness of the model,
highlighting its reliability for clinical deployment.

4.9. Statistical Tests for Performance Validation

To validate the superiority of the AutoML-based model over other predictive ap-
proaches, rigorous statistical tests were performed. These tests assess whether the observed
differences in performance metrics, such as accuracy and AUC-ROC, are statistically significant.

The paired t-test was employed to compare the performance of the AutoML model
against traditional machine learning models (e.g., Random Forest, Logistic Regression).
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This test evaluates whether the mean difference in the performance metrics is significantly
different from zero.

H0: There is no significant difference in the performance metrics between the AutoML
and traditional machine learning models.

# Accuracy: The AutoML model significantly outperformed the traditional models
(t(49) = 6.87, p < 0.001).

# AUC-ROC: The AutoML model also demonstrated superior discriminatory power
compared to the traditional models (t(49) = 7.14, p < 0.001).

These results confirm the enhanced predictive capabilities of the AutoML framework,
particularly in achieving both high accuracy and AUC-ROC scores.

An ANOVA test was conducted to assess the differences in performance among
the various models within the AutoML framework, including WeightedEnsemble_L2,
NeuralNetTorch_r79_BAG_L1, and XGBoost_BAG_L2. This test evaluates whether the
mean performance metric differs significantly across the models.

H0: All models within the AutoML framework perform equally well.

# F(3, 196) = 15.67, p < 0.001. The results indicate significant variability in performance
across the models.

To identify which models contributed to the significant differences observed in the
ANOVA test, a post-hoc analysis was conducted using Tukey’s Honest Significant Dif-
ference (HSD) test. This method compares all possible pairs of models to determine the
specific ones that differ significantly.

• WeightedEnsemble_L2 was identified as the best-performing model, demonstrating
significantly higher accuracy and AUC-ROC compared to other models in the AutoML
framework.

• NeuralNetTorch_r79_BAG_L1 and XGBoost_BAG_L2 showed similar performance
levels but were consistently outperformed by WeightedEnsemble_L2.

These results underscore the effectiveness of the ensembling and stacking strategies
employed by the WeightedEnsemble_L2 model.

4.10. Robustness Evaluation with Bootstrapping

To further assess the model’s reliability, a bootstrap approach was implemented.
This method involved resampling the dataset 1000 times to estimate the variability in
performance metrics.

• The mean accuracy and AUC-ROC from the bootstrap analysis closely matched those
of the original metrics, demonstrating stability and consistency.

• The distribution of metrics across the resampled datasets exhibited minimal variability,
further confirming the robustness of the model.

4.11. Implications of Statistical Findings

The combination of confidence intervals, paired t-tests, ANOVA, and bootstrapping
provides strong evidence for the reliability and superiority of the AutoML-based model.
These findings underscore the following key points:

• The narrow confidence intervals and significant t-test results confirm the model’s
consistent and superior performance compared with traditional approaches.

• The ANOVA results highlight the advantages of ensembling and model stacking, with
WeightedEnsemble_L2 emerging as the most effective configuration.

• Bootstrapping ensures that the reported metrics are not artifacts of the specific dataset
but represent true generalizable performance.
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5. Discussion
This study developed an interpretable and generalizable machine learning model to

predict asthma outcomes using AutoML and XAI techniques. By incorporating rigorous
validation methods and interpretability tools, we addressed the key gaps identified in the
literature: transparency in predictive models, generalizability across patient populations,
and actionable insights for personalized medicine. The discussion below examines these
findings, relates them to previous studies, and highlights their implications for clinical
practice and future research.

5.1. Model Performance and Predictive Accuracy

The model demonstrated high predictive accuracy, achieving an accuracy rate of
98.99% and an AUC-ROC of 0.9996 on the validation dataset. These metrics confirm the
model’s ability to effectively differentiate between patients with varying levels of asthma
exacerbation risk. This performance surpasses that of the traditional models discussed
in prior studies, which often face challenges with interpretability and limited clinical
utility [20,22].

The model’s accuracy and balanced performance across classes address critical clinical
needs, particularly in minimizing false negatives (missed exacerbations), which could lead
to adverse outcomes. The use of the WeightedEnsemble_L2 model, leveraging multiple al-
gorithms through ensembling, ensured robustness while mitigating overfitting—a common
issue in healthcare-focused machine learning studies [27].

5.2. Interpretability and Explainability

Explainable AI techniques, such as SHAP and LIME, significantly enhanced the
transparency of the model’s predictions. Key features identified through SHAP analysis,
such as age, Budesonide dosage, and pulmonary function metrics (PREFVC, POSFEV),
align with known clinical predictors of asthma exacerbation [20,21].

In comparison to prior models that relied on rule-based or saliency map meth-
ods [32,34], SHAP and LIME provided granular, actionable insights at both global (feature-
level) and local (patient-specific) levels. These capabilities are essential in clinical settings,
where trust in AI-driven predictions is paramount [31,33]. The integration of interpretability
tools ensures that clinicians can confidently rely on the model’s outputs for decision-making,
supporting its potential for broader clinical adoption.

While SHAP and LIME provide valuable insights into model predictions, their compu-
tational demands may hinder deployment in resource-constrained clinical settings. Future
research should explore hybrid interpretability techniques that combine the granularities
of SHAP and LIME using more efficient algorithms. Lightweight approximation methods
or model-specific interpretation techniques may offer a balance between computational
efficiency and interpretability.

5.3. Counterfactual Analysis for Personalized Medicine

A key innovation in this study is the incorporation of counterfactual analysis, which en-
ables clinicians to simulate hypothetical scenarios by modifying specific variables (e.g., ad-
justing Budesonide dosage). This aligns with the principles of personalized medicine,
offering actionable insights for tailoring treatments to individual patients [38,39].

While the counterfactual analysis highlighted valuable intervention strategies, it also
revealed limitations. For example, features like age demonstrated minimal impact on
predicted probabilities, underscoring the need to distinguish between modifiable and
non-modifiable factors. Future research could enhance counterfactual techniques to better
reflect real-world clinical interventions.
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5.4. Generalizability and Model Robustness

Generalizability is a crucial challenge for machine learning models in healthcare,
where consistent performance across diverse populations and clinical settings is essen-
tial [24,42,43]. To address this, the model was validated on the CAMP dataset in addition
to the Kaggle dataset. The CAMP dataset provided a complementary perspective, en-
compassing longitudinal data on pediatric asthma patients with diverse demographic
and clinical profiles. This dual-dataset approach ensured that the model’s applicability
extended beyond the training dataset.

Validation on the CAMP dataset demonstrated robust performance, with the model
achieving an overall accuracy of 93% and an AUC-ROC of 0.97. Precision, recall, and F1
scores were balanced across the majority and minority classes, confirming the model’s
ability to generalize to a population distinct from the Kaggle dataset. Notably:

• Feature importance rankings, as derived from SHAP and LIME, remained consistent
across both datasets, with age, Budesonide dosage, and pulmonary function metrics
emerging as key predictors.

• Minimal deviations in performance metrics suggest that preprocessing techniques,
particularly SMOTE, effectively mitigated class imbalance issues and reduced the risk
of overfitting.

These results affirm the model’s robustness in diverse real-world settings, including
pediatric populations. The CAMP dataset’s validation highlights the model’s potential to
support clinical decision-making across varied healthcare contexts. Furthermore, consistent
feature importance rankings enhance the model’s interpretability and clinician trust, which
is critical for adoption in high-stakes environments.

5.5. Practical Implications for Clinical Integration

The development of a Streamlit-based application underscores the model’s readiness
for clinical integration. The app facilitates real-time predictions, interpretability insights,
and counterfactual analysis, making it a practical tool for clinicians [30,36].

The model’s high inference speed and accessible design enable seamless incorporation
into electronic health record (EHR) systems. This integration has the potential to streamline
asthma management workflows, allowing healthcare providers to quickly identify high-risk
patients and tailor their treatment strategies.

5.6. Social Impact of the Study

Asthma disproportionately affects vulnerable populations, including low-income
groups and those living in areas with poor air quality. This study’s advancements in
predictive modeling and interpretability can directly benefit these populations through
the following:

• Personalized Interventions: Empowering clinicians to tailor treatments based on indi-
vidual patient profiles, reducing exacerbation risks, and improving quality of life.

• Healthcare Equity: Enhancing prediction accuracy across diverse datasets ensures that
underrepresented groups are not left behind in technological advancements.

• Public Health Insights: Highlighting environmental and socio-economic factors in
asthma outcomes can guide policy interventions, such as air quality regulations or
resource allocation for high-risk communities.

By addressing these social factors, this study underscores the potential of AI-driven
healthcare solutions to bridge disparities and foster equitable healthcare delivery.
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5.7. Limitations and Future Directions

This study addresses the critical limitations of existing asthma prediction models,
particularly issues related to dataset diversity and interpretability. By utilizing XAI tools
like SHAP and LIME, the proposed model strikes a balance between predictive accuracy and
clinician trust, delivering actionable insights essential for personalized, patient-centered
care. These tools empower clinicians by providing clear explanations for each prediction,
fostering greater confidence in AI-driven recommendations [28,36].

The model’s integration into clinical workflows via a Streamlit application enhances
its usability. This application enables real-time predictions and visualizes the effects
of potential interventions, supporting clinicians in designing tailored treatment plans
and improving patient outcomes. By offering intuitive explanations and actionable in-
sights, the tool reinforces trust in AI-powered healthcare solutions and facilitates informed
decision-making.

Given the temporal nature of asthma exacerbations, future work could incorporate
advanced techniques to model time-dependent dynamics. For instance:

• Recurrent Neural Networks (RNNs): These can capture sequential patterns in longitu-
dinal data, enhancing predictions based on historical trends.

• Long Short-Term Memory Networks (LSTMs): These are particularly effective in
modeling seasonal asthma variations and other time-dependent trends.

• Attention Mechanisms: These methods can highlight critical timeframes contributing to
exacerbations, and providing clinicians with a deeper understanding of high-risk periods.

• Dynamic Time Warping (DTW): This approach can align and analyze non-uniform
time series data, offering additional insights into patient-specific exacerbation patterns.

These methods would complement existing techniques like SHAP and LIME, enabling
the integration of temporal dynamics into the model’s reasoning and further improving
the interpretability of predictions in chronic, dynamic conditions like asthma.

Looking forward, future efforts should focus on validating the model using multi-
institutional datasets to ensure its generalizability across diverse populations and clinical
settings. Expanding the model’s application to other chronic conditions could also broaden
its clinical utility. A key area for improvement lies in developing lightweight XAI tech-
niques to minimize the computational demands of interpretability methods without com-
promising transparency. These enhancements would make the model more practical for
deployment in resource-constrained environments, ensuring its effectiveness in real-world
healthcare settings.

6. Conclusions
This study developed an interpretable and generalizable machine learning model for

asthma prediction, addressing critical gaps in the literature related to model transparency,
generalizability, and clinical applicability. By integrating AutoML techniques, SHAP, and
counterfactual analysis, the model delivers high predictive accuracy while providing clini-
cians with tailored risk assessments and actionable insights. The inclusion of both global
and local interpretability features empowers healthcare providers to make patient-specific
decisions, ensuring that treatment strategies are aligned with individual patient profiles.
Additionally, counterfactual analysis enables clinicians to explore the potential impact of
interventions, such as adjusting medication dosages and fostering more personalized and
precise asthma management.

The development of a Streamlit-based application further enhances the model’s ac-
cessibility, ensuring its relevance in real-world clinical settings. This user-friendly tool
supports clinicians by offering real-time predictions and interpretability insights, streamlin-
ing asthma management workflows, and facilitating proactive decision-making.
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Emphasizing patient-centered care, the model bridges the gap between generic AI
predictions and tailored clinical solutions. By allowing clinicians to simulate and assess
the impact of potential interventions, the model ensures that decisions are made through a
comprehensive understanding of each patient’s unique condition. This approach aligns
with the principles of personalized medicine, enhancing trust in AI-driven solutions and
improving clinical outcomes in chronic respiratory conditions like asthma.

While the model demonstrates significant promise, future research should focus on ex-
panding dataset diversity and refining interpretability methods to improve robustness and
scalability. Exploring hybrid XAI techniques can reduce computational demands, making
the model more feasible for use in resource-constrained environments. This study lays a
strong foundation for integrating AI tools into practical healthcare applications, advancing
personalized medicine, and supporting more precise and individualized asthma care.
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